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ON THE NUMBER OF INVARIANT CONICS
FOR THE POLYNOMIAL VECTOR FIELDS

DEFINED ON QUADRICS

YUDY BOLAÑOS1, JAUME LLIBRE1 AND CLAUDIA VALLS2

Abstract. The quadrics here considered are the nine real quadrics: parabolic
cylinder, elliptic cylinder, hyperbolic cylinder, cone, hyperboloid of one sheet,
hyperbolic paraboloid, elliptic paraboloid, ellipsoid and hyperboloid of two
sheets. Let Q be one of these quadrics. We consider a polynomial vector field
X = (P, Q, R) in R3 whose flow leaves Q invariant. If m1 = degree P , m2 =

degree Q and m3 = degree R, we say that m = (m1, m2, m3) is the degree
of X . In function of these degrees we find a bound for the maximum number
of invariant conics of X that result from the intersection of invariant planes
of X with Q. The conics obtained can be degenerate or not. Since the first
six quadrics mentioned are ruled surfaces, the degenerate conics obtained are
formed by a point, a double straight line, two parallel straight lines, or two
intersecting straight lines; thus for the vector fields defined on these quadrics
we get a bound for the maximum number of invariant straight lines contained
in invariant planes of X . In the same way, if the conic is non degenerate,
it can be a parabola, an ellipse or a hyperbola and we provide a bound for
the maximum number of invariant non degenerate conics of the vector field X
depending on each quadric Q and of the degrees m1, m2 and m3 of X .

1. Introduction

In this paper we deal with polynomial vector fields

X = P (x, y, z)
∂

∂x
+ Q(x, y, z)

∂

∂y
+ R(x, y, z)

∂

∂z
,

where P,Q and R are polynomials of degrees m1, m2 and m3 respectively in the
variables x, y, z with coefficients in R. We say that m = (m1, m2,m3) is the degree
of the polynomial vector field. We assume that X has an invariant quadric Q, then
we say that X is a polynomial vector field defined on the quadric Q.

An invariant plane of X intersects the invariant quadric Q in an invariant conic.
Our main objective is to study the maximum number of invariant conics of this kind
that the polynomial vector field X can have in function of its degrees m1, m2 and
m3. If the conic is non degenerate, then it is an ellipse, a parabola or a hyperbola.
If it is degenerate, then it is formed by a point, two straight lines that intersect at
a point, or two parallel straight lines, or a double straight line.

The study of the maximum number of invariant classes of algebraic curves in R2,
of invariant classes of surfaces in R3, and of invariant classes of hypersurfaces in
Rn have been studied recently for several authors. Thus, the maximum number of
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straight lines that a polynomial vector field in R2 can have in function of its degree
has been studied in [1, 14, 17]. The maximum number of algebraic limit cycles
that a polynomial vector field in R2 can have has been studied in [9, 10, 18]. The
maximum number of invariant meridians and parallels for polynomial vector fields
on a 2–dimensional torus have been considered in [8, 11]. The maximum number
of invariant hyperplanes (respectively Sn−1 spheres) that polynomial vector fields
can have in Rn have been determined in [7] (respectively [2]).

The paper is organized as follows. In section 2 we provide some basic definitions
that will need later on. Next we introduce the quadrics and theirs canonical forms,
and in the following sections we give the bounds for the maximum number of the
invariant conics living on invariant planes that a polynomial vector field defined on
a quadric can have.

2. Basic definitions and results

We recall that the polynomial differential system in R3 of degree m associated
with the vector field X is

dx

dt
= P (x, y, z),

dy

dt
= Q(x, y, z),

dz

dt
= R(x, y, z).

Let Q be a quadric given by Q = {(x, y, z) ∈ R3 : G(x, y, z) = 0}, where
G : R3 → R is a polynomial of degree 2. We say that X defines a polynomial vector
field on the quadric Q if XG = (P, Q,R) ·∇G = 0 on all points of Q. Here, as usual
∇G denotes the gradient of the function G.

We denote by R[x, y, z] the ring of all polynomials in the variables x, y, z with
coefficients in R. Let f(x, y, z) ∈ R[x, y, z] \ R. We say that {f = 0} ∩ Q ⊂ R3

is an invariant algebraic curve of the vector field X on Q (or simply an invariant
algebraic curve of Q) if it satisfies:

(i) There exists a polynomial k ∈ R[x, y, z] such that

X f = P
∂f

∂x
+ Q

∂f

∂y
+ R

∂f

∂z
= kf on Q,

the polynomial k is the cofactor of f = 0 on Q; and
(ii) the two surfaces f = 0 and Q have transversal intersection; i.e. ∇G∧∇f ̸=

0 on the curve {f = 0} ∩ Q, where ∧ denotes the wedge product of two
vectors of R3.

By the Darboux theory of integrability we know that the existence of a sufficiently
large number of invariant algebraic surfaces of X guarantees the existence of a first
integral for the polynomial vector field X which can be calculated explicitly, see for
instance [4, 13]. Note that if the vector field X has degree m, then any cofactor
has degree at most max{m1,m2,m3} − 1.

One of the best tools in order to look for invariant algebraic surfaces is the fol-
lowing. Let W be a vector subspace of the space of polynomials R[x, y, z] generated
by the independent polynomials v1, . . . , vl in the R–vector space R[x, y, z], which is
denoted by W = ⟨v1, . . . , vl⟩. The extactic polynomial of X associated with W is
the polynomial

εW (X ) =

∣∣∣∣∣∣∣∣∣

v1 . . . vl

X (v1) · · · X (vl)
... · · ·

...
X l−1(v1) · · · X l−1(vl)

∣∣∣∣∣∣∣∣∣
,
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where X j(vi) = X j−1(X (vi)) for all i, j. From the properties of the determinants
and of the derivation we know that the definition of the extactic polynomial is
independent of the chosen basis of W .

We note that εW (X ) is the determinant of an l × l matrix.
The notion of extactic polynomial εW (X ) is important here for two reasons.

First it allows to detect when an algebraic surface f = 0 with f ∈ W is invariant
by the polynomial vector field X , see the next proposition. Second εW (X ) is also
important because it allows to define and compute easily the multiplicity of an
invariant algebraic surface. For more details see [3, 13].

Proposition 1. Let X be a polynomial vector field in R3 and let W be a finitely
generated R–vector subspace of R[x, y, z] with dim(W ) > 1. Then, every invariant
algebraic surface f = 0 for the vector field X , with f ∈ W , is a factor of the
polynomial εW (X ).

The multiplicity of an invariant algebraic surface f = 0 with f ∈ W is the largest
positive integer k such that fk divides the polynomial εW (X ) when εW (X ) ̸= 0,
otherwise the multiplicity is infinite. For more details on the multiplicity see [3, 13].

3. Quadrics and conics

It is well known that the quadrics can be classified into seventeen types. Since
here we only consider real polynomial vector fields defined on real quadrics, we
omit the five imaginary quadrics. Also we omit the three types of quadrics that
are formed by planes since the study of the Darboux theory of integrability of the
vector fields on these planes is reduced to the classic study of the Darboux theory
of integrability of planar polynomial vector fields. Thus we only work with the
remainder nine type of quadrics: parabolic cylinder, elliptic cylinder, hyperbolic
cylinder, cone, hyperboloid of one sheet, hyperbolic paraboloid, elliptic paraboloid,
ellipsoid or sphere, and hyperboloid of two sheets.

Recall that the reduction of each quadric to its canonical form is done through a
linear isomorphism, and that this isomorphism and its inverse are linear diffeomor-
phism. Therefore, it is not restrictive to study the Darboux theory of integrability
on the corresponding canonical forms of the quadrics (for more details see [12]). So,
in the rest of this paper we will work with the nine canonical forms: z2 − x = 0,
x2+z2−1 = 0, x2−z2−1 = 0, x2+y2−z2 = 0, x2+y2−z2−1 = 0, y2−z2−x = 0,
y2 + z2 − x = 0, x2 + y2 + z2 − 1 = 0 and x2 + y2 − z2 + 1 = 0.

Some of the quadrics are ruled surfaces and this will be used in the following
sections. A surface is ruled [5, 6] if through every point of the surface there is a
straight line that lies on it. A surface is doubly ruled if through every one of its
points there are two different straight lines that lie on the surface. Of the nine real
quadrics that we consider six of them are ruled, these are the parabolic cylinder,
elliptic cylinder, hyperbolic cylinder, cone, hyperboloid of one sheet and hyper-
bolic paraboloid. Furthermore, the hyperboloid of one sheet and the hyperbolic
paraboloid are doubly ruled surfaces.

Since we are interested in studying the number of invariant conics obtained from
the intersection of invariant planes with a quadric, we recall in the following result
(see [15]) the classification of conics.
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Proposition 2. Let Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 with A2 + B2 + C2 ̸= 0
be the equation corresponding to a conic and consider

d1 =

∣∣∣∣∣∣

A B/2 D/2
B/2 C E/2
D/2 E/2 F

∣∣∣∣∣∣
and d2 =

∣∣∣∣
A B/2

B/2 C

∣∣∣∣ .

The conic is non degenerate if d1 ̸= 0. In this case it is a hyperbola if and only if
d2 < 0, a parabola if and only if d2 = 0, or an ellipse if and only if d2 > 0. If the
conic is degenerate (d1 = 0), it is a pair of intersecting straight lines if and only
if d2 < 0, a pair of parallel straight lines if and only if d2 = 0, or a point if and
only if d2 > 0. In the case of parallel straight lines (d2 = 0), these are distinct
and real if E2 − 4CF > 0, double if E2 − 4CF = 0, and distinct and imaginary if
E2 − 4CF < 0.

4. Results on the parabolic cylinder

We are going to work with the following canonical form z2 −x = 0 of a parabolic
cylinder Q. Let X be a polynomial vector field in R3 defined on Q. We will see that
the intersection of a parabolic cylinder with a plane are straight lines or parabolas.

In the following subsections we will find an upper bound on the maximum number
of these invariant straight lines and parabolas of X defined on Q, depending on the
degrees m1, m2 and m3 of the vector field X .

4.1. Invariant straight lines. As mentioned above the parabolic cylinder is a
ruled surface.

Lemma 3. All straight lines contained in the parabolic cylinder z2 − x = 0 are
parallel to the y axis.

Proof. We are going to see that any straight line that is non parallel to the y axis
cannot be contained in the parabolic cylinder.

Let (x0, y0, z0) ∈ R3 be a point of the parabolic cylinder and consider a straight
line in R3 non parallel to the y axis that goes through the point (x0, y0, z0). Let
(a, b, c) with a2 + c2 ̸= 0 be the direction vector of the straight line. Its equation is
(x, y, z) = (x0, y0, z0) + λ(a, b, c), λ ∈ R. We will prove that this straight line is not
contained in the parabolic cylinder.

If the points (x, y, z) of the straight line are on the parabolic cylinder, then
it must satisfy (z0 + λc)2 − (x0 + λa) = 0 for all λ. From this it follows that
z2
0 + 2λcz0 + λ2c2 − x0 − λa = 0. Since z2

0 − x0 = 0, we obtain

(1) 2z0c + λc2 − a = 0.

If c ̸= 0, equality (1) is satisfied only for λ = (a − 2z0c)/c2. Since a2 + c2 ̸= 0, if
c = 0, then a ̸= 0, which contradicts equality (1). �

Lemma 4. Any plane non parallel to the y axis intersects the parabolic cylinder
z2 − x = 0 in a parabola.

Proof. Let ax + by + cz + d = 0 with b ̸= 0 be the equation of a plane non parallel
to the y axis. If c ̸= 0, then z = −(ax + by + d)/c. Replacing it in z2 − x = 0 we
obtain a2x2 + 2abxy + b2y2 + (2ad − c2)x + 2bdy + d2 = 0, that is the equation of
the intersection conic. Applying Proposition 2, d1 = −b2c4/4 ̸= 0 and d2 = 0. So
the conic is a parabola.
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Now let c = 0. If a ̸= 0, then x = −(b y +d)/a. Replacing it in z2 −x = 0 we get
the equation of the intersection conic az2+by+d = 0. In this case d1 = −a b2/4 ̸= 0
and d2 = 0. So the conic is a parabola. If c = a = 0, the equation of the plane
takes the form y = −d/b. The intersection of the parabolic cylinder with this plane
is a parabola. �
Proposition 5. The intersection conic of a parabolic cylinder Q with a plane is
either a double straight line, or a pair of parallel straight lines, or a parabola.

Proof. By Lemma 3 if we have a plane parallel to the y axis that intersects the
parabolic cylinder Q, its intersection is a double straight line or two parallel straight
lines. If the plane is non parallel to the y axis, from Lemma 4, it intersects Q in a
parabola. �

Denote by X = (P, Q, R) the polynomial vector field defined on the parabolic
cylinder z2 − x = 0. This implies that P = 2zR and m1 = m3 + 1.

Proposition 6. There are polynomial vector fields X defined on a parabolic cylin-
der Q that have infinitely many invariant straight lines, taking into account their
multiplicities.

Proof. Let W = ⟨1, x, z⟩. If f ∈ W , then f = 0 is a parallel plane to the y
axis. If these planes are invariant by X , their intersections with Q are straight
lines also invariant. By Proposition 1 and Lemma 3 it follows that a necessary
condition in order that X has infinitely many invariant straight lines contained in
Q is εW (X ) = 0. We know that

(2) εW (X ) =

∣∣∣∣∣∣

1 x z
0 X (x) X (z)
0 X 2(x) X 2(z)

∣∣∣∣∣∣
.

Since X (x) = 2zR, X (z) = R and P = 2zR we obtain

X 2(x) = X (2zR) = 2X (z)R + 2zX (R)
= 2R2 + 4z2RxR + 2zRyQ + 2zRzR,

X 2(z) = X (R) = 2zRRx + QRy + RRz.

So,

(3) εW (X ) = X (x)X 2(z) − X (z)X 2(x) = 2R3.

Thus, εW (X ) = 0 if and only if R = 0. Then, we can define X as the vector field
whose associated differential system is ẋ = 0, ẏ = Q, ż = 0. As ẋ = 0, the planes
f = x + c = 0 with c ∈ R are invariant by X . Since they are parallel to the y axis,
by Proposition 5, for all c < 0 they intersect Q in a pair of parallel straight lines, or
in a double straight line if x = 0. Therefore the vector field X has infinitely many
invariant straight lines. �
Theorem 7. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the parabolic cylinder z2 − x = 0 has finitely many in-
variant straight lines, taking into account their multiplicities. Then, the maximum
number of invariant straight lines of X contained in different invariant planes par-
allel to the y axis is at most

(a) 2m3 if X has no invariant double straight lines,
(b) m3 if all invariant straight lines are double, and
(c) is between m3 and 2m3 − 1 if there are invariant double straight lines.
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Proof. Let W = ⟨1, x, z⟩. Then, the extactic polynomial of X associated to W is
given by equation (3). According with Proposition 1 any invariant plane parallel to
the y axis must divide R3, and so R. Since the degree of R is m3, R has at most
m3 different linear factors, so X can have at most m3 different invariant planes.
Therefore an upper bound for the maximum number of invariant straight lines
parallel to the y axis contained in such invariant planes is 2m3 if all straight lines
are not double, and m3 if all are double. �

Proposition 8. The hypotheses of Theorem 7 are satisfied if m3 ≥ 1 and the
bounds can be reached.

Proof. By equation (3), if X = (P,Q, R) with R = k ∈ R\{0} is a polynomial vector
field defined on the parabolic cylinder Q, then εW (X ) = 2k3 with W = ⟨1, x, z⟩.
Since any invariant plane parallel to the y axis, ax + bz + c = 0, must satisfy that
ax + bz + c divides to the extactic polynomial 2k3 (see Proposition 1), there are no
such invariant planes. Then, m3 ≥ 1.

Now we prove that if m3 ≥ 1, the bounds can be reached. Let X be a polynomial

vector field on Q whose associated differential system is ẋ = 2z

m3∏

l=1

fl, ẏ = q,

ż =

m3∏

l=1

fl, where fl = alx + blz + cl with al, bl, cl, q ∈ R for all l = 1, . . . , m3 and

the planes fl = 0 are distinct. The plane fl = 0 is invariant by X with cofactor

kl = (2alz + bl)

m3∏

j = 1
j ̸= l

fl, l = 1, . . . , m3. So, this system has at most 2m3 invariant

parallel straight lines contained in parallel planes to the y axis o m3 invariant double
straight lines of X contained in planes parallel to the y axis, which coincides with
the bounds given by Theorem 7. �

4.2. Invariant parabolas. According with Lemma 4, if the intersection of the
parabolic cylinder z2 − x = 0 with a plane non parallel to the y axis is not empty,
then it is a parabola.

Proposition 9. There are polynomial vector fields X defined on the parabolic cylin-
der Q that have infinitely many invariant parabolas, taking into account their mul-
tiplicities.

Proof. Let X be the polynomial vector field on Q whose associated differential
system is ẋ = 2z2, ẏ = −z(1 + 2z), ż = z.

A simple calculation verifies that f = x+y+z +d = 0 is an invariant plane of X
with cofactor k = 0 for all d ∈ R. In other words x + y + z is a first integral of the
vector field, i.e. a function constant on the solutions of the vector field. The planes
f = 0 are non parallel to the y axis, so they intersect Q in a parabola. Therefore,
the vector field X have infinitely many invariant parabolas. �

Theorem 10. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on a parabolic cylinder z2 −x = 0 has finitely many invariant
parabolas, taking into account their multiplicities. Then, the maximum number of
invariant parabolas of X contained in invariant planes, taking into account their
multiplicities, is at most
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3m2 + 3m3 − 2 if m2 ≥ m3 + 1,
m2 + 5m3 if m2 ≤ m3 + 1.

Proof. Let ax + by + cz + d = 0 be a plane that intersects Q and consider W =
⟨1, x, y, z⟩, the extactic polynomial of X associated to W is

(4) εW (X ) =

∣∣∣∣∣∣∣∣

1 x y z
0 X (x) X (y) X (z)
0 X 2(x) X 2(y) X 2(z)
0 X 3(x) X 3(y) X 3(z)

∣∣∣∣∣∣∣∣
.

From its expression we obtain that the degree of the monomials of the extactic
polynomial are m2 + 5m3 − 2, 2m2 + 4m3 − 2, 3m2 + 3m3 − 2, m2 + 5m3 − 1,
2m2 +4m3 − 1 and m2 +5m3. The degree of the polynomial εW (X ) is the greatest
of these values. Note that 3m2 + 3m3 − 2 ≥ 2m2 + 4m3 − 1 if (3m2 + 3m3 − 2) −
(2m2 + 4m3 − 1) ≥ 0, or equivalently if m2 ≥ m3 + 1.

Similarly if m2 ≥ m3 +1, it follows that 2m2 +4m3 − 1 ≥ m2 +5m3. Therefore,
the degree of εW (X ) is 3m2+3m3−2 if m2 ≥ m3+1, and in a similar way we obtain
that the degree of εW (X ) is 5m3 +m2 if m2 ≤ m3 +1. Consequently, the maximum
number of invariant planes of X (counting their multiplicities) that intersect Q is
3m2 + 3m3 − 2 if m2 ≥ m3 + 1, or 5m3 + m2 if m2 ≤ m3 + 1, and so the statement
of theorem holds. �

Proposition 11. The bound provided by Theorem 10 can be reached.

Proof. Consider a vector field X on x = z2 whose associated differential system
is ẋ = 2z, ẏ = (y + 1)m, ż = 1. The extactic polynomial (4) for this case is
εW (X ) = 2m(2m − 1)(y + 1)3m−2. Let f = y + 1, then f = 0 intersects Q in a
parabola and it is invariant by X with cofactor k = (y + 1)m−1. As X cannot have
more invariant planes than the degree of εW (X ) and f has multiplicity 3m− 2, the
bound of Theorem 10 is obtained. �

5. Results on the elliptic cylinder

We will work with the following canonical form x2 + z2 − 1 = 0 of an elliptic
cylinder Q. Let X be a polynomial vector field of R3 defined on Q. We will see that
the conics obtained by intersecting the elliptic cylinder Q with a plane are straight
lines or ellipses.

5.1. Invariant straight lines. The elliptic cylinder is a ruled surface. Below we
determine which are the straight lines that contains.

Lemma 12. All straight lines contained in the elliptic cylinder x2 + z2 − 1 = 0 are
parallels to the y axis.

Proof. The proof follows the same steps than the proof of Lemma 3, and instead
of (1) we get λ(a2 + c2) + 2(ax0 + cz0) = 0. From here we arrive to a contradiction
as in Lemma 3. �

Proposition 13. The intersection conic of an elliptic cylinder Q with a plane is
either a double straight line, or a pair of parallel straight lines, or an ellipse.
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Proof. Consider a plane that intersects Q, if the plane is parallel to the y axis, the
intersection conic is a double straight line or two parallel straight lines. By Lemma
12, Q only contains straight lines parallel to the y axis, so any other plane non
parallel to the y axis intersects the elliptic cylinder in an ellipse, a parabola or a
hyperbola. Since the intersection is a closed curve, it could not be a parabola or a
hyperbola. Therefore, a plane non parallel to the y axis only can cut this cylinder
in an ellipse. �

Let X = (P, Q,R) be the polynomial vector field defined on the elliptic cylinder
x2 + z2 − 1 = 0. Then, xP = −zR and m1 = m3.

Proposition 14. There are polynomial vector fields X defined on an elliptic cylin-
der Q that have infinitely many invariant straight lines, taking into account their
multiplicities.

Proof. Let W = ⟨1, x, z⟩. Then, the extactic polynomial εW (X ) is given by equation
(2). Since xP = −zR is follows that xPx = −zRx − P , xPy = −zRy and xPz =
−R − zRz, moreover taking into account that X (x) = P and X (z) = R, we obtain

(5) εW (X ) = (x2 + z2)

(
R

x

)3

.

So, εW (X ) = 0 if and only if R = 0.
We define X as the vector field whose associated differential system is ẋ = 0, ẏ =

Q, ż = 0. As ẋ = 0, the planes f = x + c = 0 with c ∈ R are invariant by X . Since
these planes are parallel to the y axis, when they intersect Q, they provide a pair
of parallel straight lines, or a double straight line (see Proposition 13). Therefore,
the vector field X has infinitely many invariant straight lines. �
Theorem 15. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the elliptic cylinder x2 + z2 − 1 = 0 has finitely many
invariant straight lines, taking into account their multiplicities. Then, the maxi-
mum number of invariant straight lines of X contained in different invariant planes
parallel to the y axis is at most

(a) 2m3 − 2 if X has no invariant double straight lines,
(b) m3 − 1 if all invariant straight lines are double, and
(c) is between m3 − 1 and 2m3 − 1 if there are invariant double straight lines.

Proof. Let W = ⟨1, x, z⟩. Then, the extactic polynomial of X associated to W is
given by equation (5). Since εW (X ) is a polynomial, x must divide R. So, there
exists a polynomial R1 of degree m3−1 such that R = xR1, and therefore the degree
of εW (X ) is 3(m3 − 1) + 2. Thus the maximum number of real different invariant
planes of X , is at most m3 − 1. Note that there are no real planes dividing to
x2 + z2. Therefore the maximum number of invariant straight lines contained in
these invariant planes is m3 − 1 if all straight lines are double, and 2m3 − 2 if X
has no invariant double straight lines. �
Proposition 16. The bounds provided by Theorem 15 can be reached.

Proof. Let X be the polynomial vector field defined on Q whose associated differ-

ential system is ẋ = −z

m3−1∏

l=1

fl, ẏ = q, ż = x

m3−1∏

l=1

fl, where fl = alx + blz + cl

with al, bl, cl and q are real constants and alx + blz + cl = 0 distinct planes for all



INVARIANT CONICS 9

l = 1, . . . ,m3 − 1. The planes fl = 0 with l = 1, . . . , m3 − 1 are invariant by X

with cofactor kl = −(alz + blx)

m3−1∏

j = 1
j ̸= l

(ajx + bjz + cj). So this system has at most

2m3 − 2 invariant parallel straight lines contained in planes parallel to the y axis,
or m3 − 1 invariant double straight lines contained in planes parallel to the y axis,
which coincides with the bounds given by Theorem 15. �

5.2. Invariant ellipses. According with the proof of Proposition 13 the intersec-
tion of the elliptic cylinder x2 + z2 − 1 = 0 with a plane non parallel to the y axis
is not empty and it is an ellipse.

Proposition 17. There are polynomial vector fields X defined on the elliptic cylin-
der Q that have infinitely many invariant ellipses, taking into account their multi-
plicities.

Proof. Let X be the polynomial vector field on Q whose associated differential
system is ẋ = −z, ẏ = z − x, ż = x. The planes f = x + y + z + d = 0 with d ∈ R
are invariant by X with cofactor k = 0 for all d ∈ R. Since they are non parallel
to the y axis, these planes intersect Q in ellipses. Therefore, we have obtained
infinitely many invariant ellipses for the vector field X on Q. �

Theorem 18. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on an elliptic cylinder x2 + z2 − 1 = 0 has finitely many
invariant ellipses, taking into account their multiplicities. Then, the maximum
number of invariant ellipses of X contained in invariant planes, taking into account
their multiplicities, is at most

3m2 + 3m3 − 5 if m2 ≥ m3,
m2 + 5m3 − 5 if m2 ≤ m3.

Proof. Let W = ⟨1, x, y, z⟩. Then, the extactic polynomial of X associated to W is
given by equation (4). The degrees of the monomials of εW (X ) are m2 + 5m3 − 3,
2m2+4m3−3 and 3m2+3m3−3. If m2 ≥ m3 the following inequalities are satisfied
3m2 + 3m3 − 3 ≥ 2m2 + 4m3 − 3 ≥ m2 + 5m3 − 3. So, the degree of εW (X ) is
3m2+3m3−3 if m2 ≥ m3, and in a similar way we obtain that the degree of εW (X )
is m2 + 5m3 − 3 if m2 ≤ m3. Therefore, the maximum number of real invariant
planes of X (counting their multiplicities) that intersect Q is 3m2 + 3m3 − 5 if
m2 ≥ m3, or m2 + 5m3 − 5 if m2 ≤ m3. �

Proposition 19. The bound provided by Theorem 18 can be reached.

Proof. Consider a vector field X on x2 + z2 − 1 = 0 whose associated differential
system is ẋ = −z(y+1)m−1, ẏ = (y+1)m, ż = x(y+1)m−1. The extactic polynomial
(4) for this case is εW (X ) = −2(x2 + z2)(y + 1)6m−5. Let f = y + 1, then f = 0
intersects Q in an ellipse, and moreover it is an invariant plane of X with cofactor
k = (y +1)m−1. As X on Q cannot have more invariant planes and the multiplicity
of f is 6m − 5, the bound of Theorem 18 is reached. �

6. Results on the hyperbolic cylinder

We will work with the following canonical form x2 − z2 − 1 = 0 of a hyperbolic
cylinder Q. Let X be a polynomial vector field in R3 defined on Q. We will see
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that the intersection of a hyperbolic cylinder with a plane are straight lines or
hyperbolas.

6.1. Invariant straight lines. As in the previous two quadrics the hyperbolic
cylinder Q is a ruled surface and its straight lines are parallel the y axis.

Lemma 20. All straight lines contained in the hyperbolic cylinder x2 − z2 − 1 = 0
are parallel to the y axis.

Proof. The proof follows the same steps than the proof of Lemma 3, and instead
of (1) we get λ(a2 − c2) + 2(ax0 − cz0) = 0. From here we arrive to a contradiction
as in Lemma 3. �

Lemma 21. Any plane non parallel to the y axis intersects the hyperbolic cylinder
x2 − z2 − 1 = 0 in a hyperbola.

Proof. Consider the plane ax + by + cz + d = 0 with b ̸= 0. If c ̸= 0, then
z = −(ax + by + d)/c. Replacing it in x2 − z2 − 1 = 0 we obtain that the equation
of the intersection conic is (c2 − a2)x2 − 2abxy − b2y2 − 2adx − 2bdy − c2 − d2 = 0.
Applying Proposition 2 we obtain d1 = b2c4 ̸= 0 and d2 = −b2c2 < 0. So, the conic
is a hyperbola.

Now let c = 0. If a ̸= 0, we have x = −(by+d)/a. Replacing it in z2−x2−1 = 0,
it follows that the equation of the intersection conic is b2y2−a2z2+2bdy+d2−a2 = 0.
As d1 = b2a2 ̸= 0 and d2 = −b2 < 0 the conic is a hyperbola. If c = a = 0, the
equation of the plane takes the form y = −d/b. The intersection of the hyperbolic
cylinder with this plane is clearly a hyperbola. �

Proposition 22. The intersection conic of a hyperbolic cylinder Q with a plane is
either a double straight line, or a pair of parallel straight lines, or a hyperbola.

Proof. By Lemma 20, given a plane parallel to the y axis that intersects Q, its
intersection is a double straight line, or two parallel straight lines. If this plane is
non parallel to the y axis, by Lemma 21, it intersects Q in a hyperbola. �

If X = (P,Q, R) is a polynomial vector field defined on the hyperbolic cylinder
Q, we have xP = zR which implies m1 = m3.

Proposition 23. There are polynomial vector fields X defined on the hyperbolic
cylinder Q that have infinitely many invariant straight lines, taking into account
their multiplicities.

Proof. Consider W = ⟨1, x, z⟩. Then, the extactic polynomial εW (X ) is given by
equation (2). Since xP = zR, taking into account that X (x) = P and X (z) = R
we obtain

(6) εW (X ) = −(x2 − z2)

(
R

x

)3

.

It follows that εW (X ) = 0 if and only if R = 0. Therefore we can define X as the
vector field whose associated differential system is ẋ = 0, ẏ = Q, ż = 0. The planes
f = x + c = 0 with c ∈ R are invariant by X , moreover when they intersect Q,
we obtain a pair of parallel straight lines, or a double straight line (see Proposition
22). So, X on Q has infinitely many invariant straight lines. �
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Theorem 24. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the hyperbolic cylinder x2 − z2 − 1 = 0 has finitely many
invariant straight lines, taking into account their multiplicities. Then, the maxi-
mum number of invariant straight lines of X contained in different invariant planes
parallel to the y axis is at most

(a) 2m3 − 2 if X has no invariant double straight lines,
(b) m3 − 1 if all invariant straight lines are double, and
(c) is between m3 − 1 and 2m3 − 1 if there are invariant double straight lines.

Proof. By equation (6) we have that x must divide R, i.e. R = xR1 for some
polynomial R1 of degree m3 − 1, and hence the degree of εW (X ) is 3(m3 − 1) + 2.
Since the planes x − z = 0 and x + z = 0 do not intersect the hyperbolic cylinder,
the maximum number of different invariant planes of X , is at most m3 − 1. So,
the maximum number of invariant straight lines contained in these invariant planes
is m3 − 1 if all straight lines are double, and 2m3 − 2 if the straight lines are not
double. �

Proposition 25. The bounds provided by Theorem 24 can be reached.

Proof. Let X be a polynomial vector field defined on the hyperbolic cylinder Q

whose associated differential system is ẋ = z

m3−1∏

l=1

fl, ẏ = q, ż = x

m3−1∏

l=1

fl, where

fl = alx + blz + cl with al, bl, cl, q ∈ R and the planes fl = 0 distinct for all
l = 1, . . . ,m3 − 1. Moreover fl = 0 is invariant by X with cofactor kl = (alz +

blx)

m3−1∏

j = 1
j ̸= l

(ajx + bjz + cj). So, this implies that the bounds given by Theorem 24

is reached. �

6.2. Invariant hyperbolas. According with the proof of Proposition 22 the in-
tersection of the hyperbolic cylinder Q with a plane non parallel to the y axis is a
hyperbola.

Proposition 26. There are polynomial vector fields X defined on Q that have
infinitely many invariant hyperbolas, taking into account their multiplicities.

Proof. Let X be the polynomial vector field on Q whose associated differential
system is ẋ = z, ẏ = x + z, ż = x. The planes −x + y − z + d = 0 are invariant by
X with cofactor k = 0 for all d ∈ R. These planes are not parallels the y axis, so
X has infinitely many invariant hyperbolas. �

Theorem 27. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on a hyperbolic cylinder x2 − z2 − 1 = 0 has finitely many
invariant hyperbolas, taking into account their multiplicities. Then, the maximum
number of invariant hyperbolas of X contained in invariant planes, taking into
account their multiplicities, is at most

3m2 + 3m3 − 5 if m2 ≥ m3,
m2 + 5m3 − 5 if m2 ≤ m3.

Proof. Let W = ⟨1, x, y, z⟩. Then, the extactic polynomial of X associated to W
is given by equation (4). From its expression we obtain that the degree of the
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monomials of εW (X ) are m2 + 5m3 − 3, 2m2 + 4m3 − 3 and 3m2 + 3m3 − 3. If
m2 ≥ m3, then 3m2 + 3m3 − 3 ≥ 2m2 + 4m3 − 3 ≥ m2 + 5m3 − 3. Therefore, the
degree of εW (X ) is 3m2 + 3m3 − 3 if m2 ≥ m3, and in a similar way we prove that
the degree of εW (X ) is m2 + 5m3 − 3 if m2 ≤ m3. Thus, the maximum number of
invariant planes (counting their multiplicities) that intersect Q is 3m2 + 3m3 − 5 if
m2 ≥ m3 and m2 + 5m3 − 5 if m2 ≤ m3 as stated in the theorem. �

Proposition 28. The bound that provides Theorem 27 can be reached.

Proof. Let X be a polynomial vector field defined on x2−z2−1 = 0 whose associated
differential system is ẋ = z(2y + 1)m−1, ẏ = (2y + 1)m, ż = x(2y + 1)m−1. The
extactic polynomial (4) for this case is εW (X ) = 3(x − z)(x + z)(2y + 1)6m−5.
Consider f = 2y + 1, then f = 0 intersects Q in a hyperbola. Moreover f = 0 is
an invariant plane of X with cofactor k = 2(2y + 1)m−1. Since f has multiplicity
6m − 5 and X cannot have more invariant planes, X reaches the bound stated in
Theorem 27. �

7. Results on the cone

We are going to work with the following canonical form x2 + y2 − z2 = 0 of a
cone Q. Let X be a polynomial vector field in R3 defined on Q. It is known that
the intersection of a plane and Q is a conic that can be degenerate: one point, two
intersecting straight lines, a double straight line, or non degenerate: a parabola, an
ellipse or a hyperbola.

7.1. Invariant degenerate conics. The cone is also a ruled surface. Indeed, the
intersection of the cone with a plane passing through its vertex can be only a point,
a double straight line, or a pair of intersecting straight lines.

If X = (P,Q, R) is defined on Q, then this implies that zR = xP + yQ and
X = (P,Q, (xP + yQ)/z).

Proposition 29. There are polynomial vector fields X defined on the cone Q that
have infinitely many invariant degenerate conics, taking into account their multi-
plicities.

Proof. Let X be a vector field on Q whose associated differential system is ẋ = zx,
ẏ = zy, ż = x2 + y2. Consider f = ax + by, with a, b ∈ R. The planes f = 0 are
invariant by X with cofactor k = z, moreover they contain the z axis, so they cut
Q in a pair of intersecting straight lines. Therefore, X has infinitely many invariant
degenerate conics. �

Theorem 30. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on a cone x2 + y2 − z2 = 0 has finitely many invariant degen-
erate conics, taking into account their multiplicities. Then, the maximum number
of invariant degenerate conics of X contained in invariant planes is at most

3m1 if m1 ≥ m2,
3m2 if m1 ≤ m2.

Proof. As we study the invariant degenerate conics we need only consider the planes
passing through the vertex of the cone x2 + y2 − z2 = 0, otherwise we obtain non
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degenerate conics. Let W = ⟨x, y, z⟩, the extactic polynomial associated to W is

(7) εW (X ) =

∣∣∣∣∣∣

x y z
X (x) X (y) X (z)
X 2(x) X 2(y) X 2(z)

∣∣∣∣∣∣
.

From its expression, the degrees of the monomials of εW (X ) are 3m1, 2m1 + m2,
m1 + 2m2 and 3m2. We can see that 3m1 ≥ 2m1 + m2 ≥ m1 + 2m2 ≥ 3m2 if
m1 ≥ m2. So, the degree of εW (X ) is 3m1 if m1 ≥ m2, and in a similar way we
obtain that the degree of εW (X ) is 3m2 if m1 ≤ m2. Therefore, we get the maximum
number of invariant degenerate conics contained in these planes passing through
the origin and intersecting Q described in the statement of the theorem. �

Proposition 31. The bound provided by Theorem 30 can be reached.

Proof. Let X be a polynomial vector field defined on the cone x2 + y2 − z2 = 0
such that its associated differential system is ẋ = 0, ẏ = z(y − z/2)m−1, ż =
y(y − z/2)m−1. The bound provided by Theorem 30 for the maximum number
of invariant degenerate conics is 3m. The extactic polynomial (7) in this case is
εW (X ) = 4x(y − z)(y + z)(y − z/2)3m−3. The plane x = 0 is invariant by X with
cofactor k = 0. Also y ± z = 0 are invariant planes with cofactor k = (y − z/2)m−1.
The plane y − z/2 = 0 is invariant with k = −(y − 2z)(y − z/2)m−2/2 and its
multiplicity is 3(m − 1). These planes pass through the origin, so its intersection
with the cone Q are degenerate conics. Therefore we obtain 3m invariant degenerate
conics. �

7.2. Invariant non degenerate conics. The intersection of the cone with a plane
not passing through its vertex is a non degenerate conic.

Proposition 32. There are polynomial vector fields X defined on Q that have
infinitely many invariant non degenerate conics, taking into account their multi-
plicities.

Proof. The system of the proof of Proposition 31 has infinitely many non degenerate
conics obtained intersecting the invariant planes x = constant with the cone. �

Theorem 33. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the cone x2 + y2 − z2 = 0 has finitely many invariant non
degenerate conics, taking into account their multiplicities. Then, the maximum
number of invariant non degenerate conics of X contained in invariant planes,
taking into account their multiplicities, is at most

5m1 + m2 − 4 if m1 ≥ m2,
m1 + 5m2 − 4 if m1 ≤ m2.

Proof. Let W = ⟨1, x, y, z⟩. Then, the extactic polynomial of X associated to W
is given by equation (4). From its expression we obtain that the degree of the
monomials of the extactic polynomial εW (X ) are 5m1 + m2 − 3, 4m1 + 2m2 − 3,
3m1 +3m2 −3, 2m1 +4m2 −3 and m1 +5m2 −3. We observe that if m1 ≥ m2, then
5m1 +m2 −3 ≥ 4m1 +2m2 −3 ≥ 3m1 +3m2 −3 ≥ 2m1 +4m2 −3 ≥ m1 +5m2 −3.
So the degree of εW (X ) is 5m1 +m2 −3 if m1 ≥ m2, and in a similar way we obtain
that the degree of εW (X ) is m1 + 5m2 − 3 if m1 ≤ m2.

Now in order to get the bound provided by the theorem, we see that the extactic
polynomial (4) vanishes at the origin. The polynomials P and Q can be written
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as polynomials in the variable z as follows P (x, y, z) =

m1∑

i=0

Pi(x, y)zi, Q(x, y, z) =

m2∑

j=1

Qj(x, y)zj , where Pi and Qj are polynomials in the variables x, y for all i =

1, . . . ,m1 and j = 1, . . . , m2; and hence P and Q can be rewritten as P (x, y, z) =
P0(x, y) + zh1(x, y, z) and Q(x, y, z) = Q0(x, y) + zh2(x, y, z), where h1 and h2 are
polynomials in the variables x, y, z. Since zR = xP + yQ, then zR = xP0(x, y) +
xzh1(x, y, z)+ yQ0(x, y)+ yzh2(x, y, z), so xP0(x, y)+ yQ0(x, y) = 0, this is xP0 =
−yQ0. Therefore, there are polynomials P 0 and Q0 such that P0(x, y) = yP 0(x, y)
and Q0(x, y) = xQ0(x, y), thus P 0 = −Q0. So, if h3(x, y) = P 0(x, y) = −Q0(x, y),
the associated differential system to the vector field X can be written as ẋ =
yh3(x, y)+zh1(x, y, z), ẏ = −xh3(x, y)+zh2(x, y, z), ż = xh1(x, y, z)+yh2(x, y, z).

Taking into account that X (x) = yh3 + zh1, X (y) = −xh3 + zh2 and X (z) =
xh1+yh2, the second row of the extactic polynomial (4) is zero, therefore it vanishes
at the origin. So, the factorization of εW (X ) into linear factors contains at least one
factor without independent term and in consequence, the plane associated to this
factor intersects the cone in a degenerate conic, which implies that X would have
at least an invariant degenerated conic. Hence the maximum bound of invariant
non degenerate conics contained in invariant planes is at least one degree less than
the degree of the εW (X ). Thus the theorem is proved. �
Proposition 34. The bound provided by Theorem 33 decreased in six can be
reached.

Proof. Let X be a polynomial vector field defined on a cone Q such that its
associated differential system is ẋ = (x + 1)(y + 1)m−2z, ẏ = z2(y + 1)m−2,
ż = (y +1)m−2(x+x2 + yz). According with Theorem 33 the maximum number of
invariant non degenerate conics of X is at most 6m − 4. The extactic polynomial
(4) for this case is εW (X ) = (x+1)2(y+1)6m−12A(x, y, z), where A is a polynomial
of degree 7. The plane x + 1 = 0 is invariant by X with cofactor k = z(y + 1)m−2

and its multiplicity is 2. Also, y+1 = 0 is an invariant plane with k = z2(1+y)m−3

and multiplicity 6m − 12. The intersection of these planes with the cone are non
degenerate conics. So, we obtain 6m − 10 invariant non degenerate conics, this is,
the bound provided by Theorem 33 decreased in 6. �

8. Results on the hyperboloid of one sheet

We will work with the following canonical form x2 +y2 −z2 = 1 of a hyperboloid
of one sheet Q. Let X be a polynomial vector field of R3 defined on Q. We will see
that the conic obtained by intersecting the hyperboloid of one sheet Q with a plane
is formed, when it is degenerate, by a pair of intersecting straight lines or a pair of
parallel straight lines; and when it is non degenerate by a parabola, an ellipse, or a
hyperbola.

8.1. Invariant straight lines. It is known that a hyperboloid of one sheet is a
doubly ruled surface. That is, for each of its points pass exactly two straight lines
that are completely contained in it [6]. Furthermore, there is no other straight line
fully contained in the hyperboloid since the only quadratic surface that contains
three different straight lines which pass through each of its points is the plane (see
[5, 16]).
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Proposition 35. If the intersection of a hyperboloid of one sheet Q with a plane
is a degenerate conic, then it can be a pair of intersecting straight lines or a pair of
parallel straight lines.

Proof. Consider a plane ax + by + cz + d = 0 with a, b, c, d ∈ R that intersects
x2 + y2 − z2 = 1 in a degenerate conic.

Suppose c ̸= 0, then z = −(ax + by + d)/c. Replacing it in the equation of the
hyperboloid, we obtain the equation of the intersection conic (c2 −a2)x2 − 2abxy +
(c2 − b2)y2 − 2adx − 2bdy − c2 − d2 = 0. Applying Proposition 2 to this expression
results d1 = c4(a2 + b2 − c2 − d2) = 0 and d2 = c2(c2 − a2 − b2). Note that d1 = 0
because the conic is degenerate and hence d2 = a2 + b2 − c2 ≥ 0, this implies
c2 ≤ a2 + b2. If c2 < a2 + b2, then d2 < 0 and the degenerate conic is a pair of
intersecting straight lines. If c2 = a2 + b2, it follows that d2 = 0, so the degenerate
conic is a pair of parallel straight lines.

Now consider c = 0, the equation of the plane that intersects Q is ax + by + d =
0. If a ̸= 0, x = −(by + d)/a and replacing it in x2 + y2 − z2 = 1 we have
(b2 + a2)y2 − a2z2 + 2bdy + d2 − a2 = 0. Once again by Proposition 2 we obtain
d1 = a4(a2 + b2 − d2) = 0 and d2 = −a2(a2 + b2) < 0, so the degenerate conic is a
pair of intersecting straight lines. If c = a = 0, we obtain the plane by + d = 0 with
b ̸= 0. Then, d1 = b2 − d2 = 0 and d2 = −1 < 0. In this case the degenerate conic
is a pair of intersecting straight lines. �

As we said it is well known that for every point of a hyperboloid of one sheet
pass two straight lines. We provide now a proof of this fact because we shall need
later on the explicit expression of these two straight lines.

Proposition 36. For each p = (x0, y0, z0) of a hyperboloid of one sheet x2 + y2 −
z2 = 1 pass two straight lines.

Proof. Let λ, µ ∈ R such that µ(x0 − z0) = λ(1 − y0). If µ ̸= 0, replacing this
expression in the equation of the hyperboloid x2 − z2 = 1− y2, or what is the same
in (x − z)(x + z) = (1 − y)(1 + y) we obtain λ(x0 + z0) = µ(1 + y0) whenever
1 − y0 ̸= 0. If 1 − y0 = 0, we have x − z = 0 or x + z = 0. Considering µ = 0 we
would have 1 − y0 = 0 which coincides with the previous case.

Now, let µ, λ ∈ R such that µ(x0−z0) = λ(1+y0). If µ ̸= 0, from the equation of
the hyperboloid we obtain λ(x0 +z0) = µ(1−y0) whenever 1+y0 ̸= 0. If 1+y0 = 0,
then x0 − z0 = 0 or x0 + z0 = 0. If µ = 0, we have 1 + y0 = 0 that corresponds to
the previous case.

In short, the point p is on the straight line µ(x − z) − λ(1 − y) = 0, µ(1 + y) −
λ(x + z) = 0 with λ = µ(x0 − z0)/(1 − y0) and 1 − y0 ̸= 0; or on the straight line
µ(x − z) − λ(1 + y) = 0, µ(1 − y) − λ(x + z) = 0 when λ = µ(x0 − z0)/(1 + y0) and
1 + y0 ̸= 0, or on the straight lines 1 − y = 0, x − z = 0 and 1 − y = 0, x + z = 0
when 1 − y0 = 0, or on the straight lines 1 + y = 0, x − z = 0 and 1 + y = 0,
x + z = 0 if 1 + y0 = 0. �
Remark 37. From the proof of Proposition 36 we obtain that the hyperboloid of
one sheet x2 + y2 − z2 − 1 = 0 contains the two families of straight lines

(8)
µ(x − z) − λ(1 − y) = 0,
µ(1 + y) − λ(x + z) = 0,

(a)
and

µ(x − z) − λ(1 + y) = 0,
µ(1 − y) − λ(x + z) = 0,

(b)

for all λ, µ ∈ R.
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As we study invariant straight lines, from the proof of Proposition 36 we need to
consider only the equation of the plane µ(x−z)−λ(1−y) = 0 or µ(x−z)−λ(1+y) =
0. The family of planes µ(x − z) − λ(1 − y) = 0 for each µ, λ ∈ R intersects the
hyperboloid of one sheet in the family of straight lines (8)(a) and in the straight
line 1 − y = 0, x − z = 0 that belongs to the family (8)(b). In a similar way, the
intersection of the plane µ(x − z) − λ(1 + y) = 0 and the hyperboloid for each
µ, λ ∈ R is a pair of parallel or intersecting straight lines of the family (8)(b) and
the straight line 1 + y = 0, x − z = 0.

If X = (P,Q, R) is a polynomial vector field defined on Q = x2 +y2 −z2 −1 = 0,
then it satisfies zR = xP + yQ and so X = (P, Q, (xP + yQ)/z).

Proposition 38. There are polynomial vector fields X defined on a hyperboloid of
one sheet Q that have infinitely many invariant straight lines, taking into account
their multiplicities.

Proof. We need to determine X on Q such that all the straight lines of the family
(8)(a) are invariant by X . Let W = ⟨x − z, 1 − y⟩, the extactic polynomial of X
associated to W is

εW (X ) =

∣∣∣∣
x − z 1 − y

X (x − z) X (1 − y)

∣∣∣∣
= (1 − y)(x − z)P + (y − y2 − xz + z2)Q.

(9)

In order that X has infinitely many invariant straight lines we need that εW (X ) =
0. Then, from (9) there exist polynomials P1 and Q1 such that P = (y − y2 − xz +
z2)P1 and Q = (y −1)(x−z)Q1. So εW (X ) = (P1 −Q1)(y −1)(x−z)(y −y2 −xz +
z2) = 0. Doing P1 = Q1 = 1 we get the vector field X with P = y − y2 − xz + z2,
Q = (y − 1)(x − z), R = −x2 + y − y2 + xz.

Now we verify that all the straight lines of the family (8)(a) are invariant by X for
all µ, λ ∈ R. Let f = µ(x−z)+λ(1−y) = 0, then X f = (x−z)(µ(x−z)+λ(1−y)),
so f = 0 is an invariant plane with cofactor k = x − z for all µ, λ ∈ R. Therefore,
the polynomial vector field X has infinitely many invariant straight lines. �

Theorem 39. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on a hyperboloid of one sheet x2 + y2 − z2 − 1 = 0 has finitely
many invariant straight lines, taking into account their multiplicities. Then, the
maximum number of straight lines, contained in invariant planes of X , of each of
the families of equation (8) is at most

m1 + 1 if m1 ≥ m2,
m2 + 1 if m1 ≤ m2,

Proof. Consider W1 = ⟨x−z, 1−y⟩, W2 = ⟨x−z, 1+y⟩ and their associated extactic

polynomials εW1(X ) =

∣∣∣∣
x − z 1 − y

X (x − z) X (1 − y)

∣∣∣∣, and εW2(X ) =

∣∣∣∣
x − z 1 + y

X (x − z) X (1 + y)

∣∣∣∣.
Developing these determinants and since zR = xP+yQ, X (x−z) = P−R and X (1±
y) = ±Q results εW1(X ) = −

(
P (−x + xy + z − yz) + Q(−y + y2 + xz − z2)

)
/z,

and εW2(X ) =
(
P (x + xy − z − yz) + Q(y + y2 + xz − z2)

)
/z. The degree of the

monomials of εW1(X ) and εW2(X ) are m1, m1 + 1, m2 and m2 + 1. So, the degree
of both polynomials is m1 + 1 if m1 ≥ m2, or m2 + 1 if m1 ≤ m2.

We know from Proposition 1 that the degree of the extactic polynomial εW1

gives an upper bound for the maximum number of invariant planes f = 0 of X with
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f ∈ W1. As mentioned before, from the proof of Proposition 36, the intersection of
the planes µ(x−z)−λ(1−y) = 0 and the hyperboloid of one sheet x2+y2−z2 = 1 is
the family of straight lines (8)(a) and the straight line 1−y = 0, x−z = 0. Since this
latter belongs to the family (8)(b) we obtain that the maximum number of invariant
straight lines of the form (8)(a) corresponds to the degree of the polynomial εW1(X ).
Similarly it is proved that the maximum number of invariant straight lines of the
form (8)(b) is the degree of the polynomial εW2(X ). Therefore, the theorem is
shown. �

Proposition 40. The bound provided by Theorem 39 for the invariant degenerate
conics of family (8)(a) is reached .

Proof. Let X be the polynomial vector field defined on the hyperboloid of one

sheet x2 + y2 − z2 = 1 whose associated differential system is ẋ = z
m−1∏

i=1

(µi(x −

z) − λi(1 − y)), ẏ = 0, ż = x
m−1∏

i=1

(µi(x − z) − λi(1 − y)), with m ∈ N. According

with Theorem 39 the maximum number of invariant degenerate conics of X is at
the most m + 1. We prove that X reaches this bound for the family of straight
lines (8)(a). The extactic polynomial εW1(X ) with W1 = ⟨x− z, 1−y⟩ is εW1(X ) =

(1 − y)(x − z)
m−1∏

i=1

(µi(x − z) − λi(1 − y)). The planes 1 ± y = 0 are invariant by

X since the function y is a first integral of X , x − z = 0 is invariant by X with

cofactor k = −
m−1∏

i=1

(µi(x − z) − λi(1 − y)) and the planes µi(x − z) − λi(1 − y) = 0

with i = 1, . . . ,m−1 are invariant by X with cofactors k = µi(z −x)
m−1∏

j = 1
j ̸= i

(µj(x−

z)−λj(1− y)) respectively. Thus, by addition the number of invariant planes of X
we obtain m + 1 invariant straight lines of X . �

In a similar way we can obtain a polynomial vector field which reaches the bound
provided for the family (8)(b).

8.2. Invariant non degenerate conics. In this subsection we work with the non
degenerate conics obtained of the intersection of the hyperboloid of a sheet and a
plane.

Proposition 41. If the intersection of a hyperboloid of one sheet with a plane is
a non degenerate conic, then it is a parabola, an ellipse or a hyperbola.

Proof. Consider x2 + y2 − z2 = 1 be the equation of the hyperboloid of one sheet.
If ax + by + cz + d = 0 is a plane that intersects the hyperboloid with c ̸= 0, then
z = −(ax + by + d)/c. Replacing it in x2 + y2 − z2 = 1 we obtain the equation of
the intersection conic (c2 −a2)x2 − 2abxy +(c2 − b2)y2 − 2adx− 2bdy − c2 −d2 = 0.
From Proposition 2, we obtain d1 = c4(a2 + b2 − c2 − d2) and d2 = c2(c2 − a2 − b2).
Note that d1 ̸= 0 since the conic obtained is non degenerate, then a2 + b2 ̸= c2 +d2.
Moreover, if c2 = a2 + b2, we have d2 = 0, so the conic is a parabola; if c2 > a2 + b2,
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then d2 > 0 and the conic is an ellipse; if c2 < a2 + b2, result d2 < 0 and hence the
conic is a hyperbola.

Now consider c = 0, then the plane is ax+by+d = 0. Let a ̸= 0, then x = −(by+
d)/a. Replacing it in x2+y2−z2 = 1 we obtain (a2+b2)y2−a2z2+2bdy+d2−a2 = 0,
in this case d1 = a4(a2 +b2 −d2) ̸= 0 and d2 = −a2(a2 +b2) < 0, so the intersection
conic is a hyperbola whenever d2 ̸= a2 + b2. If c = a = 0, the equation of the plane
is by + d = 0. Considering b ̸= 0, y = −d/b and replacing it in x2 + y2 − z2 = 1
we obtain b2x2 − b2z2 + d2 − b2 = 0, then d1 = b4(b2 − d2) ̸= 0 and d2 = −b4 < 0.
Hence the intersection conic is a hyperbola whenever b2 ̸= d2. �

Proposition 42. There are polynomial vector fields X defined on the hyperboloid
of one sheet Q that have infinitely many invariant non degenerate conics, taking
into account their multiplicities.

Proof. Note that the vector field of the proof of Proposition 40 has infinitely many
invariant non degenerate conics, due to the fact that the planes y = constant are
invariant. �

The proof of the following theorem is essentially the same as the proof of Theorem
33 for vector fields defined on the cone, but in this case we cannot subtract one
to the degree of the extactic polynomial, because now any plane that contains
the origin does not intersect the hyperboloid in a degenerate conic. So we cannot
exclude this plane to establish the bound for non degenerate conics.

Theorem 43. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on a hyperboloid of one sheet x2 + y2 − z2 − 1 = 0 has
finitely many invariant non degenerate conics, taking into account their multiplici-
ties. Then, the maximum number of invariant non degenerate conics of X contained
in invariant planes, taking into account their multiplicities, is at most

5m1 + m2 − 3 if m1 ≥ m2,
m1 + 5m2 − 3 if m1 ≤ m2.

Proposition 44. The bound of Theorem 43 decreased by one can be reached.

Proof. Let X be a polynomial vector field defined on the hyperboloid of one sheet
x2+y2−z2 = 1 whose associated differential system is given by ẋ = z(x2−y2)xm−3,
ẏ = −zy (x2 − y2) xm−4, ż = (x2 − y2)2 xm−4, con m ∈ N, m ≥ 4. According with
Theorem 43 the maximum number of invariant non degenerate conics that this
vector field can have is at most 6m − 3. Now we shall verify that X reaches this
bound decreased by one. The extactic polynomial εW (X ) with W = ⟨1, x, y, z⟩ is
εW (X ) = 6x6m−23yz(x − y)7(x + y)7(x − y − z)(x + y − z)(x − y + z)(x + y + z).

The planes x = 0 and y = 0 are invariant by X with cofactor k = ±xm−4(x −
y)(x + y)z respectively. Also x ± y = 0 are invariant planes with cofactor k =
xm−4(x ∓ y)2z respectively. The planes x − y ± z = 0 are invariant with k =
±xm−4(x − y)(x + y)2 respectively and x + y ± z = 0 are invariant with cofactor
k = ±xm−4(x − y)2(x + y) respectively. Finally, z = 0 is not an invariant plane of
X . Therefore, we obtain 6m−4 invariant planes. Since these planes do not have the
form of the planes of equation (8) we have that all they intersect the hyperboloid
of one sheet in non degenerate conics. �
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9. Results on the hyperbolic paraboloid

In this section we will use the following canonical form x = y2−z2 of a hyperbolic
paraboloid Q. Let X be a polynomial vector field of R3 defined on Q. The conic
obtained by intersecting the hyperbolic paraboloid Q with a plane is formed by
a pair of intersecting straight lines, or a pair of parallel straight lines, when it is
degenerate; and it is a parabola, or a hyperbola when the conic is non degenerate.

9.1. Invariant straight lines. As the hyperboloid of one sheet, the hyperbolic
paraboloid is also a doubly ruled surface (see [5, 16]).

Proposition 45. If the intersection of a hyperbolic paraboloid Q with a plane is
a degenerate conic, then it can be a pair of intersecting straight lines, or a pair of
parallel straight lines.

Proof. Following the same arguments used in the proof of Proposition 35 this propo-
sition is proved. �

As mentioned above it is well known that for every point of a hyperbolic pa-
raboloid pass two straight lines. We provide now a proof of this fact to obtain the
explicit expression of the two straight lines.

Proposition 46. For each point p = (x0, y0, z0) of a hyperbolic paraboloid pass two
straight lines.

Proof. If x0 = 0, p is on the two straight lines x = 0, y−z = 0 and x = 0, y+z = 0.
If x0 ̸= 0, then there is λ ∈ R \ {0} such that y0 + z0 = λx0. From the equation

of the paraboloid y0 − z0 = 1/λ. So, the point p is on the straight line y + z = λx,
y − z = 1/λ with λ = (y0 + z0)/x0.

On the other hand, if x0 ̸= 0, then there is µ ∈ R \ {0} such that y0 − z0 = µx0.
From the equation of the paraboloid y0 + z0 = 1/µ. So, p is on the straight line
y − z = µx, y + z = 1/µ with µ = (y0 − z0)/x0. �
Remark 47. From the proof of Proposition 46 we obtain that the hyperbolic pa-
raboloid x = y2 − z2 contains the two families of straight lines

(10)
y + z = λx
y − z = 1/λ,

(a)

y + z = 0
x = 0

(b)

and,

(11)
y − z = µx
y + z = 1/µ,

(a)

y − z = 0
x = 0

(b)

with λ ̸= 0 and µ ̸= 0.

As we study the invariant straight lines, from the proof of Proposition 46 we need
only consider the planes whose equation is y + z − λx = 0 or y − z − µx = 0. The
family of planes y + z − λx = 0 intersects the hyperbolic paraboloid in the family
of straight lines (10)(a) when λ ̸= 0 and x ̸= 0, and in the straight line (10)(b)
when λ = 0. While the family of planes y − z − µx = 0 intersects the hyperbolic
paraboloid in the family of straight lines (11)(a) whenever µ ̸= 0 and x ̸= 0, and in
the straight line (11)(b) when µ = 0.

If X = (P, Q, R) is the polynomial vector field on Q, then P = 2(yQ − zR).



20 Y. BOLAÑOS, J. LLIBRE, C. VALLS

Proposition 48. There are polynomial vector fields X defined on the hyperbolic
paraboloid Q that have infinitely many invariant straight lines, taking into account
their multiplicities.

Proof. We determine X such that all straight lines of the family (10)(a) are invariant
by X . Consider W1 = ⟨x, y + z⟩, if f = y + z − λx with λ ∈ R, then f ∈ W1. The
extactic polynomial of X associated to W1 is

εW1(X ) =

∣∣∣∣
y + z x

X (y + z) X (x)

∣∣∣∣
= (x − 2y2 − 2yz)Q + (x + 2yz + 2z2)R.

(12)

In order that X has infinitely many invariant straight lines it is necessary that
εW1(X ) = 0. Then, by (12) there are polynomials Q1 and R1 such that Q =
(x + 2yz + 2z2)Q1 and R = (x − 2y2 − 2yz)R1. So, εW1(X ) = (Q1 + R1)(x − 2y2 −
2yz)(x + 2yz + 2z2). Doing Q1 = 1 and R1 = −1 we get the vector field X with
P = 2z(x−2y2 −2yz)+2y(x+2yz +2z2), Q = x+2yz +2z2, R = −x+2y2 +2yz.
Let f = y + z − λx with λ ∈ R, then Xf = 2(y + z)(y + z − λx), so f = 0 is an
invariant plane with cofactor k = 2(y + z) for all λ ∈ R. Therefore all straight lines
(10)(a) are invariant by X . �

Theorem 49. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on a hyperbolic paraboloid x = y2 − z2 has finitely many
invariant straight lines, taking into account their multiplicities. Then, the maximum
number of straight lines contained in invariant planes of X of each family (10) and
(11), is at most

2 + m2 if m2 ≥ m3,
2 + m3 if m2 ≤ m3.

Proof. Let W1 = ⟨x, y + z⟩ and W2 = ⟨x, y − z⟩, we calculate the extactic poly-
nomial εW1(X ) and εW2(X ) and their corresponding degrees. Since εW1(X ) =∣∣∣∣

x y + z
X (x) X (y + z)

∣∣∣∣, εW2(X ) =

∣∣∣∣
x y − z

X (x) X (y − z)

∣∣∣∣ and P = 2(yQ − zR), we develop

the two previous determinants obtaining εW1(X ) = x(Q + R) − 2(y + z)(yQ − zR)
and εW2(X ) = x(Q − R) − 2(y − z)(yQ − zR). The degrees of the monomials of
εW1(X ) and εW2(X ) are 1 + m2, 2 + m2, 1 + m3 and 2 + m3. So, the degree of
both polynomials is 2 + m2 if m2 ≥ m3, or 2 + m3 if m2 ≤ m3. Hence we obtain
the maximum number of invariant straight lines described in the statement of the
theorem. �

Proposition 50. The bound provided by Theorem 49 can be reached by the family
(11).

Proof. Let X be the polynomial vector field defined on the hyperbolic paraboloid

x = y2 − z2 whose associated differential system is ẋ = 2(y − z)
m∏

i=1

(y − z − µix),

ẏ =
m∏

i=1

(y−z−µix), ż =
m∏

i=1

(y−z−µix), with m ∈ N and µi ∈ R for all i = 1, . . . ,m.

According with Theorem 49 the maximum number of invariant degenerate conics
that X can have is at the most m+2. We consider W2 = ⟨x, y −z⟩, then εW2(X ) =
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−2(y − z)2
m∏

i=1

(y − z − µix). The planes y − z − µix = 0 for all µi ∈ R are invariant

by X with cofactor k = −2(y − z)µi

m∏

j = 1
j ̸= i

(y − z − µjx). Furthermore, the plane

y − z = 0 also is invariant by X since X (y − z) = 0 and this plane has multiplicity
2. So, we obtain m+2 invariant straight lines of the family (11), i.e. the maximum
number provided by Theorem 49. �

A similar result to Proposition 50 could be obtained for the family (10).

9.2. Invariant non degenerate conics. In this subsection we study the maxi-
mum number of invariant non degenerate conics of polynomial vector fields defined
on the hyperbolic paraboloid x = y2 − z2 living on invariant planes of the vector
field.

Proposition 51. If the intersection of a hyperbolic paraboloid with a plane is a
non degenerate conic, then it is a parabola or a hyperbola.

Proof. It can be obtained in a similar way to the proof of Proposition 41. �

Proposition 52. There are polynomial vector fields X defined on the hyperbolic
paraboloid Q that have infinitely many invariant non degenerate conics, taking into
account their multiplicities.

Proof. The system of the proof of Proposition 50 has infinitely many invariant non
degenerate conics that result of intersecting the invariant planes y − z = constant
with the hyperbolic paraboloid. �

Theorem 53. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the hyperbolic paraboloid x = y2 − z2 has finitely many
invariant non degenerate conics, taking into account their multiplicities. Then, the
maximum number of invariant non degenerate conics of X contained in invariant
planes, taking into account their multiplicities, is at most

m2 + 5m3 if m2 ≤ m3,
5m2 + m3 if m2 ≥ m3.

Proof. Let W = ⟨1, x, y, z⟩. Then, the extactic polynomial of X associated to W
is given by equation (4). The degrees of the monomials of the polynomial εW (X )
are 3m2 + 3m3 − 2, m2 + 5m3 − 2, 2m2 + 4m3 − 2, 4m2 + 2m3 − 2 5m2 + m3 − 2,
5m2 + m3 − 1, 3m2 + 3m3 − 1, m2 + 5m3 − 1, 4m2 + 2m3 − 1, 2m2 + 4m3 − 1,
5m2 + m3, 4m2 + 2m3, 3m2 + 3m3, 2m2 + 4m3 and m2 + 5m3. The degree of
εW (X ) is the maximum of these values. Observe that if m2 ≤ m3, 5m2 + m3 ≤
4m2 + 2m3 ≤ 3m2 + 3m3 ≤ 4m3 + 2m2 ≤ m2 + 5m3. So the degree of εW (X ) is
m2 + 5m3 if m2 ≤ m3, or 5m2 + m3 if m2 ≥ m3. These values provide the bound
for the maximum number of invariant planes (counting their multiplicities) that
intersect the hyperbolic paraboloid x = y2 − z2 stated in the theorem. �

Proposition 54. The bound provided by Theorem 53 decreased by four can be
reached.
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Proof. Let X be the polynomial vector field defined on the hyperbolic paraboloid
x = y2 − z2 whose associated differential system is ẋ = −4y3zm−2, ẏ = −y2 zm−2,
ż = y3 zm−3, with m ∈ N, m ≥ 3. According with Theorem 53 the maximum
number of invariant non degenerate conics of X is at most 6m. The extactic poly-
nomial (4) is εW (X ) = 12y13z6m−17(y2 + z2). The plane y = 0 is invariant with
cofactor k = −yzm−2, also z = 0 is an invariant plane with k = y3zm−4. Therefore,
we obtain 6m − 4 invariant real planes, counting their multiplicities. Since these
planes have not the form of the ones which appear in (10) or (11), they intersect
the paraboloid in non degenerate conics, so X reaches the bound of Theorem 53
decreased by four. �

Since we work with real polynomial vector fields and their invariant real curves,
in the proof of Proposition 54 does not consider the two complex planes obtained
from the factor y2 + z2 in the extactic polynomial. However, the planes y ± iz = 0
are invariant, so if we think in the vector field as a complex one, and we consider
the two invariant complex conics obtained from the intersection of these planes and
the paraboloid we get the bound 6m−2 for the number of invariant non degenerate
conics, which is nearer to the bound 6m provided by Theorem 53. In fact y2+z2 = 0
is an invariant degenerate conic.

10. Results on the elliptic paraboloid

We shall work with the following canonical form x = y2 + z2 of a elliptic parab-
oloid Q.

Proposition 55. The intersection of the elliptic paraboloid Q with a plane is a
single point, a parabola, or an ellipse.

Proof. Consider a plane ax + by + cz + d = 0 with c ̸= 0, that intersects the elliptic
paraboloid x = y2 + z2, then z = −(ax + by + d)/c. Replacing it in x = y2 + z2 we
obtain the equation of the intersection conic a2x2+2abxy+(b2+c2)y2+(2ad−c2)x+
2bdy+d2 = 0. Applying Proposition 2 to this conic we get d1 = −c4(b2+c2−4ad)/4
and d2 = a2c2. As c ̸= 0, d1 = 0 only if 4ad = b2 + c2. In this case also a ̸= 0,
otherwise b = c = 0 which is a contradiction. Thus we obtain d2 > 0 and so the
intersection conic is a single point. If d1 ̸= 0, the conic obtained is a parabola if
a = 0, and it is an ellipse if a ̸= 0.

Now consider c = 0. The equation of the plane is ax + by + d = 0. Assuming
b ̸= 0, we solve y in the above equation and replacing it at x = y2 + z2 we obtain
the equation of the intersection conic a2x2 + b2z2 + (2ad − b2)x + d2 = 0 and the
determinants d1 = −b4(b2−4ad)/4 and d2 = a2b2. As b ̸= 0, the conic is degenerate
(d1 = 0) if b2 = 4ad, and consequently a and d are not zero; so d2 > 0 and therefore
the intersection conic is a single point. If d1 ̸= 0, the intersection conic is a parabola
if a = 0, and it is an ellipse if a ̸= 0.

If c = b = 0, we obtain the plane ax + d = 0. Let a ̸= 0, then x = −d/a and
replacing it in x = y2 + z2, we have the intersection conic ay2 + az2 + d = 0 and
the determinants d1 = a2d and d2 = a2 > 0. As a ̸= 0, d1 = 0 whenever d = 0, and
in this case the intersection conic is a single point, so the plane x = 0 intersects Q
only at a point. If d ̸= 0, then d1 ̸= 0 and therefore the intersection conic is an
ellipse. �



INVARIANT CONICS 23

10.1. Invariant non degenerate conics. Let X be a polynomial vector field in
R3 defined on an elliptic paraboloid Q. In this section we find an upper bound
for the maximum number of invariant parabolas and ellipses of X obtained by
intersecting an invariant plane of X with Q.

If X = (P,Q, R) is the polynomial vector field defined on the elliptic paraboloid
y2 + z2 − x = 0, then P = 2(yQ + zR) and X = (2(yQ + zR), Q, R).

Proposition 56. There are polynomial vector fields X defined on the elliptic pa-
raboloid Q that have infinitely many invariant non degenerate conics, taking into
account their multiplicities.

Proof. Let X be the polynomial vector field on Q such that its associated differential
system is ẋ = 2yQ, ẏ = Q, ż = 0. Since ż = 0, the planes f = z − a = 0, with
a ∈ R, are invariant by X . All the planes f = 0 intersect Q in a parabola. So, the
vector field X has infinitely many invariant non degenerate conics. �

Theorem 57. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the elliptic paraboloid x = y2 +z2 has finitely many invari-
ant non degenerate conics, taking into account their multiplicities. Then,

(a) the maximum number of parabolas contained in invariant planes of X , tak-
ing into account their multiplicities, is at most

2m2 + m3 if m2 ≥ m3,
m2 + 2m3 if m2 ≤ m3,

(b) and the maximum number of parabolas and ellipses contained in invariant
planes of X , taking into account their multiplicities, is at most

5m2 + m3 if m2 ≥ m3,
m2 + 5m3 if m2 ≤ m3.

Proof. From the proof of Proposition 55 it follows that the intersection of the elliptic
paraboloid x = y2 + z2 with a plane can be a parabola when the plane is parallel
the x axis. So, in order to study the invariant parabolas we only need to consider
these planes. Let W = ⟨1, y, z⟩, then

εW (X ) = −R2Qz + QRRz − QRQy + Q2Ry − 2yQRQx − 2zR2Qx + 2yQ2Rx + 2zQRRx.

The degree of the monomials of εW (X ) are m2 +2m3 −1, 2m2 +m3 −1, 2m2 +m3

and m2 + 2m3. So, the degree of εW (X ) is m2 + 2m3 if m2 ≤ m3, or 2m2 + m3 if
m2 ≥ m3. Therefore, the maximum number of real invariant planes that intersect
Q is m2 + 2m3 if m2 ≤ m3, or 2m2 + m3 if m2 ≥ m3. Hence, we obtain the bound
provided in statement (a) of the theorem.

Now we find a bound for the maximum number of invariant parabolas and ellipses
obtained by intersecting Q with the plane ax+by+cz+d = 0. Let W = ⟨1, x, y, z⟩.
The degrees of the monomials of the polynomial εW (X ) are 3m2 + 3m3 − 2, m2 +
5m3 −2, 2m2 +4m3 −2, 4m2 +2m3 −2 5m2 +m3 −2, 5m2 +m3 −1, 3m2 +3m3 −1,
m2 + 5m3 − 1, 4m2 + 2m3 − 1, 2m2 + 4m3 − 1, 5m2 + m3, 4m2 + 2m3, 3m2 + 3m3,
2m2 +4m3 and m2 +5m3. Note that if m2 ≤ m3, we have the following inequalities
5m2 + m3 ≤ 4m2 + 2m3 ≤ 3m2 + 3m3 ≤ 4m3 + 2m2 ≤ m2 + 5m3. So, the degree
of εW (X ) is m2 +5m3 if m2 ≤ m3, and in a similar way we have that the degree of
εW (X ) is 5m2 + m3 if m2 ≥ m3. Since the degree of εW (X ) provides a bound for
the maximum number of invariant planes (counting their multiplicities), statement
(b) of the theorem follows. �
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Proposition 58. The bound of statement (a) of Theorem 57 decreased by one and
the bound of statement (b) provided by Theorem 57 decreased by two, can be reached.

Proof. Let X be the polynomial vector field defined on the elliptic paraboloid x =
y2 + z2 whose associated differential system is ẋ = 2(y + zm+1), ẏ = 1, ż = zm.
According with Theorem 57 the maximum number of invariant parabolas that X
can have is at most 2m. The extactic polynomial given by (4) is εW (X ) = mz2m−1.
The plane z = 0 is invariant by X with cofactor k = zm−1 and its multiplicity is
2m − 1, i.e we obtain the bound minus one provided by Theorem 57(a).

Let X be the polynomial vector field defined on the elliptic paraboloid with
associated differential system ẋ = 4(x − 1)m−2y2z, ẏ = (x − 1)m−2yz, ż = (x −
1)m−2y2. The maximum number of invariant non degenerate conics of X given
by Theorem 57(b) is 6m. We verify that X reaches this bound minus two. The
extactic polynomial (4) is εW (X ) = −12(x − 1)6m−12y7(y − z)z(y + z). The plane
x = 1 is invariant with cofactor k = 4(x − 1)m−3y2z. Also y = 0 is an invariant
plane with cofactor k = (x − 1)m−2z. The planes y ± z = 0 are invariant with
k = ±(x − 1)m−2y respectively; finally z = 0 is an invariant plane with cofactor
k = (x − 1)m−1y2. Therefore, counting their multiplicities, we obtain 6m − 2 non
degenerate conics contained in these invariant planes. �

10.2. Invariant degenerate conics. From Proposition 55, the degenerate conics
are obtained when invariant planes are tangent to the elliptic paraboloid Q, they
are single points.

Proposition 59. There are polynomial vector fields X defined on the elliptic pa-
raboloid Q that have infinitely many invariant degenerate conics taking into account
their multiplicities.

Proof. The polynomial differential system ẋ = 2xy, ẏ = x, ż = 0 leaves invariant
the elliptic paraboloid x = y2+z2. From the proof of Proposition 55 we see that the
tangent planes to the elliptic paraboloid can be of the form ax+by+cz+d = 0, and
hence to obtain invariant degenerate conics we have to consider W = ⟨1, x, y, z⟩.
The extactic polynomial (4) is zero. So, the multiplicity of the invariant plane
x = 0 is infinite. Moreover, this invariant plane is tangent at the origin to the
elliptic paraboloid. So the proposition is proved. �

Theorem 60. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the elliptic paraboloid x = y2 + z2 has finitely many de-
generate conics taking into account their multiplicities. The maximum number of
degenerate conics contained in invariant planes of X , taking into account their
multiplicities, is at most

5m2 + m3 if m2 ≥ m3,
m2 + 5m3 if m2 ≤ m3.

Moreover, this bound decreased by five, can be reached.

Proof. To find the bound of the maximum number of invariant degenerate conics
of X we consider W = ⟨1, x, y, z⟩, which is the same space used in the proof of
Theorem 57(b) to obtain the bound of the invariant non degenerate conics. So, the
bound obtained in both cases is the same.
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Let X be the polynomial vector field defined on the elliptic paraboloid with
associated differential system ẋ = 2xm−1(xy + z), ẏ = xm, ż = xm−1. The max-
imum number of invariant degenerate conics of X is 6m − 1. We verify that X
reaches this bound minus five. The extactic polynomial given by (4) is εW (X ) =
4x6m−6(1 + 2x2 + x4 + 2xy2 − 4x3y2 + 2yz − 10x2yz − 6xz2). The plane x = 0
is invariant by X with cofactor k = 2xm−2(xy + z) and its multiplicity is 6m − 6.
Therefore, we obtain the bound minus five for the maximum number of invariant
degenerate conics of X . �

11. Results on the ellipsoid

We will use the following canonical form x2 + y2 + z2 − 1 = 0 of an ellipsoid Q,
i.e. the sphere.

Proposition 61. The intersection of the sphere Q with a plane is a single point,
or a circle.

Proof. It follows using the same arguments of the proof of Proposition 55. �

11.1. Invariant circles. Let X be a polynomial vector field in R3 defined on Q.
In this section we find an upper bound for the maximum number of these invariant
circles of X . If X = (P, Q,R), we have zR = −(xP + yQ), i.e. X = (P, Q,−(xP +
yQ)/z).

Proposition 62. There are polynomial vector fields defined on the sphere Q that
have infinitely many invariant circles, taking into account their multiplicities.

Proof. Let X be the polynomial vector field defined on the sphere Q whose associ-
ated differential system is ẋ = z, ẏ = 0, ż = −x. Since ẏ = 0 the planes f = y + a,
with a ∈ R are invariant by X . These planes intersect Q in circles, so we obtain
infinitely many invariant circles for the vector field X . �

Theorem 63. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the sphere x2 + y2 + z2 = 1 has finitely many invari-
ant circles, taking into account their multiplicities. Then, the maximum number
of invariant circles of X contained in invariant planes, taking into account their
multiplicities, is at most

5m1 + m2 − 3 if m1 ≥ m2,
m1 + 5m2 − 3 if m1 ≤ m2.

Proof. Let W = ⟨1, x, y, z⟩. Then, the extactic polynomial of X associated to W is
given by the equation (4). The degree of the monomials of εW (X ) are 5m1+m2−3,
4m1 +2m2 −3, 3m1 +3m2 −3, 2m1 +4m2 −3 and m1 +5m2 −3. We can see that if
m1 ≥ m2, the following inequalities are satisfied 5m1 + m2 − 3 ≥ 4m1 + 2m2 − 3 ≥
3m1 + 3m2 − 3 ≥ 2m1 + 4m2 − 3 ≥ m1 + 5m2 − 3. So, the degree of εW (X ) is
5m1 +m2 −3 if m1 ≥ m2, and in a similar way we obtain that the degree of εW (X )
is m1 + 5m2 − 3 if m1 ≤ m2. Therefore, the maximum number of invariant planes
(counting their multiplicities) that intersect Q is 5m1 + m2 − 3 if m1 ≥ m2, or
m1 + 5m2 − 3 if m1 ≤ m2. Hence the theorem follows. �

Proposition 64. The bound provided by Theorem 63 decreased by four is reached.
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Proof. Let X = (P, Q, R) the polynomial vector field defined on the sphere Q with
P = zm−3y2x, Q = zm−3x2y and R = −2x2y2zm−4, m ∈ N and m ≥ 5. According
with Theorem 63 the maximum number of invariant degenerate conics of X is
at most 6m − 3, taking into account their multiplicities. Now we verify that X
reaches this bound decreased in four. The extactic polynomial (4) is εW (X ) =
6x7(x − y) y7(x + y) z6m−23(2x2 + z2)(2y2 + z2). The plane x = 0 is invariant by
X with cofactor k = y2zm−3, y = 0 also is invariant with cofactor k = x2zm−3

and z = 0 is invariant with cofactor k = −2x2y2zm−5. The planes x ± y = 0
are invariant with cofactor k = ±xyzm−3 respectively. Counting all these planes
with their multiplicities we obtain the bound 6m − 7 for the maximum number of
invariant circles of X that corresponds to the bound of Theorem 63 minus four. �

In the proof of Proposition 64 we do not consider the four complex planes that are
obtained of the factors 2x2 + z2 and 2y2 + z2 in the extactic polynomial. However,
the planes

√
2x ± iz = 0 and

√
2y ± iz = 0 are invariant, so taking into account

the complex conics resulting from its intersection with the sphere we would get the
bound 6m − 3 for the maximum number of invariant circles of X which coincides
with the bound provided by Theorem 63. In fact 2x2 + z2 = 0 and 2y2 + z2 = 0
are two invariant degenerate conics.

11.2. Invariant degenerate conics. According with Proposition 61, the degen-
erate conics appear when we have invariant planes tangent to the sphere Q, they
are single points.

Proposition 65. There are polynomial vector fields X defined on the sphere Q
that have infinitely many invariant degenerate conics taking into account their mul-
tiplicities.

Proof. The polynomial differential system ẋ = z(x − 1), ẏ = 0, ż = −x(x − 1)
leaves invariant the sphere x2 + y2 + z2 − 1 = 0. Then, according with the proof of
Proposition 61, to get planes tangents to the sphere, we consider W = ⟨1, x, y, z⟩.
The associated extactic polynomial (4) is zero. So, the multiplicity of the invariant
plane x = 1 is infinite. Moreover, this invariant plane is tangent at (1, 0, 0) to Q.
So the proposition is proved. �

Theorem 66. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the sphere x2 + y2 + z2 = 1 has finitely many invari-
ant degenerate conics taking into account their multiplicities. Then, the maximum
number of invariant degenerate conics of X contained in invariant planes, taking
into account their multiplicities, is at most

5m1 + m2 − 3 if m1 ≥ m2,
m1 + 5m2 − 3 if m1 ≤ m2.

Moreover, this bound minus seven can be reached.

Proof. We observe that the result of this theorem coincides with the bound of
Theorem 63, this happens because in both cases W = ⟨1, x, y, z⟩ and so we obtain
the same extactic polynomials whose degree produces the bound required. So, the
proof follows the same steps than the proof of Theorem 63.

Let X be the polynomial vector field defined on the sphere with associated differ-
ential system ẋ = z(x+1)m−1, ẏ = −z(x+1)m−2, ż = −(x+1)m−2(x2+x−y). The
maximum number of invariant degenerate conics of X is 6m − 4. We verify that X
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reaches this bound minus seven. The extactic polynomial given by (4) is εW (X ) =
−(x+1)6m−11z(3x3 +9x4 +9x5 +3x6 −9x2y−18x3y−9x4y+9xy2 +9x2y2 −3y3 +
6xz2 +14x2z2 +13x3z2 +5x4z2 −6yz2 −7xyz2 −4x2yz2 −y2z2 +z4 +4xz4 +2x2z4).
The plane x+1 = 0 is invariant by X with cofactor k = z(x+1)m−2 and its multi-
plicity is 6m − 11. Therefore, we obtain the bound minus seven for the maximum
number of invariant degenerate conics of X . �

12. Results on the hyperboloid of two sheets

We will use the following canonical form x2 + y2 − z2 + 1 = 0 of a hyperboloid
of two sheets Q.

Proposition 67. The intersection of a hyperboloid of two sheets Q with a plane is
a single point, a parabola, a ellipse or a hyperbola.

Proof. Using the same arguments of the proof of Proposition 55 this proposition
can be proved. �

12.1. Invariant non degenerate conics. Define X as a polynomial vector field
in R3 on the hyperboloid of two sheets x2+y2−z2+1 = 0. We find an upper bound
for the maximum number of invariant non degenerate conics of X living in invariant
planes. If X = (P, Q,R), then zR = xP + yQ, i.e. X = (P, Q, (xP + yQ)/z).

Proposition 68. There are polynomial vector fields defined on the hyperboloid of
two sheets that have infinitely many invariant non degenerate conics, taking into
account their multiplicities.

Proof. Consider the differential system ẋ = z, ẏ = 0, ż = x. As ẏ = 0, f =
y + a, with a ∈ R and a ̸= 0 are invariant planes of the polynomial vector field
X associated to system. The planes f = 0 intersect Q in hyperbolas. So, X has
infinitely many invariant non degenerate conics. �

The following theorem provides a bound for the maximum number of invariant
non degenerate conics of vector fields defined on the hyperboloid of two sheets.
Given the similarity between the equation of the hyperboloid of one sheet and the
hyperboloid of two sheets, we obtain the same result for the case of vector fields
defined on the hyperboloid of one sheet (Theorem 43) and the proof is essentially
the same, so we do not write it.

Theorem 69. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on a hyperboloid of two sheets x2 + y2 − z2 + 1 = 0 has
finitely many invariant non degenerate conics, taking into account their multiplici-
ties. Then, the maximum number of invariant non degenerate conics of X contained
in invariant planes, taking into account their multiplicities, is at most

5m1 + m2 − 3 if m1 ≥ m2,
m1 + 5m2 − 3 if m1 ≤ m2.

Proposition 70. The bound provided by Theorem 69 decreased in one can be
reached.

Proof. It is similar to the proof of Proposition 44. �
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12.2. Invariant degenerate conics. From Proposition 67, the degenerate conics
appear when invariant planes are tangent to the hyperboloid of two sheets Q, and
they are single points.

Proposition 71. There are polynomial vector fields X defined on the hyperboloid
of two sheets Q that have infinitely many invariant degenerate conics taking into
account their multiplicities.

Proof. Consider ẋ = 0, ẏ = z(z − 1), ż = y(z − 1) the polynomial differential
system associated to a vector field X that leaves invariant the hyperboloid of two
sheets x2 + y2 − z2 + 1 = 0. Then, the associated extactic polynomial εW (X )
with W = ⟨1, x, y, z⟩ is zero. So, the multiplicity of the invariant plane z = 1 is
infinite. Moreover, this invariant plane is tangent to Q at the point (0, 0, 1). So the
proposition is proved. �

Theorem 72. Assume that a polynomial vector field X in R3 of degree m =
(m1, m2,m3) defined on the hyperboloid of two sheets x2+y2−z2+1 = 0 has finitely
many invariant degenerate conics, taking into account their multiplicities. Then,
the maximum number of invariant degenerate conics of X contained in invariant
planes, taking into account their multiplicities, is at most

5m1 + m2 − 3 if m1 ≥ m2,
m1 + 5m2 − 3 if m1 ≤ m2.

Moreover, this bound minus eight can be reached.

Proof. Note that the bound of Theorems 69 and 72 for the case of non degenerate
conics and degenerate conics respectively is the same. This happens because in
both cases W = ⟨1, x, y, z⟩, and so we obtain the same extactic polynomials whose
degree produces the bound required.

Let X be the polynomial vector field defined on the sphere with associated dif-
ferential system ẋ = z(z+1)m−2, ẏ = z(z+1)m−1, ż = (z+1)m−2(x+y+yz). The
maximum number of invariant degenerate conics of X is 6m − 4. We verify that X
reaches this bound minus eight. The extactic polynomial given by (4) is εW (X ) =
(z+1)6m−12(2x4 +8x3y+12x2y2 +8xy3 +2y4 +6x3yz+18x2y2z+18xy3z+6y4z−
2x2z2−4xyz2−2y2z2+6x2y2z2+12xy3z2+6y4z2+x2z3−4xyz3−5y2z3+2xy3z3+
2y4z3 −4z4 +2x2z4 +4xyz4 −2y2z4 −8z5 +3xyz5 +2y2z5 −8z6 +y2z6 −4z7 − z8).
The plane z + 1 = 0 is invariant by X with cofactor k = (z + 1)m−3(x + y + yz)
and its multiplicity is 6m− 12. Therefore, we obtain the bound minus eight for the
maximum number of invariant degenerate conics of X . �
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