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We follow Bogoyavlensky’s approach to deal with Bianchi class B cosmological models. We char-

acterize the analytic integrability of such systems.

Bianchi models are cosmological models

that describe space–times which are foliated

by homogeneous hypersurfaces of constant

time and are divided into two classes, Class

A and Class B. There are many studies about

the integrability of Class A. Here we study

the integrability of Class B. For the homoge-

neous cosmological models of Class B, Ein-

stein’s system of differential equations re-

duces to a dynamical system of dimension

seven according to Bogoyavlensky’s approach.

We show that in order to study the integrabil-

ity of such systems it is sufficient to deal with

homogeneous polynomial differential systems

of dimension six. Concretely, Bianchi V is

the simplest model and can be written as a

homogeneous polynomial differential system

of degree 2. Bianchi IV is dealt as a ho-

mogeneous polynomial differential system of

degree 3 and the rest of the models, Bian-
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chis III, V I and V II are of degree 5. Due to

the fact that all Bianchi class B models have

been reduced to homogeneous polynomial dif-

ferential systems, the study of their analytic

integrability reduces to analyze their homo-

geneous polynomial first integrals. We show

that Bianchi model V admits polynomial first

integral, and we prove that the corresponding

homogeneous polynomial differential systems

that represent models Bianchi IV , III, V I and

V II do not admit polynomial first integrals.

I. INTRODUCTION AND STATEMENT

OF THE RESULTS

Einstein’s equations relate the geometry of the

space-time with the properties of the matter which

occupied it. The matter occupying the space-time is

determined by the stress energy tensor of the matter.

In our study we follow3 and we consider the hydro-

dynamical tensor of the matter. We will work with

an equation of state of matter of the form p = kε,

where ε is the energy density of the matter, p is the
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pressure and 0 ≤ k < 1.

For the homogeneous cosmological models of

Class B Einstein’s system of equations reduces to

the following dynamical system in the phase space

pi, qi, pφ, φ, i = 1, 2, 3,

dqi

dτ
=

∂H

∂pi

,
dpi

dτ
= −∂H

∂qi

− hi,

dφ

dτ
=

∂H

∂pφ

,
dpφ

dτ
= −∂H

∂φ
− hφ,

(1)

where the Hamiltonian H is

H =
1

(q1q2q3)
1−k
2

(T (piqi) + VG(qi)) , (2)

with

T (pi, qi, pφ) =2
∑

1≤i<j≤3

pipjqiqj −
3∑

i=1

p2
i q

2
i

− p2
φq1q2

(n1q1 − n2q2)2
,

VG(qi) = − 1

4

(
12a2q1q2 + (n1q1 − n2q2)

2
)
,

and

h1 =
a2q2

(q1q2q3)
1−k
2

, h2 =
a2q1

(q1q2q3)
1−k
2

,

h3 =
−2a2q1q2

q3(q1q2q3)
1−k
2

, hφ =
a(n1q1 − n2q2)

2

(q1q2q3)
1−k
2

.

System (1) is given in the subspace defined by Ein-

stein’s equation

p1q1 + p2q2 − 2p3q3 +
pφ

2a
= 0. (3)

The constants a ̸= 0, n1, n2 determine the type of

model according to Table I, see also1–3. System (1)

Type III IV V VI VII

a 1 1 1 a ̸= 1 a

n1 1 1 0 1 1

n2 -1 0 0 -1 1

TABLE I. The classification of Bianchi class B cosmolo-

gies.

in an explicit form writes as

dq1

dτ
= − 2q1

(q1q2q3)(1−k)/2
(p1q1 + p2q2 − p3q3),

dq2

dτ
= − 2q2

(q1q2q3)(1−k)/2
(p1q1 + p3q3 − p2q2),

dq3

dτ
= − 2q3

(q1q2q3)(1−k)/2
(p1q1 + p2q2 − p3q3),

dp1

dτ
= − 1

(q1q2q3)(1−k)/2
(2p1(p2q2 + p3q3 − p1q1)

+
k − 1

2

H̄

q1
+

p2
φ(n1q1 + n2q2)

(n1q1 − n2q2)3
q2

−2a2q2 − 1

2
n1(n1q1 − n2q2)

)

dp2

dτ
= − 1

(q1q2q3)(1−k)/2
(2p2(p1q1 + p3q3 − p2q2)

+
k − 1

2

H̄

q2
−

p2
φ(n1q1 + n2q2)

(n1q1 − n2q2)3
q1

−2a2q1 − 1

2
n2(n1q1 − n2q2)

)
,

dp3

dτ
= − 1

(q1q2q3)(1−k)/2
(2p3(p1q1 + p2q2 − p3q3)

−2a2 q1q2

q3
+

k − 1

2

H̄

q3

)
,

dφ

dτ
= − 1

(q1q2q3)(1−k)/2

2q1q2pφ

(n1q1 − n2q2)2
,

dpφ

dτ
= − 1

(q1q2q3)(1−k)/2
a(n1q1 − n2q2)2,

(4)

with H̄ = T + VG.

We notice that for Bianchi V we have pφ = 0 and

φ̇ = 0, so for this model we obtain a simplest model of

six equations. After the change of coordinates and time

xi = qi, xi+3 = piqi, i = 1, 2, 3, dτ0 =
(q1q2q3)

k−1
2

2
dτ,

2



the Bianchi V model writes as a homogeneous polyno-

mial differential system of degree 2:

ẋ1 = x1(−x4 + x5 + x6),

ẋ2 = x2(x4 − x5 + x6),

ẋ3 = x3(x4 + x5 − x6),

ẋ4 = x1x2 +
k − 1

4
(3x1x2 + Λ),

ẋ5 = x1x2 +
k − 1

4
(3x1x2 + Λ),

ẋ6 = x1x2 +
k − 1

4
(3x1x2 + Λ),

(5)

where

Λ = x2
4 + x2

5 + x2
6 − 2(x4x5 + x4x6 + x5x6). (6)

The condition stated in (3) reduces to x4 +x5 −2x6 = 0

for Bianchi V model. The Hamiltonian (2) becomes the

first integral

(x1x2x3)
k−1
2 (3x1x2 + Λ) .

For Bianchi models III, IV, VI and VII we notice that

n1 = 1. Moreover system (4) is defined on the subspace

(3), hence we can eliminate the momentum pφ. So we

can reduce the dimension of system (4) to seven. Note

also that in order to study the integrability of system

(4) we do not need to consider the seventh equation. In

short, for studying the integrability of system (4) it is

sufficient to deal with a differential system of dimension

six.

For Bianchi IV after the change of coordinates and

time

xi = qi, xi+3 = piqi, i = 1, 2, 3, dτ0 =
q1(q1q2q3)

k−1
2

2
dτ,

and the above considerations we get the six-dimensional

homogeneous polynomial differential system of degree 3

ẋ1 = x2
1(−x4 + x5 + x6),

ẋ2 = x1x2(x4 − x5 + x6),

ẋ3 = x1x3(x4 + x5 − x6),

ẋ4 =
x3

1

4
+ x2

1x2 − 2x2(x4 + x5 − 2x6)2 +
k − 1

4
R,

ẋ5 = x2
1x2 + 2x2(x4 + x5 − 2x6)2 +

k − 1

4
R,

ẋ6 = x2
1x2 +

k − 1

4
R,

(7)

where

R = x3
1/4 + 3x2

1x2 + 4x2(x4 + x5 − 2x6)2 + x1Λ.

The Hamiltonian (2) becomes the first integral

(x1x2x3)
k−1
2

(
x2

1

4
+ 3x1x2 +

4x2(x4 + x5 − 2x6)2

x1
+ Λ

)
.

In the rest of the cases i.e. for the Bianchi models

III, V I and V II after the change of coordinates and

time

xi = qi, xi+3 = piqi, i = 1, 2, 3, dτ0 =
N3(q1q2q3)

k−1
2

2
dτ,

where N = x1 − n2x2, and the above considerations

we obtain the six-dimensional homogeneous polynomial

differential system of degree 5

ẋ1 = x1N
3(−x4 + x5 + x6),

ẋ2 = x2N
3(x4 − x5 + x6),

ẋ3 = x3N
3(x4 + x5 − x6),

ẋ4 =
1

4
x1N

4 + a2x1x2N
3 +

k − 1

4
NS,

− 2a2x1x2(x1 + n2x2)(x4 + x5 − 2x6)2

ẋ5 =
1

4
N5 − 1

4
x1N

4 + a2x1x2N
3 +

k − 1

4
NS,

+ 2a2x1x2(x1 + n2x2)(x4 + x5 − 2x6)2

ẋ6 = a2x1x2N
3 +

k − 1

4
NS,

(8)

where

S = N4/4+4a2x1x2(x4 +x5 −2x6)2 +N2(3a2x1x2 +Λ).
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The Hamiltonian (2) becomes the first integral

(x1x2x3)
k−1
2

(
N2

4
+ 3a2x1x2 + Λ

+
4a2x1x2(x4 + x5 − 2x6)2

N2

)
.

A study of the integrability of Bianchi models using

its symmetries has been done in4, but no information is

given there on the analytic integrability of these systems.

The analytic integrability of Class A has been studied in

previous works by several authors [5–9,12–16]. Here, our

aim is to study the analytic integrability of all Bianchi

models of class B in the variables (x1, x2, x3, x4, x5, x6).

In our study we will use the following result, see11.

Proposition 1. Let F be an analytic function and let

F =
∑

i Fi be its decomposition into homogeneous poly-

nomials Fi of degree i. Then F is an analytic first inte-

gral of a homogeneous differential system if and only if

for all i Fi is a homogeneous polynomial first integral of

the homogeneous system.

Due to Proposition 1 and the fact that all Bianchi

class B models have been reduced to homogeneous poly-

nomial differential systems, see the systems (5), (7) and

(8), the study of their analytic integrability reduces to

analyze their homogeneous polynomial first integrals.

Our main result is the following.

Theorem 2. The following statements hold.

(a) System (5) has the two independent first integrals

x4 − x5 and x4 − x6. These two first integrals

become the same when we restrict system (5) to

(3), i.e. x4 + x5 − 2x6 = 0, and any other polyno-

mial first integral is a polynomial in the variable

x4 − x5.

(b) System (7) has no polynomial first integrals.

(c) Systems (8) have no polynomial first integrals.

Section II provides some technical lemmas that we

will use for the proof of Theorem 2. In Section III we

prove the first statement of Theorem 2, namely we study

Bianchi V. In Section IV we deal with Bianchi IV. The

integrability of Bianchi III, VI and VII is studied in

Section V.

II. SOME AUXILIARY RESULTS

Lemma 3 (see10). Let xk be a one-dimensional variable,

k ∈ {1, . . . , n}, n > 1 and let f = f(x1, . . . , xn) be a

polynomial. For l ∈ {1, · · · , n} and c0 a constant let

fl = f(x1, . . . , xn)|xl=c0. Then there exists a polynomial

g = g(x1, . . . , xn) such that f = fl + (xl − c0)g.

The next two lemmas are proved in7.

Lemma 4. Let g = g(x4, x5, x6) be a homogeneous poly-

nomial solution of the homogeneous partial differential

equation

(a1x4+a2x5+a3x6)g+
k − 1

4
Λ

(
∂g

∂x4
+

∂g

∂x5
+

∂g

∂x6

)
= 0,

(9)

where a1, a2, a3 ∈ R are such that (a1−a2)2+(a1−a3)2 ̸=

0. Then g ≡ 0.

Lemma 5. Let g = g(x4, x5, x6) and h2 = h2(x4 −

x5, x4 − x6) be homogeneous polynomials of respective

degrees n − 2 and n such that

2(x4−x5+x6)g+
k − 1

4
Λ

(
∂g

∂x4
+

∂g

∂x5
+

∂g

∂x6

)
+

∂h2

∂x5
= 0.

(10)

Then h2 = h2(x4 − x6) and g ≡ 0.
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III. PROOF OF STATEMENT (A) OF

THEOREM 2

It is clear that system (5) has the first integrals x4 −

x5 and x4−x6. We shall prove in this section that under

the restriction x4 +x5 −2x6 = 0 system (5) has only one

independent first integral and it is x4 − x5.

Suppose that system (5) has a homogeneous poly-

nomial first integral h of degree n. According to

Lemma 3 we can write h = h1(x2, x3, x4, x5, x6) +

xj
1g1(x1, x2, x3, x4, x5, x6), with x1 - g1 and j ∈ N. Sup-

pose that g1 ̸≡ 0. System (5) on x1 = 0 writes

ẋ2 =x2(x4 − x5 + x6),

ẋ3 =x3(x4 + x5 − x6)

ẋ4 =
k − 1

4
Λ,

ẋ5 =
k − 1

4
Λ,

ẋ6 =
k − 1

4
Λ.

(11)

Since h is a first integral of system (5), we have that h1

is a first integral of system (11). System (11) admits the

two polynomial first integrals x4 − x5 and x4 − x6 and

the two non-polynomial first integrals

x
3
2
(k−1)

2 Λ

(
x4 + x5 + x6 − 2

√
∆

x4 + x5 + x6 + 2
√

∆

)x4−2x5+x6√
∆

and

x
3
2
(k−1)

3 Λ

(
x4 + x5 + x6 − 2

√
∆

x4 + x5 + x6 + 2
√

∆

)x4+x5−2x6√
∆

,

where

∆ = x2
4 + x2

5 + x2
6 − x4x5 − x4x6 − x5x6. (12)

As these four first integrals of system (11) are indepen-

dent and h1 is a polynomial first integral of (11), we

get, taking into account the equality x4 + x5 − 2x6 = 0,

that h1 = C1(x4 − x5)n, where C1 ∈ R. Now since h

and x4 −x5 are first integrals of system (5) we have that

xj
1g1 is also a first integral of system (5). Therefore

j(−x4 + x5 + x6)g1 + x1(−x4 + x5 + x6)
∂g1

∂x1

+ x2(x4 − x5 + x6)
∂g1

∂x2
+ x3(x4 + x5 − x6)

∂g1

∂x3

+

(
x1x2 +

k − 1

4
Λ

)(
∂g1

∂x4
+

∂g1

∂x5
+

∂g1

∂x6

)
= 0.

Let ḡ1 = g1|x1=0 ̸≡ 0. On x1 = 0 we have

j(−x4 + x5 + x6)ḡ1 + x2(x4 − x5 + x6)
∂ḡ1

∂x2

+ x3(x4 + x5 − x6)
∂ḡ1

∂x3

+
k − 1

4
Λ

(
∂ḡ1

∂x4
+

∂ḡ1

∂x5
+

∂ḡ1

∂x6

)
= 0.

Write ḡ1 = xl
2g2, with l ∈ N ∪ {0}, x2 - g2 and g2 ̸≡ 0.

Then

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)]g2

+ x2(x4 − x5 + x6)
∂g2

∂x2
+ x3(x4 + x5 − x6)

∂g2

∂x3

+
k − 1

4
Λ

(
∂g2

∂x4
+

∂g2

∂x5
+

∂g2

∂x6

)
= 0.

Set ḡ2 = g2|x2=0 ̸≡ 0. Then on x2 = 0 we have

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)]ḡ2

+ x3(x4 + x5 − x6)
∂ḡ2

∂x3

+
k − 1

4
Λ

(
∂ḡ2

∂x4
+

∂ḡ2

∂x5
+

∂ḡ2

∂x6

)
= 0.

Now let ḡ2 = xm
3 g3, with m ∈ N∪{0}, x3 - g3 and g3 ̸≡ 0.

We have

[j(−x4 + x5 + x6) + l(x4 − x5 + x6) + m(x4 + x5 − x6)]g3

+ x3(x4 + x5 − x6)
∂g3

∂x3

+
k − 1

4
Λ

(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)
= 0.

Let ḡ3 = g3|x3=0 ̸≡ 0. On x3 = 0 we obtain

[j(−x4 + x5 + x6) + l(x4 − x5 + x6) + m(x4 + x5 − x6)]ḡ3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.

We are under the hypotheses of Lemma 4, hence we have

ḡ3 ≡ 0, which is in contradiction with the assumptions.

Therefore h = C1(x4 − x5)n and the proof follows.
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IV. PROOF OF STATEMENT (B) OF

THEOREM 2

We study in this section the analytic integrability

of Bianchi model IV. We consider system (7). Let h =

h(x1, . . . , x6) be a homogeneous polynomial first integral

of degree n of system (7). Using Lemma 3 we can write

h = h2(x1, x3, . . . , x6)+xl
2g2(x1, . . . , x6), with l ∈ N and

h2 and g2 homogeneous polynomials such that x2 - g2.

Assume that g2 ̸≡ 0. On x2 = 0 system (7) becomes,

after canceling a common factor x1, doing a change in

the independent variable,

ẋ1 =x1(−x4 + x5 + x6),

ẋ3 =x3(x4 + x5 − x6),

ẋ4 =
x2

1

4
+

k − 1

4

(
x2

1

4
+ Λ

)
,

ẋ5 =
k − 1

4

(
x2

1

4
+ Λ

)
,

ẋ6 =
k − 1

4

(
x2

1

4
+ Λ

)
.

(13)

We notice that h2 is a first integral of system (13). We

write h2 = h3(x3, . . . , x6) + xj
1g3(x1, x3, . . . , x6), with

j ∈ N and h3 and g3 homogeneous polynomials such

that x1 - g3. Assume that g3 ̸≡ 0. System (13) on x1 = 0

writes

ẋ3 = x3(x4 + x5 − x6),

ẋ4 =
k − 1

4
Λ,

ẋ5 =
k − 1

4
Λ,

ẋ6 =
k − 1

4
Λ.

(14)

Straightforward computations show that system (14)

has the three independent first integrals x4 −x5, x4 −x6

and

x
3
2
(k−1)

3 Λ

(
x4 + x5 + x6 − 2

√
∆

x4 + x5 + x6 + 2
√

∆

)x4+x5−2x6√
∆

,

where ∆ is given by relation (12). As h3 is a poly-

nomial first integral of system (14), we have h3 =

h3(x4 − x5, x5 − x6). The following lemma shows that

indeed h = h3(x5 − x6) + xl
2g2(x1, . . . , x6).

Lemma 6. We have that h3 = h3(x5 − x6) and g3 ≡ 0.

Proof. As h2 = h3 + xj
1g3 is a first integral of system

(13), we have

xj
1

[
j(−x4 + x5 + x6)g3 + x1(−x4 + x5 + x6)

∂g3

∂x1

+ x3(x4 + x5 − x6)
∂g3

∂x3
+

x2
1

4

∂g3

∂x4

+
k − 1

4

(
x2

1

4
+ Λ

)(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)]
+

x2
1

4

∂h3

∂x4
= 0.

(15)

We distinguish some cases depending on the value of j.

If j = 1 then equation (15) becomes

(−x4 + x5 + x6)g3 + x1(−x4 + x5 + x6)
∂g3

∂x1

+ x3(x4 + x5 − x6)
∂g3

∂x3
+

x2
1

4

∂g3

∂x4

+
k − 1

4

(
x2

1

4
+ Λ

)(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)
+

x1

4

∂h3

∂x4
= 0.

Let ḡ3 = g3|x1=0 ̸≡ 0. On x1 = 0 we have

(−x4 + x5 + x6)ḡ3 + x3(x4 + x5 − x6)
∂ḡ3

∂x3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.

Write ḡ3 = xm
3 g4 ̸≡ 0, with m ∈ N ∪ {0} and x3 - g4.

Then,

[(−x4 + x5 + x6) + m(x4 + x5 − x6)]g4

+ x3(x4 + x5 − x6)
∂g4

∂x3

+
k − 1

4
Λ

(
∂g4

∂x4
+

∂g4

∂x5
+

∂g4

∂x6

)
= 0.

Let ḡ4 = g4|x3=0 ̸≡ 0. On x3 = 0 we have

[(−x4 + x5 + x6) + m(x4 + x5 − x6)]ḡ4

+
k − 1

4
Λ

(
∂ḡ4

∂x4
+

∂ḡ4

∂x5
+

∂ḡ4

∂x6

)
= 0.
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Applying Lemma 4 we obtain ḡ4 ≡ 0, which is a contra-

diction. Hence g3 ≡ 0. Back to equation (15) we have

∂h3/∂x4 ≡ 0, which means that h3 = h3(x5 −x6). Then

the lemma follows in the case j = 1.

If j > 2, then from equation (15) we have that

x1 |(∂h3/∂x4) and thus ∂h3/∂x4 ≡ 0. Now we can pro-

ceed as in the case j = 1 to obtain the equation

[j(−x4 + x5 + x6) + m(x4 + x5 − x6)]ḡ4

+
k − 1

4
Λ

(
∂ḡ4

∂x4
+

∂ḡ4

∂x5
+

∂ḡ4

∂x6

)
= 0.

Applying Lemma 4 we arrive to a contradiction and

hence g3 ≡ 0. The lemma follows in the case j > 2.

If j = 2 then equation (15) writes

2(−x4 + x5 + x6)g3 + x1(−x4 + x5 + x6)
∂g3

∂x1

+ x3(x4 + x5 − x6)
∂g3

∂x3
+

x2
1

4

∂g3

∂x4

+
k − 1

4

(
x2

1

4
+ Λ

)(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)
+

1

4

∂h3

∂x4
= 0.

Let ḡ3 = g3|x1=0 ̸≡ 0. On x1 = 0 we have

2(−x4 + x5 + x6)ḡ3 + x3(x4 + x5 − x6)
∂ḡ3

∂x3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
+

1

4

∂h3

∂x4
= 0.

Write ḡ3 = xm
3 g4 ̸≡ 0, with m ∈ N ∪ {0} and x3 - g4.

Then we get

xm
3 [[2(−x4 + x5 + x6) + m(x4 + x5 − x6)]g4

+ x3(x4 + x5 − x6)
∂g4

∂x3

+
k − 1

4
Λ

(
∂g4

∂x4
+

∂g4

∂x5
+

∂g4

∂x6

)]
+

1

4

∂h3

∂x4
= 0.

If m > 0 then x3 |(∂h3/∂x4) . Hence ∂h3/∂x4 ≡ 0

and h3 = h3(x5 − x6). Let ḡ4 = g4|x3=0 ̸≡ 0. On x3 = 0

we obtain

[2(−x4 + x5 + x6) + m(x4 + x5 − x6)]ḡ4

+
k − 1

4
Λ

(
∂ḡ4

∂x4
+

∂ḡ4

∂x5
+

∂ḡ4

∂x6

)
= 0.

Applying Lemma 4 we get a contradiction, hence g3 ≡ 0.

If m = 0, let ḡ4 = g4|x3=0 ̸≡ 0. On x3 = 0 we obtain

2(−x4+x5+x6)ḡ4+
k − 1

4
Λ

(
∂ḡ4

∂x4
+

∂ḡ4

∂x5
+

∂ḡ4

∂x6

)
+

1

4

∂h3

∂x4
= 0.

We can apply Lemma 5, permuting the variables x4 by

x5, and we get that h3 = h3(x5 − x6) so ∂h3/∂x4 ≡ 0.

Now applying Lemma 4 we obtain ḡ4 ≡ 0. Hence the

lemma follows in the case j = 2.

After Lemma 6 we have that h = h3(x5 − x6) +

xl
2g2(x1, . . . , x6), with l ∈ N and x2 - g2. We write

h3(x5 − x6) = C3(x5 − x6)n, with C3 ∈ R. We recall

that h is a first integral of system (7). Thus it satisfies

the equation

xl
2

[
lx1(x4 − x5 + x6)g2 + x2

1(−x4 + x5 + x6)
∂g2

∂x1

+ x1x2(x4 − x5 + x6)
∂g2

∂x2

+ x1x3(x4 + x5 − x6)
∂g2

∂x3

+
k − 1

4
R

(
∂g2

∂x4
+

∂g2

∂x5
+

∂g2

∂x6

)

+

(
x3

1

4
+ x2

1x2 − 2x2(x4 + x5 − 2x6)2
)

∂g2

∂x4

+
(
x2

1x2 + 2x2(x4 + x5 − 2x6)2
) ∂g2

∂x5

+x2
1x2

∂g2

∂x6

]
+ 2C3nx2(x4 + x5 − 2x6)2(x5 − x6)n−1 = 0.

(16)

The following lemma ends the proof of statement (b)

of Theorem 2, as it shows that h ≡ 0.

Lemma 7. We have that h3 ≡ 0 and g2 ≡ 0.

Proof. Suppose that g2 ̸≡ 0. We distinguish two cases

depending on the value of l. If l > 1 then from equation

(16) we must take C3 = 0 and therefore h3 ≡ 0. Let

ḡ2 = g2|x2=0 ̸≡ 0. After simplifying xl
2, equation (16) on
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x2 = 0 becomes, after cancelling a common factor x1,

l(x4 − x5 + x6)ḡ2 + x1(−x4 + x5 + x6)
∂ḡ2

∂x1

+ x3(x4 + x5 − x6)
∂ḡ2

∂x3
+

x2
1

4

∂ḡ2

∂x4

+
k − 1

4

(
x2

1

4
+ Λ

)(
∂ḡ2

∂x4
+

∂ḡ2

∂x5
+

∂ḡ2

∂x6

)
= 0.

Write ḡ2 = xj
1g3 ̸≡ 0, with j ∈ N ∪ {0} and x1 - g3. We

get

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)]g3

+ x1(−x4 + x5 + x6)
∂g3

∂x1

+ x3(x4 + x5 − x6)
∂g3

∂x3
+

x2
1

4

∂g3

∂x4

+
k − 1

4

(
x2

1

4
+ Λ

)(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)
= 0.

Let ḡ3 = g3|x1=0 ̸≡ 0. Then, on x1 = 0 we have

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)]ḡ3

+ x3(x4 + x5 − x6)
∂ḡ3

∂x3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.

Now write ḡ3 = xm
3 g4 ̸≡ 0, with m ∈ N∪{0} and x3 - g4.

We get

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)

+ m(x4 + x5 − x6)]g4 + x3(x4 + x5 − x6)
∂g4

∂x3

+
k − 1

4
Λ

(
∂g4

∂x4
+

∂g4

∂x5
+

∂g4

∂x6

)
= 0.

Let ḡ4 = g4|x3=0 ̸≡ 0. Then, on x3 = 0 we have

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)

+ m(x4 + x5 − x6)]ḡ4

+
k − 1

4
Λ

(
∂ḡ4

∂x4
+

∂ḡ4

∂x5
+

∂ḡ4

∂x6

)
= 0.

Applying Lemma 4 we obtain ḡ4 ≡ 0, a contradiction.

Hence g2 ≡ 0 and the lemma follows in the case l > 1.

If l = 1 then we can cancel a common factor x2 in

equation (16). Let ḡ2 = g2|x2=0 ̸≡ 0. On x2 = 0 equa-

tion (16) becomes

x1

[
(x4 − x5 + x6)ḡ2 + x1(−x4 + x5 + x6)

∂ḡ2

∂x1

+ x3(x4 + x5 − x6)
∂ḡ2

∂x3
+

x2
1

4

∂ḡ2

∂x4

+
k − 1

4

(
x2

1

4
+ Λ

)(
∂ḡ2

∂x4
+

∂ḡ2

∂x5
+

∂ḡ2

∂x6

)]

+ 2C3n(x4 + x5 − 2x6)2(x5 − x6)n−1 = 0.

Clearly we must take C3 = 0, and hence h3 ≡ 0.

Write now ḡ2 = xj
1g3 ̸≡ 0, with j ∈ N ∪ {0} and x1 - g3.

Then the above equation becomes

[j(−x4 + x5 + x6) + (x4 − x5 + x6)]g3

+ x1(−x4 + x5 + x6)
∂g3

∂x1

+
x2

1

4

∂g3

∂x4
+ x3(x4 + x5 − x6)

∂g3

∂x3

+
k − 1

4

(
x2

1

4
+ Λ

)(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)
= 0.

(17)

Let ḡ3 = g3|x1=0 ̸≡ 0. Then, on x1 = 0 we have

[j(−x4 + x5 + x6) + (x4 − x5 + x6)]ḡ3

+ x3(x4 + x5 − x6)
∂ḡ3

∂x3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.

Now write ḡ3 = xm
3 g4 ̸≡ 0, with m ∈ N ∪ {0} and

x3 - g4. We get

[j(−x4 + x5 + x6) + (x4 − x5 + x6) + m(x4 + x5 − x6)]g4

+ x3(x4 + x5 − x6)
∂g4

∂x3

+
k − 1

4
Λ

(
∂g4

∂x4
+

∂g4

∂x5
+

∂g4

∂x6

)
= 0.

Let ḡ4 = g4|x3=0 ̸≡ 0. Then, on x3 = 0 we have

[j(−x4 + x5 + x6) + (x4 − x5 + x6) + m(x4 + x5 − x6)]ḡ4

+
k − 1

4
Λ

(
∂ḡ4

∂x4
+

∂ḡ4

∂x5
+

∂ḡ4

∂x6

)
= 0.

Applying Lemma 4 we obtain ḡ4 ≡ 0, a contradiction.

Hence g2 ≡ 0 and the lemma follows also in the case

l = 1.
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V. PROOF OF STATEMENT (C) OF

THEOREM 2

We study in this section the analytic integrability of

Bianchi models III, VI and VII. We consider system (8).

Let h = h(x1, . . . , x6) be a homogeneous polynomial first

integral of degree n of system (8). Using Lemma 3 we

can write h = h1(x2, . . . , x6) + xj
1g1(x1, . . . , x6), with

j ∈ N and h1 and g1 homogeneous polynomials such

that x1 - g1. Assume that g1 ̸≡ 0. On x1 = 0 system (8)

becomes, after canceling a common factor −n2x
3
2,

ẋ2 =x2(x4 − x5 + x6),

ẋ3 =x3(x4 + x5 − x6),

ẋ4 =
k − 1

4

(
x2

2

4
+ Λ

)
,

ẋ5 =
x2

2

4
+

k − 1

4

(
x2

2

4
+ Λ

)
,

ẋ6 =
k − 1

4

(
x2

2

4
+ Λ

)
.

(18)

We notice that h1 is a first integral of system (18).

From Lemma 3 we write h1 = h2(x3, . . . , x6) +

xl
2g2(x2, . . . , x6), with l ∈ N and h2 and g2 homogeneous

polynomials such that x2 - g2. Assume that g2 ̸≡ 0. Sys-

tem (18) on x2 = 0 writes

ẋ3 = x3(x4 + x5 − x6),

ẋ4 =
k − 1

4
Λ,

ẋ5 =
k − 1

4
Λ,

ẋ6 =
k − 1

4
Λ.

(19)

Straightforward computations show that system (19)

has the three independent first integrals x4 −x5, x4 −x6

and

x
3
2
(k−1)

3 Λ

(
x4 + x5 + x6 − 2

√
∆

x4 + x5 + x6 + 2
√

∆

)x4+x5−2x6√
∆

.

As h2 is a polynomial first integral of system (19), we

have h2 = h2(x4 − x5, x4 − x6). The following lemma

shows that indeed h = h2(x4 − x6) + xj
1g1(x1, . . . , x6).

Lemma 8. We have that h2 = h2(x4 − x6) and g2 ≡ 0.

Proof. As h1 = h2 + xl
2g2 is a first integral of system

(18), we have

xl
2

[
l(x4 − x5 + x6)g2 + x2(x4 − x5 + x6)

∂g2

∂x2

+ x3(x4 + x5 − x6)
∂g2

∂x3
+

x2
2

4

∂g2

∂x5

+
k − 1

4

(
x2

2

4
+ Λ

)(
∂g2

∂x4
+

∂g2

∂x5
+

∂g2

∂x6

)]
+

x2
2

4

∂h2

∂x5
= 0.

(20)

We distinguish the following cases depending on the

value of l.

If l = 1 then equation (20) becomes

(x4 − x5 + x6)g2 + x2(x4 − x5 + x6)
∂g2

∂x2

+ x3(x4 + x5 − x6)
∂g2

∂x3
+

x2
2

4

∂g2

∂x5

+
k − 1

4

(
x2

2

4
+ Λ

)(
∂g2

∂x4
+

∂g2

∂x5
+

∂g2

∂x6

)
+

x2

4

∂h2

∂x5
= 0.

Let ḡ2 = g2|x2=0 ̸≡ 0. On x2 = 0 we have

(x4 − x5 + x6)ḡ2 + x3(x4 + x5 − x6)
∂ḡ2

∂x3

+
k − 1

4
Λ

(
∂ḡ2

∂x4
+

∂ḡ2

∂x5
+

∂ḡ2

∂x6

)
= 0.

Write ḡ2 = xm
3 g3 ̸≡ 0, with m ∈ N ∪ {0} and x3 - g3.

Then

[(x4 − x5 + x6) + m(x4 + x5 − x6)]g3

+ x3(x4 + x5 − x6)
∂g3

∂x3

+
k − 1

4
Λ

(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)
= 0.

Let ḡ3 = g3|x3=0 ̸≡ 0. On x3 = 0 we have

[(x4 − x5 + x6) + m(x4 + x5 − x6)]ḡ3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.
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Applying Lemma 4 we obtain ḡ3 ≡ 0, which is a contra-

diction. Hence g2 ≡ 0. Back to equation (20) we have

∂h2/∂x5 ≡ 0, which means that h2 = h2(x4 −x6). Then

the lemma follows in the case l = 1.

If l > 2, then from equation (20) we have that

x2 |(∂h2/∂x5) and thus ∂h2/∂x5 ≡ 0. Therefore h2 =

h2(x4 −x6). Now we can proceed as in the case l = 1 to

obtain the equation

[l(x4 − x5 + x6) + m(x4 + x5 − x6)]ḡ3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.

Applying Lemma 4 we arrive to a contradiction and

hence g2 ≡ 0. The lemma follows in the case l > 2.

If l = 2 then equation (20) writes

2(x4 − x5 + x6)g2 + x2(x4 − x5 + x6)
∂g2

∂x2

+ x3(x4 + x5 − x6)
∂g2

∂x3
+

x2
2

4

∂g2

∂x5

+
k − 1

4

(
x2

2

4
+ Λ

)(
∂g2

∂x4
+

∂g2

∂x5
+

∂g2

∂x6

)
+

1

4

∂h2

∂x5
= 0.

Let ḡ2 = g2|x2=0 ̸≡ 0. On x2 = 0 we have

2(x4 − x5 + x6)ḡ2 + x3(x4 + x5 − x6)
∂ḡ2

∂x3

+
k − 1

4
Λ

(
∂ḡ2

∂x4
+

∂ḡ2

∂x5
+

∂ḡ2

∂x6

)
+

1

4

∂h2

∂x5
= 0.

Write ḡ2 = xm
3 g3 ̸≡ 0, with m ∈ N ∪ {0} and x3 - g3.

Then we get

xm
3 [(2(x4 − x5 + x6) + m(x4 + x5 − x6))g3

+ x3(x4 + x5 − x6)
∂g3

∂x3

+
k − 1

4
Λ

(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)]
+

1

4

∂h2

∂x5
= 0.

If m > 0 then x3 |(∂h2/∂x5) . Hence ∂h2/∂x5 ≡ 0

and h2 = h2(x4 − x6). Let ḡ3 = g3|x3=0 ̸≡ 0. On x3 = 0

we obtain

[2(x4 − x5 + x6) + m(x4 + x5 − x6)]ḡ3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.

Applying Lemma 4 we get a contradiction; hence g2 ≡ 0.

If m = 0, let ḡ3 = g3|x3=0 ̸≡ 0. On x3 = 0 we obtain

2(x4 − x5 + x6)ḡ3 +
1

4

∂h2

∂x5

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.

We can apply Lemma 5 and we get ∂h2
∂x5

≡ 0 and ḡ3 ≡ 0,

hence the lemma follows in the case l = 2.

After Lemma 8 we have that h = h2(x4 − x6) +

xj
1g1(x1, . . . , x6), with j ∈ N and x1 - g1. We recall

that h is a first integral of system (8). Thus it satisfies

the equation

xj
1

[
jN3(−x4 + x5 + x6)g1 + x1N

3(−x4 + x5 + x6)
∂g1

∂x1

+ x2N
3(x4 − x5 + x6)

∂g1

∂x2
+ x3N

3(x4 + x5 − x6)
∂g1

∂x3

+
k − 1

4
NS

(
∂g1

∂x4
+

∂g1

∂x5
+

∂g1

∂x6

)

+

(
1

4
x1N

4 + a2x1x2N
3

−2a2x1x2(x1 + n2x2)(x4 + x5 − 2x6)2
) ∂g1

∂x4

+

(
1

4
N5 − 1

4
x1N

4 + a2x1x2N
3

+2a2x1x2(x1 + n2x2)(x4 + x5 − 2x6)2
) ∂g1

∂x5

+a2x1x2N
3 ∂g1

∂x6

]
+ a2x1x2N

3 ∂h2

∂x6

+

(
1

4
x1N

4 + a2x1x2N
3

−2a2x1x2(x1 + n2x2)(x4 + x5 − 2x6)2
) ∂h2

∂x4
= 0.

(21)

The following lemma ends the proof of statement (c)

of Theorem 2, as it shows that h ≡ 0.

Lemma 9. We have that h2 ≡ 0 and g1 ≡ 0.

Proof. Write h2(x4 − x6) = C2(x4 − x6)n, with C2 ∈

R. Suppose that g1 ̸≡ 0. We distinguish two cases

10



depending on the value of j. If j > 1 then from equation

(21) we have that x1 divides

C2n

(
x4

2

4
− 2a2n2x

2
2(x4 + x5 − 2x6)2

)
.

Hence we must take C2 = 0 and therefore h2 ≡ 0. Let

ḡ1 = g1|x1=0 ̸≡ 0. Equation (21) on x1 = 0 becomes,

after cancelling a common factor −n2x
3
2,

j(−x4 + x5 + x6)ḡ1 + x2(x4 − x5 + x6)
∂ḡ1

∂x2

+ x3(x4 + x5 − x6)
∂ḡ1

∂x3
+

x2
2

4

∂ḡ1

∂x5

+
k − 1

4

(
x2

2

4
+ Λ

)(
∂ḡ1

∂x4
+

∂ḡ1

∂x5
+

∂ḡ1

∂x6

)
= 0.

Write ḡ1 = xl
2g2 ̸≡ 0, with l ∈ N ∪ {0} and x2 - g2. We

get

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)]g2

+ x2(x4 − x5 + x6)
∂g2

∂x2

+ x3(x4 + x5 − x6)
∂g2

∂x3
+

x2
2

4

∂g2

∂x5

+
k − 1

4

(
x2

2

4
+ Λ

)(
∂g2

∂x4
+

∂g2

∂x5
+

∂g2

∂x6

)
= 0.

Let ḡ2 = g2|x2=0 ̸≡ 0. Then, on x2 = 0 we have

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)]ḡ2

+ x3(x4 + x5 − x6)
∂ḡ2

∂x3

+
k − 1

4
Λ

(
∂ḡ2

∂x4
+

∂ḡ2

∂x5
+

∂ḡ2

∂x6

)
= 0.

Now write ḡ2 = xm
3 g3 ̸≡ 0, with m ∈ N∪{0} and x3 - g3.

We get

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)

+ m(x4 + x5 − x6)]g3 + x3(x4 + x5 − x6)
∂g3

∂x3

+
k − 1

4
Λ

(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)
= 0.

Let ḡ3 = g3|x3=0 ̸≡ 0. Then, on x3 = 0 we have

[j(−x4 + x5 + x6) + l(x4 − x5 + x6)

+ m(x4 + x5 − x6)]ḡ3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.

Applying Lemma 4 we obtain ḡ3 ≡ 0, a contradiction.

Hence g1 ≡ 0 and the lemma follows in the case j > 1.

If j = 1 then we can cancel a common factor x1

in equation (21). Let ḡ1 = g1|x1=0 ̸≡ 0. On x1 = 0

equation (21) becomes, after cancelling a common factor

−n2x
2
2,

x2

[
(−x4 + x5 + x6)ḡ1 + x2(x4 − x5 + x6)

∂ḡ1

∂x2

+ x3(x4 + x5 − x6)
∂ḡ1

∂x3
+

x2
2

4

∂ḡ1

∂x5

+
k − 1

4

(
x2

2

4
+ Λ

)(
∂ḡ1

∂x4
+

∂ḡ1

∂x5
+

∂ḡ1

∂x6

)]

+ C2n
(

2a2(x4 + x5 − 2x6)2 − n2

4
x2

2

)
(x4 − x6)n−1 = 0.

Clearly we must take C2 = 0, and hence h2 ≡ 0.

Write now ḡ1 = xl
2g2 ̸≡ 0, with l ∈ N ∪ {0} and x2 - g2.

Then the above equation becomes

[(−x4 + x5 + x6) + l(x4 − x5 + x6)]g2

+ x2(x4 − x5 + x6)
∂g2

∂x2

+ x3(x4 + x5 − x6)
∂g2

∂x3
+

x2
2

4

∂g2

∂x5

+
k − 1

4

(
x2

2

4
+ Λ

)(
∂g2

∂x4
+

∂g2

∂x5
+

∂g2

∂x6

)
= 0.

(22)

Let ḡ2 = g2|x2=0 ̸≡ 0. Then, on x2 = 0 we have

[(−x4 + x5 + x6) + l(x4 − x5 + x6)]ḡ2

+ x3(x4 + x5 − x6)
∂ḡ2

∂x3

+
k − 1

4
Λ

(
∂ḡ2

∂x4
+

∂ḡ2

∂x5
+

∂ḡ2

∂x6

)
= 0.

Now write ḡ2 = xm
3 g3 ̸≡ 0, with m ∈ N ∪ {0} and

x3 - g3. We get

[(−x4 + x5 + x6) + l(x4 − x5 + x6)

+ m(x4 + x5 − x6)]g3 + x3(x4 + x5 − x6)
∂g3

∂x3

+
k − 1

4
Λ

(
∂g3

∂x4
+

∂g3

∂x5
+

∂g3

∂x6

)
= 0.

Let ḡ3 = g3|x3=0 ̸≡ 0. Then, on x3 = 0 we have

[(−x4 + x5 + x6) + l(x4 − x5 + x6) + m(x4 + x5 − x6)]ḡ3

+
k − 1

4
Λ

(
∂ḡ3

∂x4
+

∂ḡ3

∂x5
+

∂ḡ3

∂x6

)
= 0.

11



Applying Lemma 4 we obtain ḡ3 ≡ 0, a contradiction.

Hence g1 ≡ 0 and the lemma follows in the case j =

1.
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