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LOCAL ANALYTIC FIRST INTEGRALS OF PLANAR

ANALYTIC DIFFERENTIAL SYSTEMS

ILKER E. COLAK1, JAUME LLIBRE1, AND CLAUDIA VALLS2

Abstract. We study the existence of local analytic first integrals of
a class of analytic differential systems in the plane, obtained from the
Chua’s system studied in [6, 7, 11]. The method used can be applied to
other analytic differential systems.

1. Introduction and Statement of Results

The nonlinear ordinary differential equations appear in many branches
of applied mathematics, physics and, in general, in applied sciences. For a
differential system defined on the plane R2 the existence of a first integral
determines completely its phase portrait. Since for such vector fields the no-
tion of integrability is based on the existence of a first integral the following
natural question arises: Given a differential system in R2, how to recognize
if this system has a first integral?

The easiest planar differential systems having a first integral are the
Hamiltonian ones. The integrable planar differential systems which are
not Hamiltonian are, in general, very difficult to detect. Many different
methods have been used for studying the existence of first integrals for
non–Hamiltonian differential systems based on: Noether symmetries [4], the
Darbouxian theory of integrability [8], the Lie symmetries [15], the Painlevé
analysis [3], the use of Lax pairs [12], the direct method [9] and [10], the
linear compatibility analysis method [17], the Carlemann embedding proce-
dure [5] and [2], the quasimonomial formalism [3], the Ziglin’s method [18],
the Morales-Ramis theory [14], etc.

The objective of this paper is to show how to study the existence or non-
existence of analytic first integrals of planar analytic differential systems,
when the standard theorems providing sufficient conditions for the non-
existence do not work.

We consider analytic differential systems

ẋ = f(x, y), ẏ = g(x, y), (1)

defined in an open subset U of R2. We say that a non-constant analytic
function H : U → R2 is an analytic first integral of system (1) in U if H is
constant on the solution curves of system (1), or equivalently

f(x, y)Hx + g(x, y)Hy = 0,

in U . Of course, Hx denotes the derivative of H with respect to x.
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There exist well-known results providing sufficient conditions for the non-
existence of local analytic first integrals of system (1), as for instance the
following two theorems.

Theorem 1 (Poincaré [16]). Assume that the eigenvalues λ1 ̸= 0 and λ2 ̸= 0
at some singular point p of the analytic differential system (1) do not satisfy
any resonance condition of the form

λ1k1 + λ2k2 = 0,

for any positive integers k1 and k2. Then system (1) has no analytic first
integrals defined in a neighborhood of p.

Theorem 2 (Li, Llibre, Zhang [13]). Assume that the eigenvalues λ1 and
λ2 at some singular point p of the analytic differential system (1) satisfy
that λ1 = 0 and λ2 ̸= 0. Then system (1) has no analytic first integrals in
a neighborhood of p if p is isolated in the set of all singular points of system
(1).

The problem for studying the non-existence of local analytic first inte-
grals of system (1) in a neighborhood of a singular point appears when the
sufficient conditions of Theorems 1 and 2 cannot be applied. In this work
we deal with such a case. More precisely, we will study the local analytic
integrability of the analytic differential system

ẋ = y + m(tanh x − x),

ẏ = −(α + 1)y − αm(tanh x − x),
(2)

in a neighborhood of its unique singular point, the origin. Here α and m
are real parameters. Our main result is the following.

Theorem 3. The analytic differential system (2) has a local analytic first
integral in a neighborhood of the origin if and only if m = 0. When m = 0,
a first integral is (α + 1)x + y.

Theorem 3 is proved in Section 2.

The differential analytic system (2) comes from the Chua’s system

Ẋ = α(Y − X) − α (m1X + (m0 − m1) tanh X) ,

Ẏ = X − Y + Z,

Ż = −(βY + γZ),

studied in [6, 7, 11], by doing the linear change of variables

x = X, y = α(Y − X), z = 0,

and by defining m = αm1, when m0 = β = γ = 0.

2. Proof of Theorem 3

If m = 0, it is easy to check that (α + 1)x + y is an analytic first integral
of system (2).
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Assume m ̸= 0 and suppose H is a local analytic first integral of system
(2) in a neighborhood of the origin. Then we can write H as a Taylor series

H(x, y) =
∞∑

i,j=0

ai,jx
iyj ,

where a0,0 = 0. We also expand the hyperbolic tangent in its Taylor series
as

tanh x = x − x3

3
+

2x5

15
− 17x7

315
+ . . . =

∞∑

i=1

B2i4
i(4i − 1)

(2i)!
x2i−1 =

∞∑

i=1

bix
2i−1,

where the Bi are the Bernoulli numbers, see for instance [1]. We note that
the numbers bi ̸= 0 for i ≥ 1. Then, clearly

tanh x − x =

∞∑

i=2

bix
iyj .

By definition H must satisfy the equation

(
y + m(tanh x − x)

)
Hx +

(
− (1 + α)y − αm(tanh x − x)

)
Hy = 0,

which can be rewritten as

G = m(tanh x − x)(Hx − αHy) + y
(
Hx − (1 + α)Hy

)
= 0, (3)

for all (x, y).

Using equation (3) we will prove by induction that

ai,n−i = 0 for all n ≥ 1 and i = 1, 2, ..., n, (4)

which means that all the ai,j are zero, hence H is zero. We shall first
compute the left hand side of equation (3). We have

Hx =
∞∑

i=1,j=0

iai,jx
i−1yj =

∞∑

i,j=0

(i + 1)ai+1,jx
iyj ,

Hy =
∞∑

i=0,j=1

jai,jx
iyj−1 =

∞∑

i,j=0

(j + 1)ai,j+1x
iyj ,

Hx − αHy =
∞∑

i,j=0

(
(i + 1)ai+1,j − α(j + 1)ai,j+1

)
xiyj

=
∞∑

i,j=0

ci,jx
iyj , (5)

Hx − (α + 1)Hy =

∞∑

i,j=0

(
(i + 1)ai+1,j − (α + 1)(j + 1)ai,j+1

)
xiyj .
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Then

(tanh x − x)(Hx − αHy) =
∞∑

j=0

(
b2c0,jx

3 + b2c1,jx
4 + (b2c2,j + b3c0,j)x

5

+ (b2c3,j + b3c1,j)x
6 + . . .

)
yj

=

∞∑

i=3,j=0




⌈i/2⌉∑

k=2

bkci−2k+1,j


xiyj , (6)

where ⌈x⌉ denotes the ceiling function, which gives the smallest integer
greater than x. We also have

y
(
Hx − (α + 1)Hy

)
=

∞∑

i,j=0

(
(i + 1)ai+1,j − (α + 1)(j + 1)ai,j+1

)
xiyj+1

=

∞∑

i=0,j=1

(
(i + 1)ai+1,j−1 − (α + 1)jai,j

)
xiyj . (7)

Using equalities (6) and (7), equation (3) becomes

G =
∞∑

i=0,j=1

(
(i + 1)ai+1,j−1 − (α + 1)jai,j

)
xiyj

+ m

∞∑

i=3,j=0




⌈i/2⌉∑

k=2

bkci−2k+1,j


xiyj = 0.

We first prove (4) for n = 1. The coefficient of y in G gives

a1,0 − (α + 1)a0,1 = 0, (8)

whereas the coefficient of x3 gives

mb2c0,0 = mb2(a1,0 − αa0,1) = 0. (9)

Noting that neither m nor b2 are zero, equations (8) and (9) yield a0,1 =
a1,0 = 0. So (4) is proved for n = 1.

Now assume that (4) holds true for k = 1, 2, . . . , n, for some arbitrary
n > 1, i.e. ai,k−i = 0 for i = 0, 1, . . . , k, for each k = 1, 2, . . . , n. We will
show that ai,n+1−i = 0 for i = 0, 1, . . . , n + 1.

We say that the degree of the coefficient of a monomial is the degree of
that monomial. Then each ai,j , being the coefficients of the monomials in
H, has degree i+j, where i will be called its x-degree and j will be called its
y-degree. We remark that the coefficients ai,j of H of odd degree and even
degree are not interrelated. If we look at the coefficients of G of degree n,
we see that

n∑

i=0

(
(i + 1)ai+1,n−i−1 − (α + 1)(n − i)ai,n−i

)

+ m

n∑

i=3




⌈i/2⌉∑

k=2

bkci−2k+1,n−i


 = 0,

(10)
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where

ci−2k+1,n−i = (i − 2k + 2)ai−2k+2,n−i − α(n − i + 1)ai−2k+1,n−i+1.

The first series on the left hand side of equation (10) contains only the
coefficients ai,j of H of degree n. The second series, however, consists of
coefficients of degree n − 2k + 2, for k = 2, ..., ⌈n/2⌉. Hence they are all of
even degree if n is even, and of odd degree if n is odd.

In light of this remark, we will assume first that n is odd.

First assume α ̸= −1. Looking at the coefficients of G of degree n+1, we
get

yn+1 : a1,n − (α + 1)(n + 1)a0,n+1 = 0,

xyn : 2a2,n−1 − (α + 1)na1,n = 0,

x2yn−1 : 3a3,n−2 − (α + 1)(n − 1)a2,n−1 = 0,

x3yn−2 : 4a4,n−3 − (α + 1)(n − 2)a3,n−2 + mb2c0,n−2 = 0,

x4yn−3 : 5a5,n−4 − (α + 1)(n − 3)a4,n−3 + mb2c1,n−3 = 0,

x5yn−4 : 6a6,n−5 − (α + 1)(n − 4)a5,n−4 + mb2c2,n−4 + mb3c0,n−4 = 0,

...

xny : (n + 1)an+1,0 − (α + 1)an,1 + mb2cn−3,1 + mb3cn−5,1

+ . . . + mbn+1
2

c0,1 = 0,
(11)

xn+1 : mb2cn−2,0 + mb3cn−4,0 + . . . + mbn+1
2

c1,0 = 0.

For all the ci,j appearing in the above n + 2 equations, i + j ≤ −2. Then,
by (5), they only contain ai,j with degree i+j ≤ n−1, which are zero by the
induction hypothesis. Hence all the ci,j above are zero. Therefore, the first
n + 1 equations recursively yield that all the ai,n+1−i are constant multiples
of a0,n+1. So, we only need to show a0,n+1 = 0. The last equation holds
trivially and contains no information.

Now we look at the coefficient of xn+3 in G, which gives

mb2cn,0 + mb3cn−2,0 + . . . + mbn+3
2

c1,0 = 0. (12)

Then, by the induction hypothesis and since mb2 ̸= 0, equations (11) and
(12) become

(n + 1)an+1,0 − (α + 1)an,1 = 0 and cn,0 = (n + 1)an+1,0 − αan,1 = 0,

which yield that an,1 = 0, and consequently a0,n+1 = 0. This proves (4) for
n odd when α ̸= −1.

Now assume α = −1. Then system (2) becomes

ẋ = y + m(tanh x − x),

ẏ = m(tanh x − x),

and G reduces to

∞∑

i=0,j=1

(i + 1)ai+1,j−1x
iyj + m

∞∑

i=3,j=0




⌈i/2⌉∑

k=2

bkci−2k+1,j


xiyj , (13)
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where

ci,j = (i + 1)ai+1,j + (j + 1)ai,j+1.

We note as a special case that the coefficients of the monomials yk+1,
xyk+1 and x2yk+1 of G are, respectively, a1,k, 2a2,k and 3a3,k, for all k.
Then G = 0 yields a1,k = a2,k = a3,k = 0 for all k.

We first look at the coefficients of G of degree n + 1 and we obtain

yn+1 : a1,n = 0,

xyn : 2a2,n−1 = 0,

x2yn−1 : 3a3,n−2 = 0,

x3yn−2 : 4a4,n−3 + mb2c0,n−2 = 0,

x4yn−3 : 5a5,n−4 + mb2c1,n−3 = 0,

x5yn−4 : 6a6,n−5 + mb2c2,n−4 + mb3c0,n−4 = 0,

...

xny : (n + 1)an+1,0 + mb2cn−3,1 + . . . + mbn+1
2

c0,1 = 0,

xn+1 : mb2cn−2,0 + . . . + mbn+1
2

c1,0 = 0.

Again, all the ci,j which appear above only contain ai,j with i+ j ≤ n−1,
and hence are zero by the induction hypothesis. Then, the first n + 1 of the
above n + 2 equations yield to

ai,n+1−i = 0 for i = 1, . . . , n + 1. (14)

The last equation holds trivially. So it only remains to show that a0,n+1 = 0.

Since a0,n+1 has even degree, and the coefficients ai,j having even degree
are not interrelated with those having odd degree, we next look at the coeffi-
cients of G of degree n+3. We are going to write the ci,j explicitly, because
not all of them will be zero as in the case of degree n + 1. Thus we have

yn+3 : a1,n+2 = 0,

xyn+2 : 2a2,n+1 = 0,

x2yn+1 : 3a3,n = 0, (15)

x3yn : 4a4,n−1 + mb2(a1,n + (n + 1)a0,n+1) = 0, (16)

x4yn−1 : 5a5,n−2 + mb2(2a2,n−1 + na1,n) = 0,

x5yn−2 : 6a6,n−3 + mb2(3a3,n−2 + (n − 1)a2,n−1)

+ mb3(a1,n−2 + (n − 1)a0,n−1) = 0,

...

xn+3 : mb2

(
(n + 1)an+1,0 + an,1

)
+ . . . + mbn+3

2

(
2a2,0 + a1,1

)
= 0 (17)

The coefficient of xn+3 consists of ai,j with degree i + j ≤ n + 1, whereas
all the other coefficients of G of degree n + 3 contain a new unknown ai,j of
degree n + 3, see (13). Hence, equation (17) is where one expects to solve
for a0,n+1. But the coefficient of xn+3 does not contain a0,n+1. Also, it is
zero due to (14) and the induction hypothesis. As a result, equation (17)
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does not give any information on a0,n+1. However, we will see in a moment
that all the necessary information about a0,n+1 can be passed on to higher
degree ai,j .

By (14), a1,n = 0 in equation (16). Hence we have

a4,n−1 = −(n + 1)mb2

4
a0,n+1. (18)

Moreover, using (14) and the induction hypothesis, from the coefficients of
xiyn+3−i, for i = 4, . . . , n + 2, we obtain

ai,n+3−i = 0 for i = 5, . . . , n + 3. (19)

By (18), a4,n−1 is a constant multiple of a0,n+1. Then, showing a0,n+1 = 0
is equivalent to showing a4,n−1 = 0. So, we are going to look for more
information about a4,n−1 in the next set of equations obtained from the
coefficients of G of degree n + 5.

Note that, for any k, the coefficient of xk in G contains ai,j with y-degree
j = 0, 1. So, in order to solve for a0,n+1, we should pass the information
about a0,n+1 not only on to higher degrees, but also to lower y-degrees so
that in the end we get a y-degree of 0 or 1. When passing from a0,n+1 to
a4,n−1, the goal of obtaining a lower y-degree is achieved.

The coefficients of G of degree n + 5 give

yn+5 : a1,n+4 = 0,

xyn+4 : 2a2,n+3 = 0,

x2yn+3 : 3a3,n+2 = 0,

x3yn+2 : 4a4,n+1 + mb2(a1,n+2 + (n + 3)a0,n+3) = 0,

x4yn+1 : 5a5,n + mb2(2a2,n+1 + (n + 2)a1,n+2) = 0,

x5yn : 6a6,n−1 + mb2(3a3,n + (n + 1)a2,n+1)

+ mb3(a1,n + (n + 1)a0,n+1) = 0,

x6yn−1 : 7a7,n−2 + mb2(4a4,n−1 + na3,n)

+ mb3(2a2,n−1 + na1,n) = 0,
(20)

x7yn−2 : 8a8,n−3 + mb2(5a5,n−2 + (n − 1)a4,n−1)

+ mb3(3a3,n−2 + (n − 1)a2,n−1)

+ mb4(a1,n−2 + (n − 1)a0,n−1) = 0,

(21)

x8yn−3 : 9a9,n−4 + mb2(6a6,n−3 + (n − 2)a5,n−2)

+ mb3(4a4,n−3 + (n − 2)a3,n−2)

+ mb4(2a2,n−3 + (n − 2)a1,n−2) = 0,

...

xn+5 : mb2

(
(n + 3)an+3,0 + an+2,1

)
+ . . . + mbn+5

2

(
2a2,0 + a1,1

)
= 0.

By (14), (19) and the induction hypothesis, the coefficient of xn+5 is also
zero. This means that we cannot solve for a4,n−1 either. But equations (20)
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and (21) contain the coefficient a4,n−1. By (14) and (15), a3,n = a2,n−1 =
a1,n = 0 in equation (20). Then we have

a7,n−2 = −4mb2

7
a4,n−1. (22)

Similarly by (14), (19) and the induction hypothesis, a5,n−2 = a3,n−2 =
a2,n−1 = a1,n−2 = a0,n−1 = 0 in equation (21). Thus we get

a8,n−3 = −(n − 1)mb2

8
a4,n−1. (23)

In addition, from the coefficients of xiyn+5−i, for i = 8, . . . , n + 4, we get

ai,n+5−i = 0 for i = 9, . . . , n + 5. (24)

We remark that as a consequence of (22) and (23), a7,n−2 and a8,n−3 are
also constant multiples of a4,n−1, and hence of a0,n+1, pointing to the fact
that they have the same sign. So, all the information about a0,n+1 is now
passed on to a7,n−2 and a8,n−3, which have degree n + 5. We also note that
a7,n−2 and a8,n−3 have lower y-degrees than a4,n−1.

Next, we look at the coefficients of G of degree n + 7. The coefficient of
xn+7 is

mb2

(
(n + 5)an+5,0 + an+4,1

)
+ . . . + mbn+7

2

(
2a2,0 + a1,1

)
.

It contains neither a7,n−2 nor a8,n−3, and is already zero by (14), (19), (24)
and the induction hypothesis. The ones that do contain a7,n−2 and a8,n−3

are

x9yn−2 : 10a10,n−3 + mb2(7a7,n−2 + (n − 1)a6,n−1)

+ mb3(5a5,n−2 + (n − 1)a4,n−1)

+ mb4(3a3,n−2 + (n − 1)a2,n−1)

+ mb5(a1,n−2 + (n − 1)a0,n−1) = 0,

(25)

x10yn−3 : 11a11,n−4 + mb2(8a8,n−3 + (n − 2)a7,n−2)

+ mb3(6a6,n−3 + (n − 2)a5,n−2)

+ mb4(4a4,n−3 + (n − 2)a3,n−2)

+ mb5(2a2,n−3 + (n − 2)a1,n−2) = 0,

(26)

x11yn−4 : 12a12,n−5 + mb2(9a9,n−4 + (n − 3)a8,n−3)

+ mb3(7a7,n−4 + (n − 3)a6,n−3)

+ mb4(5a5,n−4 + (n − 3)a4,n−3)

+ mb5(3a3,n−4 + (n − 3)a2,n−3)

+ mb6(a1,n−4 + (n − 3)a0,n−3) = 0.

(27)

Among these three equations, (25) contains a6,n−1, which has degree n + 5
but cannot be determined by (24). So, we look at the other two equations.

By (14), (19), (24) and the induction hypothesis, equations (26) and (27)
reduce to

11a11,n−4 + mb2(8a8,n−3 + (n − 2)a7,n−2) = 0

12a12,n−5 + mb2(n − 3)a8,n−3 = 0
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Then by (22) and (23), we deduce that a11,n−4 and a12,n−5 are also constant
multiples of a4,n−1, hence of a0,n+1. Note that they have the same sign, and
also lower y-degrees.

Furthermore, the coefficients of xiyn+7−i, for i = 12, . . . , n + 6, write

x12yn−5 : 13a13,n−6 + mb2(10a10,n−5 + (n − 4)a9,n−4)

+ mb3(8a8,n−5 + (n − 4)a7,n−4)

+ mb4(6a6,n−5 + (n − 4)a5,n−4)

+ mb5(4a4,n−5 + (n − 4)a3,n−4)

+ mb6(2a2,n−5 + (n − 4)a1,n−4) = 0,

...

xn+6y : (n + 7)an+7,0 + mb2

(
(n + 4)an+4,1 + 2an+3,2

)

+ . . . + mbn+7
2

(
a1,1 + 2a0,2

)
= 0.

By (14), (19), (24), and the induction hypothesis, the above n−5 equations
yield

ai,n+7−i = 0 for i = 13, . . . , n + 7.

Observe that, in general, the coefficients of G of degree n+1+2i recursively
pass the information about a0,n+1 on to ai,j with y-degrees as low as n+1−2i.
So, in order to pass the information about a0,n+1 on to higher order ai,j with
y-degrees 0 or 1, we need to compute the coefficients of G until degree 2n+2.

In light of this observation, if we continue computing the coefficients of
G up to degree 2n + 2, we see that for i = 2, . . . , (n + 1)/2, among the
coefficients of G of degree n + 1 + 2i, the coefficient of x4i−2yn−2i+3 yields

a4i−1,n−2i+2 is a constant multiple of a0,n+1, (28)

and the coefficient of x4i−1yn−2i+2 gives

a4i,n−2i+1 is a constant multiple of a0,n+1. (29)

Moreover, a4i−1,n−2i+2 and a4i,n−2i+1 have the same sign. In addition, the
coefficients of x4i+jyn−2i+1−j , for j = 0, 1, . . . , n − 2i, show that

a4i+j,n−2i+1−j = 0 for j = 1, 2, . . . , n − 2i + 1. (30)

Finally, we look at the coefficient of x2n+4 and get

mb2

(
(2n + 2)a2n+2,0 + a2n+1,1

)
+ mb3

(
2na2n,0 + a2n−1,1

)

+ mb4

(
(2n − 2)a2n−2,0 + a2n−3,1

)
+ . . . + mbn+2(2a2,0 + a1,1) = 0.

(31)

In equation (31), the ai,j with i+ j ≤ 2n are zero by (30). Then equation
(31) becomes

(2n + 2)a2n+2,0 + a2n+1,1 = 0,

since mb2 ̸= 0. By (28) and (29), a2n+1,1 and a2n+2,0 are constant multiples
of a0,n+1, and they have the same sign. Hence we conclude that a0,n+1 = 0.
This completes the proof of the theorem in the case n odd.

The case when n is even is proved in exactly the same way when α ̸= −1.
When α = −1, we need to compute the coefficients of G until degree 2n + 3
instead of 2n + 4 when n was odd.
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This proves (4), and the proof of Theorem 3 is established.

Acknowledgments

The first author has been supported by AGAUR FI-DGR 2010. The sec-
ond author has been supported by the grants MICINN/FEDER MTM 2009-
03437, AGAUR 2009SGR 410 and ICREA Academia. The third author has
been supported by AGAUR PIV-DGR-2010 and FCT through CAMGSD.

References

[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with for-
mulas, graphs, and mathematical tables, National Bureau of Standards Applied Math-
ematics Series, 55, Washington, D.C., 1964.

[2] R.F.S. Andrade and A. Rauh, The Lorenz model and the method of Carleman
embedding, Phys. Lett. A 82 (1981), 276–278.

[3] T.C. Bountis, A. Ramani, B. Grammaticos and B. Dorizzi, On the complete
and partial integrability of non-Hamiltonian systems, Phys. A 128 (1984), 268–288.

[4] F. Cantrijn and W. Sarlet, Generalizations of Noether’s theorem in classical
mechanics, SIAM Rev. 23 (1981), 467–494.

[5] T. Carleman, Application de la théorie des équations intégrales linéaires aux
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Técnica de Lisboa, 1049-001 Lisboa, Portugal

E-mail address: cvalls@math.ist.utl.pt


