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We follow Bogoyavlensky’s approach to deal with Bianchi class B cosmological models. We char-

acterize the analytic integrability of such systems.

Bianchi models are cosmological models
that describe space—times which are foliated
by homogeneous hypersurfaces of constant
time and are divided into two classes, Class
A and Class B. There are many studies about
the integrability of Class A. Here we study
the integrability of Class B. For the homoge-
neous cosmological models of Class B, Ein-
stein’s system of differential equations re-
duces to a dynamical system of dimension
seven according to Bogoyavlensky’s approach.
We show that in order to study the integrabil-
ity of such systems it is sufficient to deal with
homogeneous polynomial differential systems
of dimension six. Concretely, Bianchi V is
the simplest model and can be written as a
homogeneous polynomial differential system
of degree 2. Bianchi IV is dealt as a ho-

mogeneous polynomial differential system of

degree 3 and the rest of the models, Bian-
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chis /11, VI and VII are of degree 5. Due to
the fact that all Bianchi class B models have
been reduced to homogeneous polynomial dif-
ferential systems, the study of their analytic
integrability reduces to analyze their homo-
geneous polynomial first integrals. We show
that Bianchi model V admits polynomial first
integral, and we prove that the corresponding
homogeneous polynomial differential systems
that represent models Bianchi IV, I1], VI and
VII do not admit polynomial first integrals.

I. INTRODUCTION AND STATEMENT
OF THE RESULTS

Einstein’s equations relate the geometry of the
space-time with the properties of the matter which
occupied it. The matter occupying the space-time is
determined by the stress energy tensor of the matter.
In our study we follow® and we consider the hydro-
dynamical tensor of the matter. We will work with
an equation of state of matter of the form p = ke,

where € is the energy density of the matter, p is the


10.1063/1.4790828

pressure and 0 < k < 1. Type|1m|Iv|v] vI |viI

For the homogeneous cosmological models of a |1]1]1la#1]a

. . .
Class B Einstein’s system of equations reduces to n 1100 1 |1

the following dynamical system in the phase space ne |21 00| -1 |1

pianﬁpépagoa 1= 172737

dg; OH dp; OH TABLE I. The classification of Bianchi class B cosmolo-
dr N op;’ dr N _3% S gies.
(1)
dy — OH  dp, — _OH h in an explicit form writes as
dr  0p,  dr 0p v
dqi 2q1
ar —W(Plfh + p2g2 — P3q3),
where the Hamiltonian H is 14243
dar _ —L(mm + P3g3 — P2q2)
1 dr (q1q2q3) 1 —R)/2 ’
H=———">+Tpa)+Velw), (2) da 23
1=K _— e —_——-—- _.|_ — ,
(q1q2q3) 2 dr (q1q2q3)(1_k)/2 (p1(h p2q2 p3Q3)
dpl 1
. B + —
with dr (Q1qQQ3)(1_k)/2 ( P1 (pQQQ P3q3 p1q1)
Lkt H  pj(niaq + nago)
2 _ 3
T(pi qipe) =2 > Pibjdidy — sz q; « , (m1a1 = n2qz)
1si<y=3 —2a’qy — 5”1(”1(]1 - n2Q2)>
p(pﬂh%
N (nlCh - anQ)Q’ @ = —; (2p2(p1g1 + P3g3 — P2g2) (4)
1 d7- (Q1C]2C]3)(17k)/2
Valg) = 1 (12@ 0142 + (Mq1 — n2q2) ) ) n k— 15 B pi(mcn + n2Q2)q
2 @ (nig1 —nage)®
1
and —2a’q1 — 5”2(”1% - n2Q2)) ;
2 2 dp3 1
hl — &H? h2 — &1—1@7 E = —W (2p3(P1Q1 + p2g2 _p3Q3)
(91203) = (919243) = _
921192 k—1 H)
—2a’q1q a(nigi — n2g2)* v 2o
hs = : 12—k ) hso = — 127k2 : dﬁ = — 1 2(]1(]pr
63(019243) 2 (@19203) = dr (q1g203) P72 (nagr — naga)?’
pp _ 1 a(niqr — nago)?
System (1) is given in the subspace defined by Ein- dr — (qugaqs)1—R) /2 AL = n242)
stein’s equation with H =T + V.
P We notice that for Bianchi V we have p, = 0 and
) Y —0.
Prd+ P22 P3ds + 2a 0 (3) ¢ = 0, so for this model we obtain a simplest model of

six equations. After the change of coordinates and time

The constants a # 0,11, ny determine the type of -

(q192q3) 2
model according to Table I, see also'®. System (1) i = ¢i» Ti+3 = Pidi, 1= 1,2,3, do = 9 dr,
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the Bianchi V model writes as a homogeneous polyno-

mial differential system of degree 2:

&1 = z1(—z4 + 5 + 26),
&g = xo(xy — x5 + X6),
&3 = w3(14 + 25 — 6),

. k-1 (5)
Ty = 1172 + T(3$1I2 +A),

T5 = w102 + T(3$1$2 +A),

T = w172 + T(3$1I2 +A),

where

A= xi + a:% + a:g — 2(zgx5 + T4T6 + T5T6).

(6)

The condition stated in (3) reduces to x4 + x5 — 226 = 0
for Bianchi V model. The Hamiltonian (2) becomes the

first integral

k-1

(xlxg:ng) 2 (3$1$2 + A) .

For Bianchi models III, IV, VI and VII we notice that
np = 1. Moreover system (4) is defined on the subspace
(3), hence we can eliminate the momentum p,. So we
can reduce the dimension of system (4) to seven. Note
also that in order to study the integrability of system
(4) we do not need to consider the seventh equation. In
short, for studying the integrability of system (4) it is
sufficient to deal with a differential system of dimension

Six.

For Bianchi IV after the change of coordinates and
time
k—1

=
q1(q19293) i

Ti = Giy Ti4+3 = PiGi, 1= 172737 dTU = 2 T,

and the above considerations we get the six-dimensional

homogeneous polynomial differential system of degree 3
T = x%(—m + x5 + xﬁ),
B9 = x122(74 — T5 + T6),

&3 = z1x3(2s + 5 — ),

3 (7)
. T k—1
&y = Zl + x%xz — 2wo(x4 + x5 — 21‘6)2 + TR,
: 2 9 k-1
T5 = x{xo + 2x2(xg + 5 — 2w6)° + TR,

k—1
"R,

: 2
Tg = x]T2 + 1

where

R= xi’/4 + 3.%%%2 + dxo(zy + 5 — 2:66)2 + z1A.

The Hamiltonian (2) becomes the first integral

- 2 4 — 21¢)?
(1'133211,‘3)% <:11 + 3z129 + v2(T4 + 5 = 2) + A> .
z1

In the rest of the cases i.e. for the Bianchi models

III, VI and VII after the change of coordinates and

time

k-1

N3(q1q2q3) 2

dr,
2

Ti = qi, Ti+3 = Piqi, © = 1,2,3, drg =

where N = 1 — nsxo, and the above considerations
we obtain the six-dimensional homogeneous polynomial

differential system of degree 5
T = x1N3(—:J:4 + x5 + x6),
T9 = :E2N3(934 — 5 + T6),

T3 = x3N3(x4 + 5 — .SCG),

1 k—1
Ty = *1‘1]\74 + a22?1{L'2N3 + ——N&S,
4 4
(8)
— 2a2x1x2(x1 + noxo) (x4 + x5 — 2w6)2
1 1 k—1
Ty = ZN5 — Zx1N4 + a2x1x2N3 + TNS,

+ 2a2961$2(961 + nowa) (T4 + x5 — 2~T6)2
k—1
Tg = a2x1x2N3 + TNS,

where

S = N4/4+4a23:1x2(a:4+375 — 2x6)2 +N2(3a2x1x2 +A).



The Hamiltonian (2) becomes the first integral
N2
e + 3a2:n1x2 + A

N 4a’x12o(2y + 5 — 21"6)2)

k-1

(T12973) 2

N2

A study of the integrability of Bianchi models using
its symmetries has been done in?, but no information is
given there on the analytic integrability of these systems.
The analytic integrability of Class A has been studied in
previous works by several authors [5-9,12-16]. Here, our
aim is to study the analytic integrability of all Bianchi
models of class B in the variables (z1, 22, z3, x4, 5, T¢).

In our study we will use the following result, see'!.

Proposition 1. Let F' be an analytic function and let
F =", F; be its decomposition into homogeneous poly-
nomials F; of degree i. Then F' is an analytic first inte-
gral of a homogeneous differential system if and only if
for all i F; is a homogeneous polynomial first integral of

the homogeneous system.

Due to Proposition 1 and the fact that all Bianchi
class B models have been reduced to homogeneous poly-
nomial differential systems, see the systems (5), (7) and
(8), the study of their analytic integrability reduces to
analyze their homogeneous polynomial first integrals.

Our main result is the following.
Theorem 2. The following statements hold.

(a) System (5) has the two independent first integrals

x4 — x5 and x4 — xg. These two first integrals
become the same when we restrict system (5) to
(3), i.e. x4+ x5 —2x6 =0, and any other polyno-

mial first integral is a polynomial in the variable

T4 — T5.

(b) System (7) has no polynomial first integrals.
(c) Systems (8) have no polynomial first integrals.

Section II provides some technical lemmas that we
will use for the proof of Theorem 2. In Section III we
prove the first statement of Theorem 2, namely we study
Bianchi V. In Section IV we deal with Bianchi IV. The
integrability of Bianchi III, VI and VII is studied in
Section V.

II. SOME AUXILIARY RESULTS

Lemma 3 (see'®). Let zy be a one-dimensional variable,

ke {l,....,n}, n>1and let f = f(x1,...,2,) be a
polynomial. For | € {1,--- ,n} and ¢y a constant let

fl = f(:L’l, NN
g=g(x1,...,zy) such that f = fi + (x; — co)g.

2 Zn)|a,=co- Then there exists a polynomial

The next two lemmas are proved in”.

Lemma 4. Let g = g(z4,x5,26) be a homogeneous poly-

nomial solution of the homogeneous partial differential

dg \
+ 8{136) = 0,
(9)

where a1, as, a3 € R are such that (a1 —az)?+ (a1 —as3)? #

equation

99

k—1 0
(a1x4+asws+asre)g+——A (g +
81'5

4 0xy
0. Then g = 0.

Lemma 5. Let g = g(x4,25,26) and hy = ha(xy —
x5,x4 — xg) be homogeneous polynomials of respective

degrees n — 2 and n such that
k—1 dg
A N

4 <8x4 *

Then hy = ha(z4 — x6) and g = 0.

99
8565

89 8h2 _
+ 8%)+8$5 =0.
(10)

2(1‘4—x5+x6)g+



III. PROOF OF STATEMENT (A) OF

THEOREM 2

It is clear that system (5) has the first integrals x4 —
x5 and x4 —xg. We shall prove in this section that under
the restriction x4+ x5 — 226 = 0 system (5) has only one

independent first integral and it is x4 — 5.

Suppose that system (5) has a homogeneous poly-
nomial first integral h of degree n. According to
Lemma 3 we can write h = hy(x9,x3, 24,25, 26) +
l‘{gl(l‘1,$2,$3,$4,$5,l‘6), with z1 1 g1 and j € N. Sup-

pose that g; #Z 0. System (5) on x; = 0 writes
x‘g :.%'2(1'4 — 5+ .21?6),

&3 =x3(x4 + 5 — T6)

. k-1

T4 :TA, (11)
. k-1

Is5 :TA,

. k-1

Te :TA

Since h is a first integral of system (5), we have that hy
is a first integral of system (11). System (11) admits the
two polynomial first integrals z4 — x5 and x4 — g and

the two non-polynomial first integrals

g4 —2z5+T6
3h-1), T4+ x5 + 36 — 2VA va
x5 A
T4+ x5 + 76 + 2VA
and
Ty4+T5—226
3(k-1) T4+ x5 + T — 2V/A va
x3 A ,
T4+ x5 + 16 + 2VA

where

2., .2, 2
A =23+ x5 + x5 — T4T5 — T4Te — T5T6. (12)

As these four first integrals of system (11) are indepen-
dent and h; is a polynomial first integral of (11), we
get, taking into account the equality x4 + x5 — 226 = 0,

that hy = Ci(x4 — x5)", where C7 € R. Now since h

5

and x4 — x5 are first integrals of system (5) we have that

x{ g1 is also a first integral of system (5). Therefore

) 0
J—x4+ x5 + 26)91 + 21(— m4+x5+x6)agi
991

81‘3

g1 B

0
+ xo(x4 — 5 +$6)£ + z3(x4 + x5 — T6)

0xo
k— dg1 | Oq1
+ <371332 + A> (a$4 + 871'5

Let g1 = g1]z;=0 # 0. On 1 = 0 we have

. _ g
J(—z4 + x5 + x6)G1 + x2(24 — 25 + $6)8g;
0g
+ 373(334 + x5 — 1’6) 91
Oz
k-1, (05 Oj = O¢
TN (ER A I
+ 4 <3$4 8.%‘5 + 81‘6 0

Write g1 = xbge, with | € NU {0}, 22 { g2 and go # 0.
Then

(=24 + 25 + w6) + (24 — 25 + 6)]g2

092 0
+ xo(xy — x5 + xﬁ)a—i + z3(2s + 5 — 1196)852
kE—1 892 892 692
A+ ) =0
+ 4 <8$4 8$5 * 8$6 0

Set go = g2|z,—=0 Z 0. Then on x5 = 0 we have

[j(—24 + 25+ w6) + I(24 — 25 + 76)] 92

02
+ x3 (a:4 + x5 1‘6) Bis
k—1 0g g
k=1,(92 9% 0%\ _,
4 61’4 8.7}5 8.7,'6
Now let g2 = 2%5'g3, with m € NU{0}, x3 { g3 and g3 # 0.
We have
[J(—24 + 25 + 26) + [(4 — 25 + 26) + m(T4 + 25 — 26)]93
0
+ x3(xy + x5 — x6) = g3
Ox3
k — dgs  O0gs  Ogs
71\ == 4+ =2 ) =0.
+ (8354 + 6335 + 81‘6

Let g3 = g3]z3=0 #Z 0. On x3 = 0 we obtain

[(—z4 + 5+ x6) + (x4 — 25 + 26) + m(z4 + 25 — 26)]73

k— (393 393+893):0_

—A
+ 4 8:1:4 (%5

We are under the hypotheses of Lemma 4, hence we have
gz = 0, which is in contradiction with the assumptions.

Therefore h = C(z4 — x5)"™ and the proof follows.



IV. PROOF OF STATEMENT (B) OF
THEOREM 2

We study in this section the analytic integrability
of Bianchi model IV. We consider system (7). Let h =
h(zy,...,x6) be a homogeneous polynomial first integral

of degree n of system (7). Using Lemma 3 we can write

)+abga(z1,. .., 26), with [ € N and

h= hg(wl,xg,... , L
he and g2 homogeneous polynomials such that xs { gs.
Assume that go # 0. On 25 = 0 system (7) becomes,

after canceling a common factor x1, doing a change in

the independent variable,
&1 =21(~24 + 5 + T6),

&3 =x3(24 + 5 — T6),

2
. .5[?1 k;_l
=— A
MEY T T <4 * > (13)
k—1 (23
L AE N S
Is 4 <4 + >7
k—1 (a2
tg =— ( — +A ).
Te 4 <4 + )

We notice that hs is a first integral of system (13). We

write hy = hs(zs,...,z¢) + ZE{gg(ZEl,ZL'g,...,l'ﬁ), with
7 € N and hs and g3 homogeneous polynomials such
that z1 t g3. Assume that g3 # 0. System (13) on x; =0

writes

&3 = x3(24 + 5 — T6),

-1
fi?4:kTA,
b1 (14)
i5 = ——A
Ty = 4 ’
. E—1
ZUGZTA

Straightforward computations show that system (14)
has the three independent first integrals x4 — x5, 4 — T¢

and
TgtT5—2T6

2(k-1) x4+ x5 + 26 — 2VA va
x3 A ,
x4+ x5 + 26 + 2VA

where A is given by relation (12). As hs is a poly-

nomial first integral of system (14), we have hg =
hs(x4 — x5, x5 — 26). The following lemma shows that

indeed h = h3(z5 — x6) + zhg2(21, . . ., T6).
Lemma 6. We have that hg = hs(x5 — x¢) and g3 = 0.

Proof. As hy = hs + x{gg is a first integral of system
(13), we have

T 0
x] |:.](—CC4 + x5+ x6)g93 + x1(—x4 + T5 + mﬁ)a—agjj
dg3 551 993
+ x3(zg + 5 — 26) 9rs T 1 0
k—1 x% dgs 0Ogs  0Jgs xl Ohs
2 4A) =2 =0.
+ 4 (4 + ><8x4+8x5+8x6 +48.%'4 0
(15)

We distinguish some cases depending on the value of j.

If 7 =1 then equation (15) becomes

0
(—a:4 + x5 + 1‘6)93 + wl(—x4 + x5 + 5136)875:?
dg3 5”1 d93
+ Ig(fc4 + x5 x6) B 1 ax4

k—1 (23 dgs  0gs
A (et SR N I (e A W]
+ 4 < 4 + ) (8.294 + a$5 *

Let g3 = g3]z,=0 Z 0. On ;3 = 0 we have

Jg3 r1 Ohs
0566) Ty 4 6304 =0

P
(—z4+ x5+ 26)73 + x3(2s + 5 — 906)7893
x3
k— dgs  0gz , 0g3
k=L 995, 993 _y,
+ 4 (8:U4 + ozs + Oxg 0

Write g3 = a%5'g4 # 0, with m € NU {0} and z3 { g4.
Then,

(=74 + w5 + 26) + m(T4 + 75 — T6)]94

0
+ 563(1’4 + x5 — .TG) 94
O3
k— 91 091 | Oga
7A —— + =] =0.
+ <8$4 + 81’5 + 8.%'6 0

Let g4 = g4a|z3=0 Z 0. On x3 = 0 we have

(=24 + 25 4+ 26) + m(x4 + 25 — 76)]9a

oLy (2o + 894) —0.
8.1’6

994
S A —o4
+ 4 (6.%'4 +

8.7}5



Applying Lemma 4 we obtain g4 = 0, which is a contra-
diction. Hence g3 = 0. Back to equation (15) we have
Ohs/0z4 = 0, which means that hg = hg(x5 —xg). Then

the lemma follows in the case j = 1.

If j > 2, then from equation (15) we have that
x1|(0hs/0x4) and thus Ohs/dz4 = 0. Now we can pro-

ceed as in the case j = 1 to obtain the equation

[j(=24 + x5 + w6) + m(z4 + 25 — 76)] 94

k—1 0g4 0G4
— A — | =0.
<ax4 + 8x6> 0

994
4 Oxs
Applying Lemma 4 we arrive to a contradiction and

hence g3 = 0. The lemma follows in the case j > 2.

If j = 2 then equation (15) writes

0
2(—x4+ x5+ 26)93 + 21 (—24 + 25 + X6) g3

Oz
dgs | x1dgs3
8 4 833‘4

dgs | Og3  Ogs
A —I2 —I2 —I2
) <8x4 + 8955 + 6336 +

Let g3 = g3]z;=0 # 0. On 21 = 0 we have

+ z3(x4 + x5 — 6) =—

Lkotfat
1 \1

1ohg _
48%4 N

07
2(—x4+ x5+ 26)g3 + v3(Ta + 5 — wﬁ)agz
k 8g3 8@3 893 10hs

A -9 _
+ <8$4 t s (91'5 * e 6.%'6 + 4 (91'4

Write g3 = a%'gs #Z 0, with m € NU {0} and 3 { g4.

Then we get

x5 [[2(—z4 + 25 + 26) + m(x4 + 25 — 26)]04

0
+ .%'3(174 + x5 — xﬁ) 94
Ox3
k 0gs 0gs Ogy 1 0hs
A = 4+ = - —=0.
4 (81‘4 * Oxs * Oxg + 4 Oxy 0

If m > 0 then x3|(0h3/0z4). Hence Ohz/0xs = 0
and hs = h3(xs — x¢). Let ga = galgs—0 Z 0. On z3 =0
we obtain

[2(—24 + 25 + 26) + Mm(T4 + T5 — 6)]Ga

k— 0gs  0gs . Oy
7/\ 22 =o.
+ <6$4 + 81‘5 + 8$6 0

Applying Lemma 4 we get a contradiction, hence g3 = 0.

If m =0, let g4 = ga|zs=0 # 0. On x3 = 0 we obtain

k — 09y 0gs  0gs\  10hs

2 7/& = = |-
(mzatas+a)gat <8:L'4 ors + Oxe +4 0xy

We can apply Lemma 5, permuting the variables x4 by
x5, and we get that hg = hs(zs — x6) so Ohsg/dxy = 0.
Now applying Lemma 4 we obtain g4 = 0. Hence the

lemma follows in the case j = 2. O

After Lemma 6 we have that h = hg(xs — x6) +
zhgo(x1,...,26), with I € N and x5 { go. We write
hs(xs — x6) = Cs(xs — z6)", with C3 € R. We recall

that h is a first integral of system (7). Thus it satisfies

the equation

992

z {lml(m — o5+ 26)g2 + T3 (—24 + 25 + xﬁ)ax
1

092
0z
992
8353

O0g2  0g2
+ 8:136)

das
x:f 2 2
+ < + zixe — 2w9(24 + 5 — 216) >

+ xlxg(x4 — x5 + 376)

+ x1$3($4 + x5 — 1‘6)

k— 0
+ —R ( L
Oxa
992
4 Ox4
992

2 2
2 -2
+ (wll‘Q + .1‘2(x4 + x5 xﬁ) ) B

0
a1 a:iﬂ + 2030y (14 + w5 — 236)* (25 — 26)" " = 0.

(16)

The following lemma ends the proof of statement (b)

of Theorem 2, as it shows that h = 0.

Lemma 7. We have that hg =0 and g2 = 0.

Proof. Suppose that go Z 0. We distinguish two cases
depending on the value of [. If [ > 1 then from equation

(16) we must take C5 = 0 and therefore hg = 0. Let

G2 = g2|uy—0 Z 0. After simplifying x5, equation (16) on

=(



x9 = 0 becomes, after cancelling a common factor x, tion (16) becomes

_ 07 oG
Uza — x5 + 26)G2 + 1 (—24 + 25 + 556)89? T [(1’4 — o5+ 26)g2 + T1(—x4 + x5 + xﬁ)aTgZ
0g2 1’1 9g2 05, x? 0g
_ x1 092
+ x3(xg + x5 -T6)8 1 0z, +$3(334+£L’5—:E6)8 . + — 1 9z,
k-1 (x] )(392 992 592> k—1 (22 B dg2 O
+— (= 4+A) =+ =+ =) =0. 1 992 , 992 | 992
4 < 4 81’4 833'5 8.%'6 - 4 < 4 t A) (81‘4 * 81‘5 + 8.%‘6
Write g2 = I{gg Z# 0, with j € NU {0} and 21 1 g3. We +2Csn(xy + x5 — 2.%'6)2(.’E5 — l’ﬁ)n_l =0.
get Clearly we must take C35 = 0, and hence hy = 0.
[1(—z4 + x5 + 26) + (x4 — 25 + x6)]g3 Write now go = x{gg # 0, with j € NU{0} and z; 1 g3.
+ 21 (—74 + 75 + x@,)% Then the above equation becomes
61’1
0 0 i(— —
+ g (wa + 75 — w6) 2B 93 2t 9g3 (=24 + 25+ w6) + (¥4 — 5 + 6)]93
8 4 83?4 0
E—1 /22 dgs  dgs  Ogs + 21 (T4 + 5+ T6) 5 95
+<1+A><++>—0. O an
4 4 Odry Oxs  Oxg z3 03 dgs3
+ ==+ 1'3(.%‘4 + x5 — 1‘6)
Let g3 = g3|ay=0 Z 0. Then, on 1 = 0 we have 4 Oxy Ox3
k—1 (a2
» ~ + <$1 + % + % + % =0.
[J(—x4 + x5 + ) + (x4 — x5 + 26)]G3 4 4 Ory Orxs Oxg
+ zs(aq + a5 — 556)293 Let g3 = g3]z,=0 Z 0. Then, on 21 = 0 we have
x3
+ k A 993 %_,_% —0. (=24 + x5 + 76) + (24 — 25 + 26)]73
8.%'4 821?5 81‘6 893
o . + 23(w4 + 15 — T6) 5
Now write g3 = x25'g4 # 0, with m € NU{0} and z3 1 g4. Oz3
k— dgs  0gs  0gs
=1y 993, 993 _
We get + 1 <8x4 + D + D
[J(—z4 + x5 + w6) + (x4 — 25 + X6) Now write g3 = 25'g4 # 0, with m € NU {0} and
0
+m(xg + x5 — x6)|94 + x3(T4 + T5 — 536)6794 z31gs. We get
3
4 k—1,(94a 99 4 994\ _ 0. (=24 + 25 + w6) + (T4 — T5 + T6) + m(24 + T5 — T6)|94
4 81:4 8:65 8%6 ag4
Let g1 = ga|zs=0 # 0. Then, on x5 = 0 we have (s + a5 — xG)a T3
k-1 0 0 0
[1(—z4 + x5 + 6) + (x4 — T5 + 26) 4 Oxgy Oxs Oxg
+ m(z4 + x5 — 26)]72 Let g4 = g4|zs=0 Z 0. Then, on z3 = 0 we have
k — 0 g g . _
—A <ag4 + 8794 + 8g4> =0. (=24 + x5 + xe) + (24 — 25 + 36) + (x4 + 25 — 6)]G4
T4 xIs5 Te
k— 094 | 09y | 0Ga
Applying Lemma 4 we obtain g4 = 0, a contradiction. + i A ( 914 + 975 + ore ) = 0.

Hence g2 = 0 and the lemma follows in the case [ > 1. Applying Lemma 4 we obtain g4 = 0, a contradiction.
If I = 1 then we can cancel a common factor xo in Hence go = 0 and the lemma follows also in the case

equation (16). Let g2 = ga|z,—0 Z 0. On z3 = 0 equa- [ = 1. O

8



V. PROOF OF STATEMENT (C) OF
THEOREM 2

We study in this section the analytic integrability of
Bianchi models III, VI and VII. We consider system (8).
Let h = h(x1,...,x6) be a homogeneous polynomial first
integral of degree n of system (8).

hl(l‘g, PN

7 € N and h; and g; homogeneous polynomials such

Using Lemma 3 we

x6), with

can write h = x6) + x{gl(:ﬁl,...,

that x1 { g1. Assume that g; Z 0. On 21 = 0 system (8)

becomes, after canceling a common factor —ngxg,
&g =x9(x4 — x5 + T6),

&3 =x3(24 + 5 — T6),

. k—1 x%_i_

Ty =—— | =
T \4
2 2

x5 k=1 /(x5

== A
4+ 4 <4+ )’

k—1 (a3
g =— | = +A|.
T6 4 <4+ )

We notice that h; is a first integral of system (18).

hg(wg, ce

,x6), with [ € N and hy and g2 homogeneous

(18)

T5

From Lemma 3 we write hy = ,Tg) +
rhgo(za, ...
polynomials such that zo { go. Assume that go # 0. Sys-

tem (18) on xo = 0 writes

.”1.33 = 1’3(1'4 + xTrs — IL‘6),

k-1
5&4:TA,
b (19)
iP5 = ——A
Ty = 4 )
) k-1
ZUGZTA

Straightforward computations show that system (19)
has the three independent first integrals x4 — x5, 4 — T¢
and
TgtT5—2T6
S(k=1), [ T4+ X5+ X6 — 2VA 2
x3 A .
T4+ x5+ 26+ 2VA

As hg is a polynomial first integral of system (19), we
have hy = ha(zgy — x5,24 — xg). The following lemma

shows that indeed h = ho(z4 — z6) + x{gl(l‘l, ceey TG).
Lemma 8. We have that hy = hao(x4 — z6) and g2 = 0.

Proof. As hy = hy + xbgo is a first integral of system

(18), we have

0
z [l(m — x5+ 26)g2 + T2(T4 — 25 + 906)892
0 6

+ x3(x4 + 25 — x6)agz 1 &zi

k—1 x% 0go  0go  0go l’% Oho

(224 2y ZJE y FJL 2772 .
+ 4 <4+ ><8x4+8x5+8x6 +48x5 0

(20)

We distinguish the following cases depending on the

value of [.

If [ =1 then equation (20) becomes

0
(x4 — x5 + 26)g2 + x2(v4 — 25 + X6) aiz
dg2 | 3 gy
+ z3(z4 + 25 xﬁ)a 1 81‘5
k—1 ac% 892 892 8g2 xTo 6h2
Mot 6 (92 Y92 Y92
+ 4 <4+ ><8x4+8x5+8x6 +48.%'5
Let g2 = g2|zy—0 Z 0. On 2 = 0 we have
07
(x4 — x5 + 26)G2 + x3(x4 + 5 — iﬂﬁ)agz
k— 092 ~ 0g2 = 092
7A 2= 4+ 22 ) =0.
+ ((%4 + 81‘5 + 8%6

Write go = 25'g3 # 0, with m € NU {0} and z3 { gs3.
Then

(x4 — 25 + 26) + m(74 + 25 — 76)]93

0
+ x3(xs + 25 — $6)azi
k-1, (0gs 0Ogz . Og3
— A==+ ="+ =] =0.
+ 4 (8334 81’5 + 8x6 0

Let g3 = g3|z3=0 Z 0. On x3 = 0 we have

(x4 — x5 + 26) + m(z4 + 25 — 76)]73

k 0g 0q 0g

+A< 98 293 +g3> =0.
8.1‘4

(9:B5 6.%’6

=0.



Applying Lemma 4 we obtain g3 = 0, which is a contra- Applying Lemma 4 we get a contradiction; hence go = 0.

diction. Hence g2 = 0. Back to equation (20) we have If m =0, let g3 = g3luy—0 % 0. On 23 = 0 we obtain

Ohs/0z5 = 0, which means that hy = ho(x4 —x6). Then 1 0hoy
2(xq — x5 + 26)G3 + 192s

k — dgs | 0gs 093\ _
If I > 2, then from equation (20) we have that + 4 A (83:4 + x5 + Oze ) 0

the lemma follows in the case | = 1.

72 [(Oh2/0xs5) and thus Ohz/0rs = 0. Therefore hy = We can apply Lemma 5 and we get 3 Bh? =0and g3 =0,
h2(z4 — x6). Now we can proceed as in the case I = 1 t0 hence the lemma follows in the case [ = 2. O

obtain the equation

After Lemma 8 we have that h = ho(zq — x6) +
(x4 — x5+ :vg) +m(zg + x5 — 26)]93

4 Oxy Oxs  Oxg ) that h is a first integral of system (8). Thus it satisfies

Applying Lemma 4 we arrive to a contradiction and

x{gl(xl,...,x(g), with 7 € N and 27 1 ¢1. We recall

the equation

hence go = 0. The lemma follows in the case [ > 2. , g1
z) [jNg(—:m + 25+ x6)g1 + 11 N3 (=24 + 25 + xg)a
If I = 2 then equation (20) writes 5 5 e
dgo +332N3(l‘4_1‘5+$6)£+1’3N3($4+1’5_$6)£
2(xy — x5+ x6)g2 + x2(T4 — T5 + 1’6)% Oxy Ox3
2 k—1 dg1 |, Og1 | Og1
8g2 x2892 +74 NS<8+8+8
+ $3(.%'4 + x5 — 1‘6) Ty Ty Ze
8 4 8955 1
k—1 (a2 dg2  Oga O 10h + <x1N4 + a’z123N?
(B (P22 ) T, 4
4 4 Oxa Oxzs Oxg 4 Oxs dg
_ _ —2a2x1:1:2(x1 + noxo) (x4 + x5 — 2:):6)2) 291
Let g2 = g2|zy—0 Z 0. On 2 = 0 we have ox4
0a 1 1
2(xg — x5 + x6)g2 + x3(T4 + T5 — 336)692 + <4N5 — leN‘l + a’x1 o N3
x3
k—1 8@2 8@2 8@2 1 0hs 2 2 agl
— A =4+ = = =0. +2a°x1xo (w1 + nowa)(xy + x5 — 22 —
+ 4 <8.%'4 8905 8906 4 8905 ! 2( ! 2 2)( 4 > 6) ) a$5
Write go = 25'gs # 0, with m € NU {0} and z3 { g3. g $1$2N3(§g } + a2z 1‘2N32h2
z Z6
Then we get 1
+ <4£L'1N4 + a2x13:2N3
x5 [(2(w4 — x5 + 26) + m(z4 + 25 — T6))g3 oh
Jgs3 —2a2x1x2(x1 + nowe) (x4 + x5 — 2x6)2) 2 .
+ x3(xg + x5 — 356)6 Oy
N (21)

’f—lA(@% 993 093)} 10hy

4 8:(}4 81'5 (9.%'6 4 87.%'5

If m > 0 then x3|(0hy/0x5). Hence Ohy/dxs = 0

The following lemma ends the proof of statement (c)

of Theorem 2, as it shows that h = 0.
and ho = h2<$4 — 336)- Let g3 = 93‘333:0 Z#0. Onx3=0

we obtain Lemma 9. We have that he =0 and g1 = 0.
2(z4 — @5 4 x6) + M4 + 5 — 26)]73
B ~ Proof. Write ha(x4 — x6) = Ca(x4 — x6)", with Cy €
’f 1y (935, 995 995\ _
dry  Oxs  Oxg) R. Suppose that g; # 0. We distinguish two cases

10



depending on the value of j. If j > 1 then from equation Applying Lemma 4 we obtain gs = 0, a contradiction.
(21) we have that x; divides Hence g; = 0 and the lemma follows in the case j > 1.

4 .
T _
an< 2 2a2n2:c%(x4 5 2336)2> ' If 7 = 1 then we can cancel a common factor x

in equation (21). Let g1 = gilsy—0 # 0. On z; = 0
Hence we must take Co = 0 and therefore ho = 0. Let
equation (21) becomes, after cancelling a common factor

g1 = 91lz;=0 #Z 0. Equation (21) on z; = 0 becomes, ,

—Nnaxsy,
after cancelling a common factor —nyx3, o
- g1
. ) a1 T2 [(—u + @5+ 26)g1 + 22(24 — @5 + 26) 5
J(=24+ x5 + 26)91 + 22(T 4—9654—3?6)8 2
Z2 2 9=
0a Oa + x3(xg + x5 — 26) =— 991 ﬂ%
+ z3(2y + 25 — T6) =— I a:2 I dxg 4 Oxs

Oz~ 4 Ors k—1 (a2 831  Ogi  Og
_ 2 Pt (®2  p) (99 991 991
_|_u ﬁ—i—A %4_%_’_% =0. + 4 <4+ ><6x4+8x5+6x6
4 4 Oxy Oxs Oxg ) , m2 ,
_ _ 2 eyl
Write g1 = xbgs # 0, with [ € NU {0} and z2 { go. We +Can <2a (w4 + 25 — 226) 4 m2) (24 = z5) 0

. Clearly we must take Cy = 0, and hence he = 0
ge

. Write now g1 = xbge #Z 0, with [ € NU {0} and x2 { go.
[j(=24 + 25 + w6) + (4 — 25 + 6)]92

Then the above equation becomes

+ xo(xg — x5 + 6) =— 092
O [(—x4 + x5 + 26) + (24 — x5 + 26)]92
Og2 | 73 0ga
+x3(2s + 25 — xG)a 4 dxs + ma(z4 — 75 + xﬁ)ggz
k—1 (w% ) (892 g 892) ) o (22)
4 T2 A L g2y = 0. _ 92 x2 092
4 4 0x4 oxs Oxg + 3 (:L'4 T $6) Oxs 1 4 Oxs
Let g2 = g2|zy=0 # 0. Then, on x5 = 0 we have k—1 (a3 dga  Oga  Ogo
(22 72 7 —0
4 4 8%’4 8905 8906

o s — _
(=2 + 25+ 26) + Uwa — 75+ 26)]92 Let g2 = g2|zy—0 # 0. Then, on x9 = 0 we have

0Gga
as(ztas o)z - 3 [(=@4 + 5 + @6) + U4 — x5 + 26)]92
k — 8g2 892 8@2 892
7/\ 792 —0. _
+ (8.7}4 + o5 + Ore + .%'3(334 + 5 xﬁ)a ™
Now write go = 2%5'g3 # 0, with m € NU{0} and z3 t g3. k — 9g2 | 032 0g2\ _
+ 7/\ ==+ == ] =0.
4 Oxy Oxs Oxg

We get Now write go = 25'g3 # 0, with m € NU {0} and

(=24 + x5 + x6) + l(24 — 25 + T6) x3 1 g3. We get

Jg3

+m(zs + x5 — w6)gs + w3(24 + 25 —w6) 5 - s (=24 + x5 + x6) + (x4 — 25 + 26)
k-1 0 0 0 0
A(SB + = 93 + 993 — . +m(xy + x5 — 26)] 93 + T3(T4 + T5 — T6) 7 93
4 69:4 8:65 8%6 Ox €3
Let g3 = g3|zs—0 # 0. Then, on x5 = 0 we have + k A 893 + 293 993 + 993 —0.
833‘4 61‘5 8.7}6
[j(—z4 + 25 + w6) + (74 — 5 + 6) Let g3 = g3‘$3:0 % 0. Then, on 23 = 0 we have
+ m(x4 + x5 — xﬁ)]gg [(—334 + x5 + xﬁ) + l(x4 — x5 + 376) + m(x4 + x5 — mﬁ)]gg
k— dgs 093  0gs k — 9gs | gz 0gs
71\ — 4+ =] =0. 71\ 224+ 22 ) =0.
+ (8$4 + 6$5 + 81'6 + 6954 + 8.7}5 + 81‘6

11



Applying Lemma 4 we obtain g3 = 0, a contradiction.
Hence g1 = 0 and the lemma follows in the case j =
1. O
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