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PARTIALLY PERIODIC POINT FREE SELF–MAPS
ON GRAPHS, SURFACES AND OTHER SPACES

JAUME LLIBRE1 AND VICTOR F. SIRVENT2

Abstract. Let (X, f) be a topological dynamical system. We say that it
is partially periodic point free up to period n, if f does not have periodic
points of periods smaller than n + 1. When X is a compact connected
surface, a connected compact graph, or S2m ∨ Sm ∨ · · · ∨ Sm, we give
conditions on X, so that there exist partially periodic point free maps up
to period n.

We also introduce the notion of a Lefschetz partially periodic point free
map up period n. This is a weaker concept than partially periodic point
free up period n. We characterize the Lefschetz partially periodic point
free self–maps for the manifolds Sn× k· · · ×Sn, Sn × Sm with n ̸= m, CP n,
HP n and OP n.

1. Introduction

Let X be a topological space and let f : X → X be a continuous map. A
(discrete) topological dynamical system is formed by the pair (X, f).

We say that x ∈ X is a periodic point of period k if fk(x) = x and f j(x) ̸= x
for j = 1, . . . , k − 1. We denote by Per(f) the set of all periods of f .

The set {x, f(x), f2(x), . . . , fn(x), . . .} is called the orbit of the point x ∈
X. To study the dynamics of a map f is to study all the different kind
of orbits of f . If x is a periodic point of f of period k, then its orbit is
{x, f(x), f2(x), . . . , fk−1(x)}, and it is called a periodic orbit.

Usually the periodic orbits play an important role in the dynamics of a dis-
crete dynamical system, for studying them we can use topological information.
One of the best known results in this direction are the results contained in the
well known paper entitled Period three implies chaos for continuous self–maps
on the interval, see [18].

If Per(f) = ∅ then we say that the map f is periodic point free. There are
several papers studying different classes of periodic point free self–maps on the
annulus see [11, 16], or on the 2–dimensional torus see [3, 12, 17].

If Per(f)∩{1, 2, . . . , n} = ∅ then we say that the map f is partially periodic
point free up to period n. If n = 1, we say that f is fixed point free. There are
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some papers studying different classes of partially periodic point free self–maps
see [6, 21, 24].

Let n be the topological dimension of a compact polyhedron X. We denote
by Hk(X, Q), for 0 ≤ k ≤ n, the homology linear spaces of X with coefficients
over the rational numbers. These spaces are finite dimensional vector spaces
over Q. Given a continuous map f : X → X, it induces linear maps f∗k :
Hk(X, Q) → Hk(X, Q), for 0 ≤ k ≤ n. all the entries of the matrices f∗k are
integer numbers.

The Lefschetz number L(f) is defined as

L(f) =
n∑

k=0

(−1)ktrace(f∗k).

One of the main results connecting the algebraic topology with the fixed point
theory is the Lefschetz Fixed Point Theorem which establishes the existence
of a fixed point if L(f) ̸= 0, see for instance [4]. If we consider the Lefschetz
number of fm, i.e. L(fm), then in general it is not true that L(fm) ̸= 0
implies that f has a periodic point of period m; it only implies the existence
of a periodic point with period a divisor of m.

We say that a continuous map f : X → X is Lefschetz periodic point free if
L(fm) = 0 for all m ≥ 1. We say that the map f is Lefschetz partially periodic
point free up to period n if L(fm) = 0 for all 1 ≤ m ≤ n. If n = 1, we say that
f is Lefschetz fixed point free. These are weaker notions of periodic point free
and partially periodic point free up to period n, since Lefschetz periodic point
free is a necessary condition to be a periodic point free, but not sufficient as
it is shown by continuous self-maps on degree 1 on the circle, (cf. [1]). The
Lefschetz periodic free maps on some connected compact manifolds have been
studied in [10, 19].

One of the goals of this paper is to study the self–continuous maps on graphs
and closed surfaces and other manifolds which are (Lefschetz) partially periodic
point free up to period n.

A graph is a union of vertices and edges, which are homeomorphic to the
closed interval, and have mutually disjoint interiors. The endpoints of the
edges are vertices (not necessarily different) and the interiors of the edges are
disjoint from the vertices.

Here a closed surface means a connected compact surface without boundary,
orientable or not. More precisely, an orientable connected compact surface
without boundary of genus g ≥ 0, Mg, is homeomorphic to the sphere if g = 0,
to the torus if g = 1, or to the connected sum of g copies of the torus if g ≥ 2.
An orientable connected compact surface with boundary of genus g ≥ 0, Mg,b,
is homeomorphic to Mg minus a finite number b > 0 of open discs having
pairwise disjoint closure. In what follows Mg,0 = Mg.

A non–orientable connected compact surface without boundary of genus g ≥
1, Ng, is homeomorphic to the real projective plane if g = 1, or to the connected
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sum of g copies of the real projective plane if g > 1. A non–orientable connected
compact surface with boundary of genus g ≥ 1, Ng,b, is homeomorphic to Ng

minus a finite number b > 0 of open discs having pairwise disjoint closure. In
what follows Ng,0 = Ng.

Theorem 1. Let f : X → X be a continuous map partially periodic point
free up to period n. Assume that the induced map in the first homology space
f∗1 : H1(X, Q) → H1(X, Q) is invertible. Then the following statements hold.

(a) Let X be a connected compact graph such that dim H1(X, Q) = r. If
n ≥ 2 then n < r.

(b) Let X = Mg,b be an orientable connected compact surface of genus
g ≥ 0 with b ≥ 0 boundary components. Let d be the degree of f if
b = 0.

(b.1) If b = 0, d ̸= 0 and n ≥ 3, then n < 2g (consequently g > 1).
(b.2) If either b = d = 0 or b > 0, and n ≥ 2 then n < 2g + b − 1.

(c) Let X = Ng,b be a non–orientable connected compact surface of genus
g ≥ 1 with b ≥ 0 boundary components. If n ≥ 2 then n < g + b − 1.

All the results stated in this introduction are proved in section 2.
One of the first results that show the relation between the topology of a

compact topological space M and the existence of periodic points of a home-
omorphism f : M → M is due to Fuller [8]. In particular, from Fuller’s
result it follows that if g ≥ 1 and f : Mg → Mg is a homeomorphism then
Per(f) ∩ {1, 2, . . . , 2g} ̸= ∅, see for more details [7].

For homeomorphisms there are results improving Theorem 1 without bound-
ary components by Wang [24], and with boundary components by Chas [5]. In
fact, the proof of Theorem 1 uses ideas of [24].

The technique of using Lefschetz numbers to obtain information about the
periods of a map is also used in many other papers, see for instance the book
of Jezierski and Marzantowicz [15], the article of Gierzkiewicz and Wójcik [?]
and the references quoted in both.

Given topological spaces X and Y with chosen points x0 ∈ X and y0 ∈ Y ,
then the wedge sum X ∨ Y is the quotient of the disjoint union X and Y
obtained by identifying x0 and y0 to a single point (see for more details pp.
10 of [14]). The wedge sum is also known as “one point union”. For example,
S1 ∨ S1 is homeomorphic to the figure “8,” two circles touching at a point.
We can think the wedge sums of spheres as generalization of graphs in higher
dimensions.

Theorem 2. Let X = S2m∨Sm∨ s−times· · · ∨ Sm, and f : X → X be a continuous
map partially periodic point free up to period n. Assume that the induced map
in the m-homology space f∗m : Hm(X, Q) → Hm(X, Q) is invertible.

(a) If m is odd then n < s.
(b) If m is even, s odd and the degree of f is −1 then n < s.
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Theorem 3. Let X = Sn× k−times· · · ×Sn and f : X → X be a continuous map.
(a) If n is odd, f is Lefschetz periodic point free if and only if 1 is an

eigenvalue of f∗n.
(b) If n is even, f is Lefschetz partially periodic point free up to period m if

−1 is an eigenvalue of f l
∗n, for 1 ≤ l ≤ m. Moreover f is not Lefschetz

periodic point free. Additionally, if m ≥ 2 then k ≥ 3.

If X = S1 × · · · × S1 the previous result is well know, see [13].
In [10] the case k = 2 is considered. Necessary and sufficient conditions are

given for a self-continuous map to be Lefschetz periodic free point. However
those conditions are stated in a different manner, they are special cases of the
present theorem.

In the following propositions we shall consider continuous self maps when
the space X is Sn × Sm, with n ̸= m, CPn, HPn and OPn; the n-dimensional
projective plane over the complex numbers, the quaternions and the octonions.
We give conditions when they are Lefschetz (partially) periodic point free. The
results presented here are generalizations of results contained in [10].

Proposition 4. Let X = Sn × Sm and f : X → X be a continuous map with
induced maps on homology f∗n = a, f∗m = b and f∗n+m = d.

(a) If n and m are even and 1 + a + b + d ̸= 0, f has fixed points. If
1 + a + b + d = 0, then the map f is Lefschetz fixed point free and it is
not Lefschetz partially periodic point free up to period 2.

(b) If n and m are not booth even and if f is Lefschetz partially periodic
point free up to period 2, then f is Lefschetz periodic point free.

Proposition 5. Let X = CPn be the n-dimensional complex projective space
and f : X → X be a continuous map with induced map in homology f∗2 = a.
Then the map f is Lefschetz fixed point free if a = −1, otherwise the map fm

has fixed points for all m ≥ 1.

Proposition 6. Let X = HPn (X = OPn, respec.) be the n-dimensional
quaternion (octonionic, respec.) projective space and f : X → X be a contin-
uous map with induced map in homology f∗4 = a, (f∗8 = a, respec.). Then the
map f is Lefschetz fixed point free if a = −1, otherwise the map fm has fixed
points for all m ≥ 1.

For more information on the complex projective spaces CPn or the quater-
nion projective spaces HPn see for instance [23], and for the octonionic pro-
jective spaces OPn, see [2].

2. Proof of Theorems and Propositions

We separate the proof for the different statements of Theorem 1.

Proof of statement (a) of Theorem 1. Let X be a connected compact graph.
Since the continuous map f : X → X does not have periodic points up to
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period n, by the Lefschetz fixed point theorem we have

(1) L(f) = L(f2) = · · · = L(fn) = 0.

Due to the fact that X is connected we know that f∗0 = (1), i.e. f∗0 is the
identity of H0(X, Q) = Q, for more details see [20, 23]. From the definition of
the Lefschetz number and if αj = trace(f j

∗1) we have

L(f j) = trace(f j
∗0) − trace(f j

∗1) = 1 − αj = 0.

Therefore, αj = 1 for 1 ≤ j ≤ n. Let r = dim H1(X, Q) and λ1, · · · , λr be the
eigenvalues of f∗1, so

αj =

r∑

i=1

λj
i .

The characteristic polynomial of f∗1 is

(2) p(x) =
r∏

j=1

(x − λj) = xr − a1x
r−1 + · · · + (−1)rar.

Due to Newton’s formulae for symmetric polynomials (see for instance [22]),
we have

(3)

α1 − a1 = 0,
α2 − a1α1 + 2a2 = 0,

α3 − a1α2 + a2α1 − 3a3 = 0,
...

αr +

r−1∑

i=1

(−1)iaiαr−i + (−1)rrar = 0.

So we get a1 = α1 = 1, a2 = 0, and by induction aj = 0 for 2 ≤ j ≤ n. Since
ar = det(f∗1) ̸= 0, if n ≥ 2 then n < r, and statement (a) is proved. �

Proof of statement (b) of Theorem 1. Let X = Mg,b be an orientable connected
compact surface of genus g ≥ 0 with b ≥ 0 boundary components. Since the
continuous map f : X → X does not have periodic points up to period n, by
the Lefschetz fixed point theorem we have (1).

Suppose that the degree of f is d if b = 0. We recall the homological spaces
of Mg,b with coefficients in Q, i.e.

Hk(Mg,b, Q) = Q ⊕ nk. . . ⊕ Q,

where n0 = 1, n1 = 2g if b = 0, n1 = 2g + b − 1 if b > 0, n2 = 1 if b = 0, and
n2 = 0 if b > 0; and the induced linear maps f∗0 = (1), f∗2 = (d) if b = 0, and
f∗2 = 0 if b > 0 (see for additional details [20, 23]). In the next computations
we must take d = 0 if b > 0.

From the definition of the Lefschetz number and if αj = trace(f j
∗1) we have

L(f j) = trace(f j
∗0) − trace(f j

∗1) + trace(f j
∗2) = 1 − αj + dj = 0.
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Therefore, αj = 1+dj for 1 ≤ j ≤ n. Now the characteristic polynomial of f∗1

is (2) with r = n1. Using the Newton’s formulae (3) we get a1 = 1+d, a2 = d,
a3 = 0, and by induction aj = 0 for 3 ≤ j ≤ n. Note that if b > 0 then aj = 0
for 2 ≤ j ≤ n. Since an1 = det(f∗1) ̸= 0, if n ≥ 3 then n < n1, and statement
(b) is proved. �

Proof of statement (c) of Theorem 1. Let X = Ng,b be a non–orientable con-
nected compact surface of genus g ≥ 1 with b ≥ 0 boundary components. Since
the continuous map f : X → X does not have periodic points up to period n,
by the Lefschetz fixed point theorem we have (1).

We recall the homological groups of Ng with coefficients in Q, i.e.

Hk(Ng,b, Q) = Q ⊕ nk. . . ⊕ Q,

where n0 = 1, n1 = g+ b−1 and n2 = 0; and the induced linear map f∗0 = (1)
(see again for additional details [20, 23]).

From the definition of the Lefschetz number and if αj = trace(f j
∗1) we have

L(f j) = trace(f j
∗0) − trace(f j

∗1) = 1 − αj = 0.

Therefore, αj = 1 for 1 ≤ j ≤ n. Now the characteristic polynomial of f∗1 is
(2) with r = n1. Using the Newton’s formulae (3) we get a1 = 1, a2 = 0, and
by induction aj = 0 for 2 ≤ j ≤ n. Since an1 = det(f∗1) ̸= 0, if n ≥ 2 then
n < n1, and statement (c) is proved. �

Proof of Theorem 2. Let X = S2m ∨ Sm∨ s−times· · · ∨ Sm. Using the properties of
the wedge sum (see pp. 160 of [14]), the homology spaces of X with coefficients
in Q are:

Hk(X, Q) = Q ⊕ nk. . . ⊕ Q,

where n0 = n2m = 1, nm = s and 0 otherwise. So the non-trivial induced
linear maps are f∗0, f∗m and f∗2m, where f∗0 = 1 and f∗2m = (d), the degree
of f .

We adapt here the argument used in the proof of Theorem 1. Using the fact
that m is odd, the Lefschetz numbers of the iterates of f are:

L(f j) = trace(f j
∗0) − trace(f j

∗m) + trace(f j
∗2m) = 1 − αj + dj ,

where αj = trace(f j
∗m). If f is partially periodic point free up to period n.

Then L(f j) = 0 for 1 ≤ j ≤ n. Now the characteristic polynomial of f∗m is (2)
with r = nm = s. Using the Newton’s formulae (3) we get a1 = 1 + d, a2 = d
and aj = 0 for 3 ≤ j ≤ n. Since as = det(f∗m) ̸= 0 then n < nm = s. This
completes the proof of statement (a).

If m is even, then L(f j) = 1 + αj + dj . Assuming L(f j) = 0 for 0 ≤ j ≤ n,
using the Newton’s formulae (3) and induction we get

aj = (−1)j(1 + d + · · · + dj),
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for 1 ≤ j ≤ n. If d = −1 and j odd, then aj = 0. So, if s is odd and s ≤ n,
then as = 0. Which contradicts the hypothesis of det(f∗m) ̸= 0. Therefore
n < s. This completes the proof of statement (b). �

Proof of Theorem 3. Let X = Sn× k−times· · · ×Sn. According to the Künneth
theorem, the homological groups of X over Q are

Hjn(X, Q) = Q ⊕ c(k,j). . . ⊕ Q

where c(k, j) =
(
k
j

)
= k!/(j!(k − j)!), for 0 ≤ j ≤ k; and Hl(X, Q) is trivial if

l is not of the form jn.
Taking the inclusion of Q into C, we get

Hjn(X, C) = C ⊕ c(k,j). . . ⊕ C.

Using the fact that the cohomology Hjn(X, C) is the dual of Hjn(X, C), we get
{Hjn(X, C)}k

j=0 is an exterior algebra over C with k generators of dimension
1, for more details see [23][ pp. 192]. Since Hjn(X, C) is torsion free for
1 ≤ j ≤ k, we compute the Lefschetz numbers over {Hjn(X, C)}k

j=0.

Let A = (ai,j)1≤i,j≤k be a complex matrix that represents of f∗n, the induced
map on the cohomology group Hn(X, C). Since f∗n is the dual of f∗n, the trace
of A, or f∗n, is

∑k
i=1 aii. By the exterior algebra structure the trace of A2, or

f∗2n, is
∑

i<j aiiajj and the trace Aj is
∑

i1<···<ij

ai1i1 · · · aijij .

So, using the fact that n is odd, the Lefschetz number of f is

L(f) = 1 + (−1)n
∑k

i=1 aii + (−1)2n
∑

i<j aiiajj + · · · + (−1)nka11a22 · · · akk

= (1 − a11)(1 − a22) · · · (1 − akk)
= det(Id − A).

Similarly the trace of f l
∗jn is

∑

i1<···<ij

al
i1i1 · · · al

ijij .

So L(f l) = det(Id − Al). Therefore L(f) = · · · = L(fm) = 0 if and only if 1
is an eigenvalue of Al for 1 ≤ l ≤ m. Hence f is Lefschetz periodic point free
if and only if 1 is an eigenvalue of f∗n. This completes the proof so statement
(a).

If n is even then a similar computation shows that L(f l) = det(Id + Al).
Therefore L(f) = · · · = L(fm) = 0 if and only if −1 is an eigenvalue of Al for
1 ≤ l ≤ m.
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The matrix A is k×k, if −1 is an eigenvalue of Al for 0 ≤ l ≤ k; then (−1)1/l

is an eigenvalue of A. We consider As, with s = 2k!, then its eigenvalues are
of the form

(−1)2k!/l = (−1)2k(k−1)···(l+1)(l−1)···2 = 1.

Hence 1 is the only eigenvalue of As. So L(f s) ̸= 0, therefore f is not Lefschetz
free periodic point.

If f is Lefschetz periodic point free up to order m, with m ≥ 2 then −1 and√
−1 are roots of the characteristic polynomial of A, so its degree should be

grater than or equal to 3. Since the degree of the characteristic polynomial of
the matrix A is k, then k ≥ 3, if m ≥ 2. �

Proof of Proposition 4. The homological groups of Sn ×Sm over Q are Hl(Sn ×
Sm, Q) = Q, if l = 0, n, m or n + m and trivial for the other values of l. If the
induced maps on homology f are f∗n = a, f∗m = b and f∗n+m = d; the maps
f∗l are trivial if l is different from 0, n,m and n + m, the Lefschetz numbers
for the iterates of f are

L(f l) = 1 + (−1)nal + (−1)mbl + (−1)n+mdl,

for all l ≥ 1.
If n and m are even we get that L(f2) = 1 + a2 + b2 + d2, so L(f2) ̸= 0. So

f is not Lefschetz periodic point free up to period 2 and it is Lefschetz fixed
point free if 1 + a + b + d = 0. This completes the proof of statement (a).

If n is even and m odd then the solution of the linear system L(f) = L(f2) =
0 is a = b and d = 1, or a = d and b = 1, so this implies that L(f l) = 0 for
l > 2. Similarly for the other cases when n and m are not simultaneously
even. Therefore f is Lefschetz periodic point free. This completes the proof of
statement (b). �

Proof of Proposition 5. The homological groups of CPn over Q are H2l(CPn, Q) =
Q, if 0 ≤ l ≤ n and it is trivial otherwise. So the induced maps on homology
are f∗2l = al if 0 ≤ l ≤ n, with a ∈ Z, and f∗l = 0 if l is odd. Therefore
fm

∗2l = (al)m for 0 ≤ l ≤ n. Hence the Lefschetz numbers of the iterates of f
are:

L(f) = 1 + a + · · · + an,
L(f2) = 1 + a2 + · · · + a2n,

...
L(fm) = 1 + am + · · · + amn.

If a ̸= −1 then L(fm) = (1 − am(n+1))/(1 − am) ̸= 0 for all m, so fm has fixed
points. Similarly if a = −1 and n even. If a = −1 and n odd then L(f) = 0
and L(f2) ̸= 0 so, f is Lefschetz fixed point free. �
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Proof of Proposition 6. The homology groups of HPn over Q are H4l(HPn, Q) =
Q, if 0 ≤ l ≤ n and it is trivial otherwise. So the induced maps on homology
are f∗4l = al if 0 ≤ l ≤ n, with a ∈ Z, and f∗l = 0 if l is not a multiple of 4.

On the other hand the homology groups of OPn over Q are H8l(OPn, Q) =
Q, if 0 ≤ l ≤ n and otherwise it is trivial. So the induced maps on homology
are f∗8l = al if 0 ≤ l ≤ n, with a ∈ Z, and f∗l = 0 otherwise.

Now the computation follows in a similar manner as in the case of CPn. �
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