Analytic integrability of the Bianchi Class B cosmological models

Antoni Ferragut, ${ }^{1, a)}$ Jaume Llibre, ${ }^{2, b}$, and Chara Pantazi ${ }^{3, \mathrm{c})}$
${ }^{1)}$ Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, ETSEIB, Av. Diagonal, 647, 08028, Barcelona, Catalonia, Spain
${ }^{2)}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Catalonia, Spain
${ }^{3)}$ Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, (EPSEB), Av. Doctor Marañón, 44-50, 08028 Barcelona, Spain

We follow Bogoyavlensky's approach to deal with Bianchi class B cosmological models. We characterize the analytic integrability of such systems.

Bianchi models are cosmological models that describe space-times which are foliated by homogeneous hypersurfaces of constant time and are divided into two classes, Class A and Class B. There are many studies about the integrability of Class A. Here we study the integrability of Class B. For the homogeneous cosmological models of Class B, Einstein's system of differential equations reduces to a dynamical system of dimension seven according to Bogoyavlensky's approach. We show that in order to study the integrability of such systems it is sufficient to deal with homogeneous polynomial differential systems of dimension six. Concretely, Bianchi V is the simplest model and can be written as a homogeneous polynomial differential system of degree 2. Bianchi $I V$ is dealt as a homogeneous polynomial differential system of degree 3 and the rest of the models, Bian-

[^0]chis $I I I, V I$ and $V I I$ are of degree 5. Due to the fact that all Bianchi class B models have been reduced to homogeneous polynomial differential systems, the study of their analytic integrability reduces to analyze their homogeneous polynomial first integrals. We show that Bianchi model V admits polynomial first integral, and we prove that the corresponding homogeneous polynomial differential systems that represent models Bianchi $I V, I I I, V I$ and VII do not admit polynomial first integrals.

I. INTRODUCTION AND STATEMENT OF THE RESULTS

Einstein's equations relate the geometry of the space-time with the properties of the matter which occupied it. The matter occupying the space-time is determined by the stress energy tensor of the matter. In our study we follow ${ }^{3}$ and we consider the hydrodynamical tensor of the matter. We will work with an equation of state of matter of the form $p=k \varepsilon$, where ε is the energy density of the matter, p is the
pressure and $0 \leq k<1$.
For the homogeneous cosmological models of Class B Einstein's system of equations reduces to the following dynamical system in the phase space $p_{i}, q_{i}, p_{\varphi}, \varphi, i=1,2,3$,

$$
\begin{align*}
& \frac{d q_{i}}{d \tau}=\frac{\partial H}{\partial p_{i}}, \quad \frac{d p_{i}}{d \tau}=-\frac{\partial H}{\partial q_{i}}-h_{i} \\
& \frac{d \varphi}{d \tau}=\frac{\partial H}{\partial p_{\varphi}}, \quad \frac{d p_{\varphi}}{d \tau}=-\frac{\partial H}{\partial \varphi}-h_{\varphi} \tag{1}
\end{align*}
$$

where the Hamiltonian H is

$$
\begin{equation*}
H=\frac{1}{\left(q_{1} q_{2} q_{3}\right)^{\frac{1-k}{2}}}\left(T\left(p_{i} q_{i}\right)+V_{G}\left(q_{i}\right)\right) \tag{2}
\end{equation*}
$$

with

$$
\begin{aligned}
T\left(p_{i}, q_{i}, p_{\varphi}\right)=2 & \sum_{1 \leq i<j \leq 3} p_{i} p_{j} q_{i} q_{j}-\sum_{i=1}^{3} p_{i}^{2} q_{i}^{2} \\
& -\frac{p_{\varphi}^{2} q_{1} q_{2}}{\left(n_{1} q_{1}-n_{2} q_{2}\right)^{2}}, \\
V_{G}\left(q_{i}\right)= & -\frac{1}{4}\left(12 a^{2} q_{1} q_{2}+\left(n_{1} q_{1}-n_{2} q_{2}\right)^{2}\right),
\end{aligned}
$$

and

$$
\begin{gathered}
h_{1}=\frac{a^{2} q_{2}}{\left(q_{1} q_{2} q_{3}\right)^{\frac{1-k}{2}}}, \quad h_{2}=\frac{a^{2} q_{1}}{\left(q_{1} q_{2} q_{3}\right)^{\frac{1-k}{2}}}, \\
h_{3}=\frac{-2 a^{2} q_{1} q_{2}}{q_{3}\left(q_{1} q_{2} q_{3}\right)^{\frac{1-k}{2}}}, \quad h_{\varphi}=\frac{a\left(n_{1} q_{1}-n_{2} q_{2}\right)^{2}}{\left(q_{1} q_{2} q_{3}\right)^{\frac{1-k}{2}}} .
\end{gathered}
$$

System (1) is given in the subspace defined by Einstein's equation

$$
\begin{equation*}
p_{1} q_{1}+p_{2} q_{2}-2 p_{3} q_{3}+\frac{p_{\varphi}}{2 a}=0 . \tag{3}
\end{equation*}
$$

The constants $a \neq 0, n_{1}, n_{2}$ determine the type of model according to Table I, see also ${ }^{1-3}$. System (1)

Type	III	IV	V	VI	VII
a	1	1	1	$a \neq 1$	a
n_{1}	1	1	0	1	1
n_{2}	-1	0	0	-1	1

TABLE I. The classification of Bianchi class B cosmologies.
in an explicit form writes as

$$
\begin{align*}
\frac{d q_{1}}{d \tau}= & -\frac{2 q_{1}}{\left(q_{1} q_{2} q_{3}\right)^{(1-k) / 2}}\left(p_{1} q_{1}+p_{2} q_{2}-p_{3} q_{3}\right), \\
\frac{d q_{2}}{d \tau}= & -\frac{2 q_{2}}{\left(q_{1} q_{2} q_{3}\right)^{(1-k) / 2}}\left(p_{1} q_{1}+p_{3} q_{3}-p_{2} q_{2}\right), \\
\frac{d q_{3}}{d \tau}= & -\frac{2 q_{3}}{\left(q_{1} q_{2} q_{3}\right)^{(1-k) / 2}}\left(p_{1} q_{1}+p_{2} q_{2}-p_{3} q_{3}\right), \\
\frac{d p_{1}}{d \tau}= & -\frac{1}{\left(q_{1} q_{2} q_{3}\right)^{(1-k) / 2}}\left(2 p_{1}\left(p_{2} q_{2}+p_{3} q_{3}-p_{1} q_{1}\right)\right. \\
+ & +\frac{k-1 \bar{H}}{2} \frac{\bar{H}}{q_{1}}+\frac{p_{\varphi}^{2}\left(n_{1} q_{1}+n_{2} q_{2}\right)}{\left(n_{1} q_{1}-n_{2} q_{2}\right)^{3}} q_{2} \\
& \left.-2 a^{2} q_{2}-\frac{1}{2} n_{1}\left(n_{1} q_{1}-n_{2} q_{2}\right)\right) \\
\frac{d p_{2}}{d \tau}= & -\frac{1}{\left(q_{1} q_{2} q_{3}\right)^{(1-k) / 2}}\left(2 p_{2}\left(p_{1} q_{1}+p_{3} q_{3}-p_{2} q_{2}\right)\right. \tag{4}\\
& +\frac{k-1}{2} \frac{\bar{H}}{q_{2}}-\frac{p_{\varphi}^{2}\left(n_{1} q_{1}+n_{2} q_{2}\right)}{\left(n_{1} q_{1}-n_{2} q_{2}\right)^{3}} q_{1} \\
& \left.-2 a^{2} q_{1}-\frac{1}{2} n_{2}\left(n_{1} q_{1}-n_{2} q_{2}\right)\right), \\
\frac{d p_{3}}{d \tau}= & -\frac{1}{\left(q_{1} q_{2} q_{3}\right)^{(1-k) / 2}}\left(2 p_{3}\left(p_{1} q_{1}+p_{2} q_{2}-p_{3} q_{3}\right)\right. \\
& \left.-2 a^{2} \frac{q_{1} q_{2}}{q_{3}}+\frac{k-1}{2} \frac{\bar{H}}{q_{3}}\right), \\
\frac{d \varphi}{d \tau}= & -\frac{1}{\left(q_{1} q_{2} q_{3}\right)^{(1-k) / 2}} \frac{2 q_{1} q_{2} p_{\varphi}}{\left(n_{1} q_{1}-n_{2} q_{2}\right)^{2}}, \\
\frac{d p_{\varphi}}{d \tau}= & -\frac{1}{\left(q_{1} q_{2} q_{3}\right)^{(1-k) / 2} a\left(n_{1} q_{1}-n_{2} q_{2}\right)^{2},} \\
\text { with } \bar{H}= & T+V_{G} .
\end{align*}
$$

We notice that for Bianchi V we have $p_{\varphi}=0$ and $\dot{\varphi}=0$, so for this model we obtain a simplest model of six equations. After the change of coordinates and time $x_{i}=q_{i}, x_{i+3}=p_{i} q_{i}, i=1,2,3, d \tau_{0}=\frac{\left(q_{1} q_{2} q_{3}\right)^{\frac{k-1}{2}}}{2} d \tau$,
the Bianchi V model writes as a homogeneous polynomial differential system of degree 2 :

$$
\begin{align*}
\dot{x}_{1} & =x_{1}\left(-x_{4}+x_{5}+x_{6}\right), \\
\dot{x}_{2} & =x_{2}\left(x_{4}-x_{5}+x_{6}\right), \\
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
\dot{x}_{4} & =x_{1} x_{2}+\frac{k-1}{4}\left(3 x_{1} x_{2}+\Lambda\right), \tag{5}\\
\dot{x}_{5} & =x_{1} x_{2}+\frac{k-1}{4}\left(3 x_{1} x_{2}+\Lambda\right), \\
\dot{x}_{6} & =x_{1} x_{2}+\frac{k-1}{4}\left(3 x_{1} x_{2}+\Lambda\right),
\end{align*}
$$

where

$$
\begin{equation*}
\Lambda=x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-2\left(x_{4} x_{5}+x_{4} x_{6}+x_{5} x_{6}\right) \tag{6}
\end{equation*}
$$

The condition stated in (3) reduces to $x_{4}+x_{5}-2 x_{6}=0$ for Bianchi V model. The Hamiltonian (2) becomes the first integral

$$
\left(x_{1} x_{2} x_{3}\right)^{\frac{k-1}{2}}\left(3 x_{1} x_{2}+\Lambda\right)
$$

For Bianchi models III, IV, VI and VII we notice that $n_{1}=1$. Moreover system (4) is defined on the subspace (3), hence we can eliminate the momentum p_{φ}. So we can reduce the dimension of system (4) to seven. Note also that in order to study the integrability of system (4) we do not need to consider the seventh equation. In short, for studying the integrability of system (4) it is sufficient to deal with a differential system of dimension six.

For Bianchi IV after the change of coordinates and time
$x_{i}=q_{i}, x_{i+3}=p_{i} q_{i}, i=1,2,3, d \tau_{0}=\frac{q_{1}\left(q_{1} q_{2} q_{3}\right)^{\frac{k-1}{2}}}{2} d \tau$,
and the above considerations we get the six-dimensional
homogeneous polynomial differential system of degree 3

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}^{2}\left(-x_{4}+x_{5}+x_{6}\right), \\
\dot{x}_{2} & =x_{1} x_{2}\left(x_{4}-x_{5}+x_{6}\right), \\
\dot{x}_{3} & =x_{1} x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
\dot{x}_{4} & =\frac{x_{1}^{3}}{4}+x_{1}^{2} x_{2}-2 x_{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}+\frac{k-1}{4} R, \\
\dot{x}_{5} & =x_{1}^{2} x_{2}+2 x_{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}+\frac{k-1}{4} R, \\
\dot{x}_{6} & =x_{1}^{2} x_{2}+\frac{k-1}{4} R,
\end{aligned}
$$

where

$$
R=x_{1}^{3} / 4+3 x_{1}^{2} x_{2}+4 x_{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}+x_{1} \Lambda
$$

The Hamiltonian (2) becomes the first integral
$\left(x_{1} x_{2} x_{3}\right)^{\frac{k-1}{2}}\left(\frac{x_{1}^{2}}{4}+3 x_{1} x_{2}+\frac{4 x_{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}}{x_{1}}+\Lambda\right)$.
In the rest of the cases i.e. for the Bianchi models $I I I, V I$ and $V I I$ after the change of coordinates and time
$x_{i}=q_{i}, x_{i+3}=p_{i} q_{i}, i=1,2,3, d \tau_{0}=\frac{N^{3}\left(q_{1} q_{2} q_{3}\right)^{\frac{k-1}{2}}}{2} d \tau$,
where $N=x_{1}-n_{2} x_{2}$, and the above considerations we obtain the six-dimensional homogeneous polynomial differential system of degree 5

$$
\begin{align*}
& \dot{x}_{1}= x_{1} N^{3}\left(-x_{4}+x_{5}+x_{6}\right), \\
& \dot{x}_{2}= x_{2} N^{3}\left(x_{4}-x_{5}+x_{6}\right), \\
& \dot{x}_{3}= x_{3} N^{3}\left(x_{4}+x_{5}-x_{6}\right), \\
& \dot{x}_{4}= \frac{1}{4} x_{1} N^{4}+a^{2} x_{1} x_{2} N^{3}+\frac{k-1}{4} N S, \tag{8}\\
& \quad-2 a^{2} x_{1} x_{2}\left(x_{1}+n_{2} x_{2}\right)\left(x_{4}+x_{5}-2 x_{6}\right)^{2} \\
& \dot{x}_{5}= \frac{1}{4} N^{5}-\frac{1}{4} x_{1} N^{4}+a^{2} x_{1} x_{2} N^{3}+\frac{k-1}{4} N S, \\
& \quad+2 a^{2} x_{1} x_{2}\left(x_{1}+n_{2} x_{2}\right)\left(x_{4}+x_{5}-2 x_{6}\right)^{2} \\
& \dot{x}_{6}= a^{2} x_{1} x_{2} N^{3}+\frac{k-1}{4} N S,
\end{align*}
$$

where
$S=N^{4} / 4+4 a^{2} x_{1} x_{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}+N^{2}\left(3 a^{2} x_{1} x_{2}+\Lambda\right)$.

The Hamiltonian (2) becomes the first integral

$$
\begin{aligned}
\left(x_{1} x_{2} x_{3}\right)^{\frac{k-1}{2}} & \left(\frac{N^{2}}{4}+3 a^{2} x_{1} x_{2}+\Lambda\right. \\
& \left.+\frac{4 a^{2} x_{1} x_{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}}{N^{2}}\right)
\end{aligned}
$$

A study of the integrability of Bianchi models using its symmetries has been done in ${ }^{4}$, but no information is given there on the analytic integrability of these systems. The analytic integrability of Class A has been studied in previous works by several authors [5-9,12-16]. Here, our aim is to study the analytic integrability of all Bianchi models of class B in the variables $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$. In our study we will use the following result, see ${ }^{11}$.

Proposition 1. Let F be an analytic function and let $F=\sum_{i} F_{i}$ be its decomposition into homogeneous polynomials F_{i} of degree i. Then F is an analytic first integral of a homogeneous differential system if and only if for all $i F_{i}$ is a homogeneous polynomial first integral of the homogeneous system.

Due to Proposition 1 and the fact that all Bianchi class B models have been reduced to homogeneous polynomial differential systems, see the systems (5), (7) and (8), the study of their analytic integrability reduces to analyze their homogeneous polynomial first integrals. Our main result is the following.

Theorem 2. The following statements hold.
(a) System (5) has the two independent first integrals $x_{4}-x_{5}$ and $x_{4}-x_{6}$. These two first integrals become the same when we restrict system (5) to (3), i.e. $x_{4}+x_{5}-2 x_{6}=0$, and any other polynomial first integral is a polynomial in the variable $x_{4}-x_{5}$.
(b) System (7) has no polynomial first integrals.
(c) Systems (8) have no polynomial first integrals.

Section II provides some technical lemmas that we will use for the proof of Theorem 2. In Section III we prove the first statement of Theorem 2, namely we study Bianchi V. In Section IV we deal with Bianchi IV. The integrability of Bianchi III, VI and VII is studied in Section V.

II. SOME AUXILIARY RESULTS

Lemma 3 (see ${ }^{10}$). Let x_{k} be a one-dimensional variable,
$k \in\{1, \ldots, n\}, n>1$ and let $f=f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial. For $l \in\{1, \cdots, n\}$ and c_{0} a constant let $f_{l}=\left.f\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{l}=c_{0}}$. Then there exists a polynomial $g=g\left(x_{1}, \ldots, x_{n}\right)$ such that $f=f_{l}+\left(x_{l}-c_{0}\right) g$.

The next two lemmas are proved in ${ }^{7}$.

Lemma 4. Let $g=g\left(x_{4}, x_{5}, x_{6}\right)$ be a homogeneous polynomial solution of the homogeneous partial differential equation
$\left(a_{1} x_{4}+a_{2} x_{5}+a_{3} x_{6}\right) g+\frac{k-1}{4} \Lambda\left(\frac{\partial g}{\partial x_{4}}+\frac{\partial g}{\partial x_{5}}+\frac{\partial g}{\partial x_{6}}\right)=0$,
where $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ are such that $\left(a_{1}-a_{2}\right)^{2}+\left(a_{1}-a_{3}\right)^{2} \neq$ 0 . Then $g \equiv 0$.

Lemma 5. Let $g=g\left(x_{4}, x_{5}, x_{6}\right)$ and $h_{2}=h_{2}\left(x_{4}-\right.$ $\left.x_{5}, x_{4}-x_{6}\right)$ be homogeneous polynomials of respective degrees $n-2$ and n such that
$2\left(x_{4}-x_{5}+x_{6}\right) g+\frac{k-1}{4} \Lambda\left(\frac{\partial g}{\partial x_{4}}+\frac{\partial g}{\partial x_{5}}+\frac{\partial g}{\partial x_{6}}\right)+\frac{\partial h_{2}}{\partial x_{5}}=0$.

Then $h_{2}=h_{2}\left(x_{4}-x_{6}\right)$ and $g \equiv 0$.

III. PROOF OF STATEMENT (A) OF THEOREM 2

It is clear that system (5) has the first integrals $x_{4}-$ x_{5} and $x_{4}-x_{6}$. We shall prove in this section that under the restriction $x_{4}+x_{5}-2 x_{6}=0$ system (5) has only one independent first integral and it is $x_{4}-x_{5}$.

Suppose that system (5) has a homogeneous polynomial first integral h of degree n. According to Lemma 3 we can write $h=h_{1}\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)+$ $x_{1}^{j} g_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$, with $x_{1} \nmid g_{1}$ and $j \in \mathbb{N}$. Suppose that $g_{1} \not \equiv 0$. System (5) on $x_{1}=0$ writes

$$
\begin{align*}
& \dot{x}_{2}=x_{2}\left(x_{4}-x_{5}+x_{6}\right), \\
& \dot{x}_{3}=x_{3}\left(x_{4}+x_{5}-x_{6}\right) \\
& \dot{x}_{4}=\frac{k-1}{4} \Lambda, \tag{11}\\
& \dot{x}_{5}=\frac{k-1}{4} \Lambda, \\
& \dot{x}_{6}=\frac{k-1}{4} \Lambda .
\end{align*}
$$

Since h is a first integral of system (5), we have that h_{1} is a first integral of system (11). System (11) admits the two polynomial first integrals $x_{4}-x_{5}$ and $x_{4}-x_{6}$ and the two non-polynomial first integrals

$$
x_{2}^{\frac{3}{2}(k-1)} \Lambda\left(\frac{x_{4}+x_{5}+x_{6}-2 \sqrt{\Delta}}{x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}}\right)^{\frac{x_{4}-2 x_{5}+x_{6}}{\sqrt{\Delta}}}
$$

and

$$
x_{3}^{\frac{3}{2}(k-1)} \Lambda\left(\frac{x_{4}+x_{5}+x_{6}-2 \sqrt{\Delta}}{x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}}\right),
$$

where

$$
\begin{equation*}
\Delta=x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-x_{4} x_{5}-x_{4} x_{6}-x_{5} x_{6} . \tag{12}
\end{equation*}
$$

As these four first integrals of system (11) are independent and h_{1} is a polynomial first integral of (11), we get, taking into account the equality $x_{4}+x_{5}-2 x_{6}=0$, that $h_{1}=C_{1}\left(x_{4}-x_{5}\right)^{n}$, where $C_{1} \in \mathbb{R}$. Now since h
and $x_{4}-x_{5}$ are first integrals of system (5) we have that $x_{1}^{j} g_{1}$ is also a first integral of system (5). Therefore

$$
\begin{aligned}
j\left(-x_{4}\right. & \left.+x_{5}+x_{6}\right) g_{1}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{1}} \\
& +x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{1}}{\partial x_{3}} \\
& +\left(x_{1} x_{2}+\frac{k-1}{4} \Lambda\right)\left(\frac{\partial g_{1}}{\partial x_{4}}+\frac{\partial g_{1}}{\partial x_{5}}+\frac{\partial g_{1}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{1}=\left.g_{1}\right|_{x_{1}=0} \not \equiv 0$. On $x_{1}=0$ we have

$$
\begin{aligned}
& j\left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{1}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{1}}{\partial x_{4}}+\frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{\partial \bar{g}_{1}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Write $\bar{g}_{1}=x_{2}^{l} g_{2}$, with $l \in \mathbb{N} \cup\{0\}, x_{2} \nmid g_{2}$ and $g_{2} \not \equiv 0$. Then

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right] g_{2}} \\
& +x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Set $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. Then on $x_{2}=0$ we have

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right] \bar{g}_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Now let $\bar{g}_{2}=x_{3}^{m} g_{3}$, with $m \in \mathbb{N} \cup\{0\}, x_{3} \nmid g_{3}$ and $g_{3} \not \equiv 0$.
We have
$\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] g_{3}$
$+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}$
$+\frac{k-1}{4} \Lambda\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0$.
Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we obtain
$\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{3}$ $+\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0$.
We are under the hypotheses of Lemma 4, hence we have $\bar{g}_{3} \equiv 0$, which is in contradiction with the assumptions.

Therefore $h=C_{1}\left(x_{4}-x_{5}\right)^{n}$ and the proof follows.

IV. PROOF OF STATEMENT (B) OF THEOREM 2

We study in this section the analytic integrability of Bianchi model IV. We consider system (7). Let $h=$ $h\left(x_{1}, \ldots, x_{6}\right)$ be a homogeneous polynomial first integral of degree n of system (7). Using Lemma 3 we can write $h=h_{2}\left(x_{1}, x_{3}, \ldots, x_{6}\right)+x_{2}^{l} g_{2}\left(x_{1}, \ldots, x_{6}\right)$, with $l \in \mathbb{N}$ and h_{2} and g_{2} homogeneous polynomials such that $x_{2} \nmid g_{2}$. Assume that $g_{2} \not \equiv 0$. On $x_{2}=0$ system (7) becomes, after canceling a common factor x_{1}, doing a change in the independent variable,

$$
\begin{align*}
\dot{x}_{1} & =x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \\
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right) \\
\dot{x}_{4} & =\frac{x_{1}^{2}}{4}+\frac{k-1}{4}\left(\frac{x_{1}^{2}}{4}+\Lambda\right), \tag{13}\\
\dot{x}_{5} & =\frac{k-1}{4}\left(\frac{x_{1}^{2}}{4}+\Lambda\right), \\
\dot{x}_{6} & =\frac{k-1}{4}\left(\frac{x_{1}^{2}}{4}+\Lambda\right)
\end{align*}
$$

We notice that h_{2} is a first integral of system (13). We write $h_{2}=h_{3}\left(x_{3}, \ldots, x_{6}\right)+x_{1}^{j} g_{3}\left(x_{1}, x_{3}, \ldots, x_{6}\right)$, with $j \in \mathbb{N}$ and h_{3} and g_{3} homogeneous polynomials such that $x_{1} \nmid g_{3}$. Assume that $g_{3} \not \equiv 0$. System (13) on $x_{1}=0$ writes

$$
\begin{align*}
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
\dot{x}_{4} & =\frac{k-1}{4} \Lambda, \\
\dot{x}_{5} & =\frac{k-1}{4} \Lambda, \tag{14}\\
\dot{x}_{6} & =\frac{k-1}{4} \Lambda .
\end{align*}
$$

Straightforward computations show that system (14) has the three independent first integrals $x_{4}-x_{5}, x_{4}-x_{6}$ and

$$
x_{3}^{\frac{3}{2}(k-1)} \Lambda\left(\frac{x_{4}+x_{5}+x_{6}-2 \sqrt{\Delta}}{x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}}\right)^{\frac{x_{4}+x_{5}-2 x_{6}}{\sqrt{\Delta}}}
$$

where Δ is given by relation (12). As h_{3} is a polynomial first integral of system (14), we have $h_{3}=$ $h_{3}\left(x_{4}-x_{5}, x_{5}-x_{6}\right)$. The following lemma shows that indeed $h=h_{3}\left(x_{5}-x_{6}\right)+x_{2}^{l} g_{2}\left(x_{1}, \ldots, x_{6}\right)$.

Lemma 6. We have that $h_{3}=h_{3}\left(x_{5}-x_{6}\right)$ and $g_{3} \equiv 0$.

Proof. As $h_{2}=h_{3}+x_{1}^{j} g_{3}$ is a first integral of system (13), we have

$$
\begin{align*}
& x_{1}^{j}\left[j\left(-x_{4}+x_{5}+x_{6}\right) g_{3}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{3}}{\partial x_{1}}\right. \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+\frac{x_{1}^{2}}{4} \frac{\partial g_{3}}{\partial x_{4}} \\
& \left.+\frac{k-1}{4}\left(\frac{x_{1}^{2}}{4}+\Lambda\right)\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)\right]+\frac{x_{1}^{2}}{4} \frac{\partial h_{3}}{\partial x_{4}}=0 . \tag{15}
\end{align*}
$$

We distinguish some cases depending on the value of j.
If $j=1$ then equation (15) becomes
$\left(-x_{4}+x_{5}+x_{6}\right) g_{3}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{3}}{\partial x_{1}}$ $+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+\frac{x_{1}^{2}}{4} \frac{\partial g_{3}}{\partial x_{4}}$
$+\frac{k-1}{4}\left(\frac{x_{1}^{2}}{4}+\Lambda\right)\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)+\frac{x_{1}}{4} \frac{\partial h_{3}}{\partial x_{4}}=0$.
Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{1}=0} \not \equiv 0$. On $x_{1}=0$ we have

$$
\begin{aligned}
& \left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{3}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Write $\bar{g}_{3}=x_{3}^{m} g_{4} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{4}$. Then,

$$
\begin{aligned}
{\left[\left(-x_{4}\right.\right.} & \left.\left.+x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] g_{4} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{4}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial g_{4}}{\partial x_{4}}+\frac{\partial g_{4}}{\partial x_{5}}+\frac{\partial g_{4}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Let $\bar{g}_{4}=\left.g_{4}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we have

$$
\begin{aligned}
& {\left[\left(-x_{4}+x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{4}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{4}}{\partial x_{4}}+\frac{\partial \bar{g}_{4}}{\partial x_{5}}+\frac{\partial \bar{g}_{4}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we obtain $\bar{g}_{4} \equiv 0$, which is a contradiction. Hence $g_{3} \equiv 0$. Back to equation (15) we have $\partial h_{3} / \partial x_{4} \equiv 0$, which means that $h_{3}=h_{3}\left(x_{5}-x_{6}\right)$. Then the lemma follows in the case $j=1$.

If $j>2$, then from equation (15) we have that $x_{1} \mid\left(\partial h_{3} / \partial x_{4}\right)$ and thus $\partial h_{3} / \partial x_{4} \equiv 0$. Now we can proceed as in the case $j=1$ to obtain the equation

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{4}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{4}}{\partial x_{4}}+\frac{\partial \bar{g}_{4}}{\partial x_{5}}+\frac{\partial \bar{g}_{4}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we arrive to a contradiction and hence $g_{3} \equiv 0$. The lemma follows in the case $j>2$.

If $j=2$ then equation (15) writes

$$
\begin{aligned}
& 2\left(-x_{4}+x_{5}+x_{6}\right) g_{3}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{3}}{\partial x_{1}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+\frac{x_{1}^{2}}{4} \frac{\partial g_{3}}{\partial x_{4}} \\
& +\frac{k-1}{4}\left(\frac{x_{1}^{2}}{4}+\Lambda\right)\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)+\frac{1}{4} \frac{\partial h_{3}}{\partial x_{4}}=0 .
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{1}=0} \not \equiv 0$. On $x_{1}=0$ we have

$$
\begin{aligned}
& 2\left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{3}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)+\frac{1}{4} \frac{\partial h_{3}}{\partial x_{4}}=0
\end{aligned}
$$

Write $\bar{g}_{3}=x_{3}^{m} g_{4} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{4}$. Then we get

$$
\begin{aligned}
x_{3}^{m} & {\left[\left[2\left(-x_{4}+x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] g_{4}\right.} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{4}}{\partial x_{3}} \\
& \left.+\frac{k-1}{4} \Lambda\left(\frac{\partial g_{4}}{\partial x_{4}}+\frac{\partial g_{4}}{\partial x_{5}}+\frac{\partial g_{4}}{\partial x_{6}}\right)\right]+\frac{1}{4} \frac{\partial h_{3}}{\partial x_{4}}=0 .
\end{aligned}
$$

If $m>0$ then $x_{3} \mid\left(\partial h_{3} / \partial x_{4}\right)$. Hence $\partial h_{3} / \partial x_{4} \equiv 0$ and $h_{3}=h_{3}\left(x_{5}-x_{6}\right)$. Let $\bar{g}_{4}=g_{4} \mid x_{3}=0 \not \equiv 0$. On $x_{3}=0$ we obtain

$$
\begin{aligned}
& {\left[2\left(-x_{4}+x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{4}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{4}}{\partial x_{4}}+\frac{\partial \bar{g}_{4}}{\partial x_{5}}+\frac{\partial \bar{g}_{4}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we get a contradiction, hence $g_{3} \equiv 0$.
If $m=0$, let $\bar{g}_{4}=\left.g_{4}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we obtain $2\left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{4}+\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{4}}{\partial x_{4}}+\frac{\partial \bar{g}_{4}}{\partial x_{5}}+\frac{\partial \bar{g}_{4}}{\partial x_{6}}\right)+\frac{1}{4} \frac{\partial h_{3}}{\partial x_{4}}=0$

We can apply Lemma 5 , permuting the variables x_{4} by x_{5}, and we get that $h_{3}=h_{3}\left(x_{5}-x_{6}\right)$ so $\partial h_{3} / \partial x_{4} \equiv 0$. Now applying Lemma 4 we obtain $\bar{g}_{4} \equiv 0$. Hence the lemma follows in the case $j=2$.

After Lemma 6 we have that $h=h_{3}\left(x_{5}-x_{6}\right)+$ $x_{2}^{l} g_{2}\left(x_{1}, \ldots, x_{6}\right)$, with $l \in \mathbb{N}$ and $x_{2} \nmid g_{2}$. We write $h_{3}\left(x_{5}-x_{6}\right)=C_{3}\left(x_{5}-x_{6}\right)^{n}$, with $C_{3} \in \mathbb{R}$. We recall that h is a first integral of system (7). Thus it satisfies the equation

$$
\begin{align*}
& x_{2}^{l}\left[l x_{1}\left(x_{4}-x_{5}+x_{6}\right) g_{2}+x_{1}^{2}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{1}}\right. \\
& \quad+x_{1} x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& \quad+x_{1} x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}} \\
& \quad+\frac{k-1}{4} R\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right) \\
& \quad+\left(\frac{x_{1}^{3}}{4}+x_{1}^{2} x_{2}-2 x_{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}\right) \frac{\partial g_{2}}{\partial x_{4}} \\
& \quad+\left(x_{1}^{2} x_{2}+2 x_{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}\right) \frac{\partial g_{2}}{\partial x_{5}} \\
& \left.\quad+x_{1}^{2} x_{2} \frac{\partial g_{2}}{\partial x_{6}}\right]+2 C_{3} n x_{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}\left(x_{5}-x_{6}\right)^{n-1}=0 . \tag{16}
\end{align*}
$$

The following lemma ends the proof of statement (b) of Theorem 2, as it shows that $h \equiv 0$.

Lemma 7. We have that $h_{3} \equiv 0$ and $g_{2} \equiv 0$.

Proof. Suppose that $g_{2} \not \equiv 0$. We distinguish two cases depending on the value of l. If $l>1$ then from equation (16) we must take $C_{3}=0$ and therefore $h_{3} \equiv 0$. Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. After simplifying x_{2}^{l}, equation (16) on
$x_{2}=0$ becomes, after cancelling a common factor x_{1},

$$
\begin{aligned}
& l\left(x_{4}-x_{5}+x_{6}\right) \bar{g}_{2}+x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{1}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}}+\frac{x_{1}^{2}}{4} \frac{\partial \bar{g}_{2}}{\partial x_{4}} \\
& +\frac{k-1}{4}\left(\frac{x_{1}^{2}}{4}+\Lambda\right)\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Write $\bar{g}_{2}=x_{1}^{j} g_{3} \not \equiv 0$, with $j \in \mathbb{N} \cup\{0\}$ and $x_{1} \nmid g_{3}$. We get

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right] g_{3}} \\
& +x_{1}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{3}}{\partial x_{1}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}}+\frac{x_{1}^{2}}{4} \frac{\partial g_{3}}{\partial x_{4}} \\
& +\frac{k-1}{4}\left(\frac{x_{1}^{2}}{4}+\Lambda\right)\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{1}=0} \not \equiv 0$. Then, on $x_{1}=0$ we have

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right] \bar{g}_{3}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{3}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Now write $\bar{g}_{3}=x_{3}^{m} g_{4} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{4}$. We get

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right.} \\
& \left.+m\left(x_{4}+x_{5}-x_{6}\right)\right] g_{4}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{4}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial g_{4}}{\partial x_{4}}+\frac{\partial g_{4}}{\partial x_{5}}+\frac{\partial g_{4}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Let $\bar{g}_{4}=\left.g_{4}\right|_{x_{3}=0} \not \equiv 0$. Then, on $x_{3}=0$ we have

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right.} \\
& \left.+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{4} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{4}}{\partial x_{4}}+\frac{\partial \bar{g}_{4}}{\partial x_{5}}+\frac{\partial \bar{g}_{4}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we obtain $\bar{g}_{4} \equiv 0$, a contradiction. Hence $g_{2} \equiv 0$ and the lemma follows in the case $l>1$.

If $l=1$ then we can cancel a common factor x_{2} in equation (16). Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. On $x_{2}=0$ equa- $l=1$.

V. PROOF OF STATEMENT (C) OF

THEOREM 2

We study in this section the analytic integrability of Bianchi models III, VI and VII. We consider system (8). Let $h=h\left(x_{1}, \ldots, x_{6}\right)$ be a homogeneous polynomial first integral of degree n of system (8). Using Lemma 3 we can write $h=h_{1}\left(x_{2}, \ldots, x_{6}\right)+x_{1}^{j} g_{1}\left(x_{1}, \ldots, x_{6}\right)$, with $j \in \mathbb{N}$ and h_{1} and g_{1} homogeneous polynomials such that $x_{1} \nmid g_{1}$. Assume that $g_{1} \not \equiv 0$. On $x_{1}=0$ system (8) becomes, after canceling a common factor $-n_{2} x_{2}^{3}$,

$$
\begin{align*}
& \dot{x}_{2}=x_{2}\left(x_{4}-x_{5}+x_{6}\right) \\
& \dot{x}_{3}=x_{3}\left(x_{4}+x_{5}-x_{6}\right) \\
& \dot{x}_{4}=\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right) \tag{18}\\
& \dot{x}_{5}=\frac{x_{2}^{2}}{4}+\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right), \\
& \dot{x}_{6}=\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right) .
\end{align*}
$$

We notice that h_{1} is a first integral of system (18). From Lemma 3 we write $h_{1}=h_{2}\left(x_{3}, \ldots, x_{6}\right)+$ $x_{2}^{l} g_{2}\left(x_{2}, \ldots, x_{6}\right)$, with $l \in \mathbb{N}$ and h_{2} and g_{2} homogeneous polynomials such that $x_{2} \nmid g_{2}$. Assume that $g_{2} \not \equiv 0$. System (18) on $x_{2}=0$ writes

$$
\begin{align*}
\dot{x}_{3} & =x_{3}\left(x_{4}+x_{5}-x_{6}\right), \\
\dot{x}_{4} & =\frac{k-1}{4} \Lambda, \\
\dot{x}_{5} & =\frac{k-1}{4} \Lambda, \tag{19}\\
\dot{x}_{6} & =\frac{k-1}{4} \Lambda .
\end{align*}
$$

Straightforward computations show that system (19) has the three independent first integrals $x_{4}-x_{5}, x_{4}-x_{6}$ and

$$
x_{3}^{\frac{3}{2}(k-1)} \Lambda\left(\frac{x_{4}+x_{5}+x_{6}-2 \sqrt{\Delta}}{x_{4}+x_{5}+x_{6}+2 \sqrt{\Delta}}\right)^{\frac{x_{4}+x_{5}-2 x_{6}}{\sqrt{\Delta}}}
$$

As h_{2} is a polynomial first integral of system (19), we have $h_{2}=h_{2}\left(x_{4}-x_{5}, x_{4}-x_{6}\right)$. The following lemma shows that indeed $h=h_{2}\left(x_{4}-x_{6}\right)+x_{1}^{j} g_{1}\left(x_{1}, \ldots, x_{6}\right)$.

Lemma 8. We have that $h_{2}=h_{2}\left(x_{4}-x_{6}\right)$ and $g_{2} \equiv 0$.

Proof. As $h_{1}=h_{2}+x_{2}^{l} g_{2}$ is a first integral of system (18), we have

$$
\begin{align*}
& x_{2}^{l}\left[l\left(x_{4}-x_{5}+x_{6}\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}}\right. \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+\frac{x_{2}^{2}}{4} \frac{\partial g_{2}}{\partial x_{5}} \\
& \left.+\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right)\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)\right]+\frac{x_{2}^{2}}{4} \frac{\partial h_{2}}{\partial x_{5}}=0 \tag{20}
\end{align*}
$$

We distinguish the following cases depending on the value of l.

If $l=1$ then equation (20) becomes

$$
\begin{aligned}
\left(x_{4}\right. & \left.-x_{5}+x_{6}\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+\frac{x_{2}^{2}}{4} \frac{\partial g_{2}}{\partial x_{5}} \\
& +\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right)\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)+\frac{x_{2}}{4} \frac{\partial h_{2}}{\partial x_{5}}=0 .
\end{aligned}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. On $x_{2}=0$ we have

$$
\begin{aligned}
& \left(x_{4}-x_{5}+x_{6}\right) \bar{g}_{2}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. Then

$$
\begin{aligned}
& {\left[\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] g_{3}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we have

$$
\begin{aligned}
& {\left[\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we obtain $\bar{g}_{3} \equiv 0$, which is a contradiction. Hence $g_{2} \equiv 0$. Back to equation (20) we have $\partial h_{2} / \partial x_{5} \equiv 0$, which means that $h_{2}=h_{2}\left(x_{4}-x_{6}\right)$. Then the lemma follows in the case $l=1$.

If $l>2$, then from equation (20) we have that $x_{2} \mid\left(\partial h_{2} / \partial x_{5}\right)$ and thus $\partial h_{2} / \partial x_{5} \equiv 0$. Therefore $h_{2}=$ $h_{2}\left(x_{4}-x_{6}\right)$. Now we can proceed as in the case $l=1$ to obtain the equation

$$
\begin{aligned}
& {\left[l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we arrive to a contradiction and hence $g_{2} \equiv 0$. The lemma follows in the case $l>2$.

If $l=2$ then equation (20) writes

$$
\begin{aligned}
& 2\left(x_{4}-x_{5}+x_{6}\right) g_{2}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+\frac{x_{2}^{2}}{4} \frac{\partial g_{2}}{\partial x_{5}} \\
& +\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right)\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)+\frac{1}{4} \frac{\partial h_{2}}{\partial x_{5}}=0
\end{aligned}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. On $x_{2}=0$ we have

$$
\begin{aligned}
& 2\left(x_{4}-x_{5}+x_{6}\right) \bar{g}_{2}+x_{3}\left(x_{4}+x_{5}-x_{6} \frac{\partial \bar{g}_{2}}{\partial x_{3}}\right. \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)+\frac{1}{4} \frac{\partial h_{2}}{\partial x_{5}}=0 .
\end{aligned}
$$

Write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. Then we get

$$
\begin{aligned}
& x_{3}^{m}\left[\left(2\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right) g_{3}\right. \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}} \\
& \left.+\frac{k-1}{4} \Lambda\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)\right]+\frac{1}{4} \frac{\partial h_{2}}{\partial x_{5}}=0 .
\end{aligned}
$$

If $m>0$ then $x_{3} \mid\left(\partial h_{2} / \partial x_{5}\right)$. Hence $\partial h_{2} / \partial x_{5} \equiv 0$ and $h_{2}=h_{2}\left(x_{4}-x_{6}\right)$. Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we obtain

$$
\begin{aligned}
& {\left[2\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we get a contradiction; hence $g_{2} \equiv 0$.
If $m=0$, let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. On $x_{3}=0$ we obtain

$$
\begin{aligned}
& 2\left(x_{4}-x_{5}+x_{6}\right) \bar{g}_{3}+\frac{1}{4} \frac{\partial h_{2}}{\partial x_{5}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

We can apply Lemma 5 and we get $\frac{\partial h_{2}}{\partial x_{5}} \equiv 0$ and $\bar{g}_{3} \equiv 0$, hence the lemma follows in the case $l=2$.

After Lemma 8 we have that $h=h_{2}\left(x_{4}-x_{6}\right)+$ $x_{1}^{j} g_{1}\left(x_{1}, \ldots, x_{6}\right)$, with $j \in \mathbb{N}$ and $x_{1} \nmid g_{1}$. We recall that h is a first integral of system (8). Thus it satisfies the equation

$$
\begin{align*}
& x_{1}^{j}\left[j N^{3}\left(-x_{4}+x_{5}+x_{6}\right) g_{1}+x_{1} N^{3}\left(-x_{4}+x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{1}}\right. \\
& +x_{2} N^{3}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{1}}{\partial x_{2}}+x_{3} N^{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{1}}{\partial x_{3}} \\
& +\frac{k-1}{4} N S\left(\frac{\partial g_{1}}{\partial x_{4}}+\frac{\partial g_{1}}{\partial x_{5}}+\frac{\partial g_{1}}{\partial x_{6}}\right) \\
& +\left(\frac{1}{4} x_{1} N^{4}+a^{2} x_{1} x_{2} N^{3}\right. \\
& \left.\quad-2 a^{2} x_{1} x_{2}\left(x_{1}+n_{2} x_{2}\right)\left(x_{4}+x_{5}-2 x_{6}\right)^{2}\right) \frac{\partial g_{1}}{\partial x_{4}} \\
& +\left(\frac{1}{4} N^{5}-\frac{1}{4} x_{1} N^{4}+a^{2} x_{1} x_{2} N^{3}\right. \\
& \left.\quad+2 a^{2} x_{1} x_{2}\left(x_{1}+n_{2} x_{2}\right)\left(x_{4}+x_{5}-2 x_{6}\right)^{2}\right) \frac{\partial g_{1}}{\partial x_{5}} \\
& \left.+a^{2} x_{1} x_{2} N^{3} \frac{\partial g_{1}}{\partial x_{6}}\right]+a^{2} x_{1} x_{2} N^{3} \frac{\partial h_{2}}{\partial x_{6}} \\
& +\left(\frac{1}{4} x_{1} N^{4}+a^{2} x_{1} x_{2} N^{3}\right. \\
& \left.\quad-2 a^{2} x_{1} x_{2}\left(x_{1}+n_{2} x_{2}\right)\left(x_{4}+x_{5}-2 x_{6}\right)^{2}\right) \frac{\partial h_{2}}{\partial x_{4}}=0 . \tag{21}
\end{align*}
$$

The following lemma ends the proof of statement (c) of Theorem 2, as it shows that $h \equiv 0$.

Lemma 9. We have that $h_{2} \equiv 0$ and $g_{1} \equiv 0$.

Proof. Write $h_{2}\left(x_{4}-x_{6}\right)=C_{2}\left(x_{4}-x_{6}\right)^{n}$, with $C_{2} \in$
\mathbb{R}. Suppose that $g_{1} \not \equiv 0$. We distinguish two cases
depending on the value of j. If $j>1$ then from equation (21) we have that x_{1} divides

$$
C_{2} n\left(\frac{x_{2}^{4}}{4}-2 a^{2} n_{2} x_{2}^{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}\right)
$$

Hence we must take $C_{2}=0$ and therefore $h_{2} \equiv 0$. Let $\bar{g}_{1}=\left.g_{1}\right|_{x_{1}=0} \not \equiv 0$. Equation (21) on $x_{1}=0$ becomes, after cancelling a common factor $-n_{2} x_{2}^{3}$,

$$
\begin{aligned}
& j\left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{1}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{3}}+\frac{x_{2}^{2}}{4} \frac{\partial \bar{g}_{1}}{\partial x_{5}} \\
& +\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right)\left(\frac{\partial \bar{g}_{1}}{\partial x_{4}}+\frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{\partial \bar{g}_{1}}{\partial x_{6}}\right)=0
\end{aligned}
$$

Write $\bar{g}_{1}=x_{2}^{l} g_{2} \not \equiv 0$, with $l \in \mathbb{N} \cup\{0\}$ and $x_{2} \nmid g_{2}$. We get

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right] g_{2}} \\
& +x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+\frac{x_{2}^{2}}{4} \frac{\partial g_{2}}{\partial x_{5}} \\
& +\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right)\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. Then, on $x_{2}=0$ we have

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right] \bar{g}_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Now write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. We get

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right.} \\
& \left.+m\left(x_{4}+x_{5}-x_{6}\right)\right] g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. Then, on $x_{3}=0$ we have

$$
\begin{aligned}
& {\left[j\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right.} \\
& \left.+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{3} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we obtain $\bar{g}_{3} \equiv 0$, a contradiction. Hence $g_{1} \equiv 0$ and the lemma follows in the case $j>1$.

If $j=1$ then we can cancel a common factor x_{1} in equation (21). Let $\bar{g}_{1}=\left.g_{1}\right|_{x_{1}=0} \not \equiv 0$. On $x_{1}=0$ equation (21) becomes, after cancelling a common factor $-n_{2} x_{2}^{2}$,
$x_{2}\left[\left(-x_{4}+x_{5}+x_{6}\right) \bar{g}_{1}+x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{2}}\right.$
$+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{1}}{\partial x_{3}}+\frac{x_{2}^{2}}{4} \frac{\partial \bar{g}_{1}}{\partial x_{5}}$
$\left.+\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right)\left(\frac{\partial \bar{g}_{1}}{\partial x_{4}}+\frac{\partial \bar{g}_{1}}{\partial x_{5}}+\frac{\partial \bar{g}_{1}}{\partial x_{6}}\right)\right]$
$+C_{2} n\left(2 a^{2}\left(x_{4}+x_{5}-2 x_{6}\right)^{2}-\frac{n_{2}}{4} x_{2}^{2}\right)\left(x_{4}-x_{6}\right)^{n-1}=0$. Clearly we must take $C_{2}=0$, and hence $h_{2} \equiv 0$. Write now $\bar{g}_{1}=x_{2}^{l} g_{2} \not \equiv 0$, with $l \in \mathbb{N} \cup\{0\}$ and $x_{2} \nmid g_{2}$. Then the above equation becomes

$$
\begin{align*}
& {\left[\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right] g_{2}} \\
& +x_{2}\left(x_{4}-x_{5}+x_{6}\right) \frac{\partial g_{2}}{\partial x_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{2}}{\partial x_{3}}+\frac{x_{2}^{2}}{4} \frac{\partial g_{2}}{\partial x_{5}} \tag{22}\\
& +\frac{k-1}{4}\left(\frac{x_{2}^{2}}{4}+\Lambda\right)\left(\frac{\partial g_{2}}{\partial x_{4}}+\frac{\partial g_{2}}{\partial x_{5}}+\frac{\partial g_{2}}{\partial x_{6}}\right)=0
\end{align*}
$$

Let $\bar{g}_{2}=\left.g_{2}\right|_{x_{2}=0} \not \equiv 0$. Then, on $x_{2}=0$ we have

$$
\begin{aligned}
& {\left[\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right] \bar{g}_{2}} \\
& +x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial \bar{g}_{2}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{2}}{\partial x_{4}}+\frac{\partial \bar{g}_{2}}{\partial x_{5}}+\frac{\partial \bar{g}_{2}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Now write $\bar{g}_{2}=x_{3}^{m} g_{3} \not \equiv 0$, with $m \in \mathbb{N} \cup\{0\}$ and $x_{3} \nmid g_{3}$. We get

$$
\begin{aligned}
& {\left[\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)\right.} \\
& \left.+m\left(x_{4}+x_{5}-x_{6}\right)\right] g_{3}+x_{3}\left(x_{4}+x_{5}-x_{6}\right) \frac{\partial g_{3}}{\partial x_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial g_{3}}{\partial x_{4}}+\frac{\partial g_{3}}{\partial x_{5}}+\frac{\partial g_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Let $\bar{g}_{3}=\left.g_{3}\right|_{x_{3}=0} \not \equiv 0$. Then, on $x_{3}=0$ we have

$$
\begin{aligned}
& {\left[\left(-x_{4}+x_{5}+x_{6}\right)+l\left(x_{4}-x_{5}+x_{6}\right)+m\left(x_{4}+x_{5}-x_{6}\right)\right] \bar{g}_{3}} \\
& +\frac{k-1}{4} \Lambda\left(\frac{\partial \bar{g}_{3}}{\partial x_{4}}+\frac{\partial \bar{g}_{3}}{\partial x_{5}}+\frac{\partial \bar{g}_{3}}{\partial x_{6}}\right)=0 .
\end{aligned}
$$

Applying Lemma 4 we obtain $\bar{g}_{3} \equiv 0$, a contradiction. Hence $g_{1} \equiv 0$ and the lemma follows in the case $j=$ 1.

VI. ACKNOWLEDGEMENTS

All the authors are partially supported by the MICINN/FEDER grant MTM2008-03437. AF is additionally partially supported by grants Juan de la Cierva, 2009SGR410 and MTM2009-14163-C02-02. JL is additionally partially supported by an AGAUR grant number 2009SGR410 and by ICREA Academia. CP is additionally partial supported by the MICINN/FEDER grant number MTM2009-06973 and by an AGAUR grant number 2009SGR859.

REFERENCES

${ }^{1}$ L. Bianchi, Soc. Ital. Sci. Mem. di Mat. 11 (1898), 267-352.
${ }^{2}$ L. Bianchi, Lezioni sulla teoria dei gruppi continui finiti di trasformazioni(Lectures on the theory of finite continuous transformation grups), Pisa, 550-557, 1918.
${ }^{3}$ Bogoyavlensky, Qualitative Theory of Dynamical systems in Astrophysics and Gas Dynamics, SpringerVerlag, 1985.
${ }^{4}$ S. Cotsakis, P.G.L. Leach and Ch. Pantazi, Gravit. Cosmol. 4 (1998) 314-325
${ }^{5}$ R. Cushman and J. Sniatycki, Reports on Math. Phys. 36 (1995), 75-89.
${ }^{6}$ A. Ferragut, J. Llibre and Ch. Pantazi, J. Geom. Phys. 62 (2012), 381-386.
${ }^{7}$ A. Ferragut, J. Llibre and Ch. Pantazi, Analytic integrability of the Bianchi Class A cosmological models with $0 \leq k<1$, arXiv:1207.4997.
${ }^{8}$ A. Latifi, M. Musette and R. Conte, Phys. Lect. A 194 (1994), 83-92.
${ }^{9}$ J. Llibre and C. Valls, J.Mat. Phys. 47 (2006), 022704-15 pp.
${ }^{10}$ J. Llibre and C. Valls, J. Mat. Phys. 51 (2010), 092702-13pp.
${ }^{11}$ J. Llibre and X. Zhang, Nonlinearity 15 (2002), 12691280.
${ }^{12}$ A.J. Maciejewski, J. Strelcyn and M. Szydłowski, J. Math. Phys. 42 (2001), 1728-13 pp.
${ }^{13}$ A.J. Maciejewski and M. Szydłowski, J. Phys. A: Math. Gen. 31 (1998), 2031-2043.
${ }^{14}$ A.J. Maciejewski and M. Szydłowski, Celestial Mech. and Dyn. Astr. 73 (1999), 17-24.
${ }^{15}$ M. Szydłowski and M. Biesiada, J. Nonlinear Math. Phys. 9 (2002), 1-10.
${ }^{16}$ M. Szydłowski and J. Demaret, Gen. Rel. and Grav. 31 (1999), 897-911.

[^0]: ${ }^{\text {a) }}$ Electronic mail: Antoni.Ferragut@upc.edu
 ${ }^{\text {b) }}$ Electronic mail: jllibre@mat.uab.cat
 ${ }^{\text {c) }}$ Electronic mail: chara.pantazi@upc.edu

