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Abstract. We characterize all the values of the parameters of the Lü
system, for which it admits a Darboux first integral.

1. Introduction and statement of the main results

The following real differential system

ẋ = a(y − x),

ẏ = cy − xz,

ż = −bz + xy,

(1)

where a, b, c ∈ R are parameters is known as the Lü system [13]. It con-
nects the Lorenz system [11, 17] with the Chen system [18] and represents
a transition from one to the another (see [13] for details).

A number of facts related to the local analysis of system (1) are known.
For results on Hopf bifurcation see [19]; degenerate Hopf bifurcation have
been considered in [16, 14]; see also [15] for center conditions on the local
center manifold. Global dynamics of the Lü system have also been recently
considered in [11] and [10], where the authors studied the existence of in-
variant algebraic surfaces and determined the dynamics on it, including the
infinity.

In this work we further consider the global dynamics of system (1) by
studying the integrability of system (1). To be more precise, we characterize
all the values of the parameters a, b, c ∈ R, for which the Lü system admits
a Darboux first integral (see Theorem 3), i.e. a function of the form (2).
In particular we identify, the parameter values of the system for which it
admits a rational first integral (see Theorem 2). Now, we proceed to present
more detailed statements of our main results. See section 2 for definitions
of concepts used in the rest of the introduction. For a general introduction
to the Darboux theory of integrability see [5] and [6].

One of the most basic elements for construction of the Darboux first
integral is the so-called Darboux polynomial, which in the context of the Lü
system have been studied in [12]. We note that paper [12] is not completely
correct because the author misses a Darboux polynomial of system (1) with
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nonzero cofactor (see statement (c) of Theorem 1). However the correct
statement follows by looking carefully step by step at the proof of [12].

Theorem 1. When a 6= 0, then all the irreducible Darboux polynomials in
R[x, y, z] for the Lü system with non–zero cofactor are the following ones:

(a) x2 − 2az with cofactor −2a if b = 2a and c 6= −2a.
(b) y2 + z2 with cofactor 2c if b = −c and c 6= −2a.
(c) x2−2az, y2+z2,

∑n
i=0 ai(x

2−2az)2i(y2+z2)n−i, n ≥ 1, ai ∈ R with
cofactor −2a, −4a and −4an, respectively, if b = −c and c = −2a.

(d) x4 + 4
3cx

2z− 4
9c

2y2 − 8
9c

2xy with cofactor 4
3c if a = −c/3 and b = 0.

(e) x4 + 4cx2z − 4c2y2 + 8c2xy + 16c3z with cofactor 4c if c = −a and
b = 4a.

It was proved by Llibre and Valls in [7] that when a = 0 system (1) is
completely integrable. Therefore, in this paper we will only consider the Lü
system with a 6= 0.

The first result of this paper is the following.

Theorem 2. When a 6= 0 the Lü system has a rational first integral if and
only if either b = c = 0, or b = −c = 2a. In the first case the first integral is
a rational function in the variable y2+z2, and in the second the first integral
is a rational function in the variable (x2 − 2az)2/(y2 + z2).

We note that H1 = y2 + z2 and H2 = (x2 − 2az)2/(y2 + z2) are first
integrals of Darboux type. The proof of Theorem 2 is given in section 2.

The next theorem is the main result of this paper, and it shows that
the unique first integrals of Darboux type for the Lü systems are Darboux
functions of H1 and H2.

Theorem 3. The unique first integrals of Darboux type for the Lü system
with a 6= 0 are the following:

(a) Any function of Darboux type in the variable y2 + z2, if b = c = 0.
(b) Any function of Darboux type in the variable (x2 − 2az)2/(y2 + z2)

if b = −c = 2a.

We divided the proof of Theorem 3 into three different propositions mainly
due to the fact that the techniques used in the proof of the three propositions
are of different nature. In the next two propositions we identify two different
sets of values of parameters a, b, c ∈ R, for which the Lü system admits a
Darboux first integral.

Proposition 4. The unique first integrals of Darboux type for the Lü system
with a 6= 0 and b = c = 0 are functions of Darboux type in the variable
y2 + z2.

The proof of Proposition 4 is given in section 3.

Proposition 5. The unique first integrals of Darboux type for the Lü system
with a 6= 0 and b = −c = 2a are functions of Darboux type in the variable
(x2 − 2az)2/(y2 + z2).
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The proof of Proposition 5 is given in section 4.

Finally the following proposition shows that a = b = 0 or b = −c = 2a
are the only values of parameters of the Lü system, for which it admits a
Darboux first integral and can be regarded as a non-integrability result.

Proposition 6. The Lü system with a 6= 0 and (b2+c2)[(b+c)2+(c+2a)2] 6=
0 has no first integrals of Darboux type.

The proof of Proposition 6 is given in section 5. In section 2 we intro-
duce some auxiliary results that will be used in the proofs of the above
propositions.

2. Darboux Theory of Integrability

The vector field associated to (1) is

X = a(y − x)
∂

∂x
+ (cy − xz)

∂

∂y
+ (−bz + xy)

∂

∂z
.

Let U be an open subset in R3 such that R3 \U has zero Lebesgue measure.
We say that a non-constant real function H = H(x, y, z) : R3 → R, is a first
integral if H(x(t), y(t), z(t)) is constant on all solutions (x(t), y(t), z(t)) of
X contained in U , i.e. XH|U = 0. The existence of a first integral for a

differential system in R3 allows to reduce its study in one dimension. This
is the main reason to look for first integrals.

Two functions f1, f2 : R3 → R are said to be independent if their gradients
are linearly independent vectors for all (x, y, z) ∈ R3 except perhaps for a
set of zero Lebesgue measure. If the vector field X has two independent first
integrals H1 and H2, we say that it is completely integrable. In this case, the
orbits of X are contained in the curves {H1(x, y, z) = h1} ∩ {H2(x, y, z) =
h2}, where h1, h2 vary in R.

One of the best tools to look for first integrals is the Darboux theory of
integrability. Now we shall introduce its basic notions. Let C[x, y, z] be the
ring of polynomials in the variables x, y, z with coefficients in C. We say
that f ∈ C[x, y, z] is a Darboux polynomial of the vector field X if there
exists a polynomial K ∈ C[x, y, z] such that Xf = Kf . The polynomial
K = K(x, y, z) is called the cofactor of f . It is easy to see that since
system (1) is quadratic, the cofactor of a Darboux polynomial has degree
at most 1. Note that we look for complex Darboux polynomials in real
differential systems. The reason is that frequently the complex structure
forces the existence of real first integrals.

An exponential factor F (x, y, z) of the field X is an exponential function
of the form exp(g/h) with g and h coprime polynomials in C[x, y, z] and sat-
isfying XF = LF for some L ∈ C[x, y, z] with degree one. The exponential
factors appear when some Darboux polynomial has multiplicity larger than
one, for more details see [3] and [8].
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A first integral of system (1) is called of Darboux type if it is a first integral
of the form

(2) fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q

where f1, . . . , fp are Darboux polynomials and F1, . . . , Fq are exponential
factors.

In the proof of Theorem 3 we will use the following well known result of
the Darboux theory of integrability, see for instance [5, Chapter 8].

Theorem 7 (Darboux theory of integrability). Suppose that a polynomial
vector field X defined in Rn of degree m admits p Darboux polynomials fi
with cofactors Ki for i = 1, . . . , p, and q exponential factors Fj = exp(gj/hj)
with cofactors Lj for j = 1, . . . , q. If there exist λi, µj ∈ C not all zero such
that

(3)

p∑

i=1

λiKi +

q∑

j=1

µjLj = 0,

then the following real (multivalued) function of Darboux type

fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q ,

substituting fλi
i by |fi|λi if λi ∈ R, is a first integral of the vector field X.

For a proof of the next result see [8, 9].

Proposition 8. The following statements hold.

(a) If eg/h is an exponential factor for the polynomial differential system
(1) and h is not a constant polynomial, then h = 0 is an invariant
algebraic surface.

(b) Eventually eg can be an exponential factor, coming from the multi-
plicity of the infinite invariant plane.

The proof of the next result can be found in [2].

Lemma 9. Let f be a polynomial and f =

s∏

j=1

f
αj

j its decomposition into

irreducible factors in C[x, y, z]. Then f is a Darboux polynomial of system
(1) if and only if all the fj are Darboux polynomials of system (1). Moreover,

if K and Kj are the cofactors of f and fj, then K =
s∑

j=1

αjKj .

We note that in view of Lemma 9 to study the Darboux polynomials of
system (1) it is enough to study the irreducible ones.

3. Proof of Theorem 2 and Proposition 4

In order to prove Theorem 2 we shallneed the next result, which was
proved in [7].
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Theorem 10. When a 6= 0 the Lü system has a polynomial first integral if
and only if b = c = 0 and in this case the first integral is a polynomial in
the variable y2 + z2.

Proof of Theorem 2. We note that having the characterization of all Dar-
boux polynomials (either with zero or with nonzero cofactor) of system (1)
we can characterize easily the rational first integrals, because they can only
be of the form: either a polynomial first integral (i.e. a Darboux polyno-
mial with zero cofactor), or the quotient of two Darboux polynomials with
the same non-zero cofactor. Now the rest of the proof follows easily from
Theorems 1 and 10. �

To prove Proposition 4 we shall use a result due to Llibre and Zhang
[4]. We recall that a generalized rational function is a function which is
the quotient of two analytic functions. In particular rational first integrals
and analytic first integrals are particular cases of generalized rational first
integrals. Clearly a Darboux type function is a generalized rational function.

Theorem 11. Assume that the differential system (1) has p as a singu-
lar point and let λ1, λ2, λ3 be the eigenvalues of the linear part of system
(1) at p. Then the number of functionally independent generalized rational
first integrals of system (1) is at most the dimension of the minimal vector
subspace of R3 containing the set

{
(k1, k2, k3) ∈ Z3 : k1λ1 + k2λ2 + k3λ3 = 0, (k1, k2, k3) 6= (0, 0, 0)

}
.

Proof of Proposition 4. We consider system (1) with a 6= 0 and b = c = 0,
that is

(4) ẋ = a(y − x), ẏ = −xz, ż = xy.

It follows from [7] that this system has a polynomial first integral H1 =
y2 + z2, which obviously is a generalized rational first integral. To conclude
the proof of the proposition we shall show that system (4) has no other first
integrals of Darboux type. To prove this we will use Theorem 11. First
we note that the singular points of system (4) are of the form (0, 0, z) with
z ∈ R. We compute the eigenvalues λ1, λ2, λ3 of the Jacobian matrix of this
system on these singular points and we get

λ1 = 0, λ2 =
1

2
(−a−

√
a(a− 4z)), λ3 =

1

2
(−a+

√
a(a− 4z)).

Therefore k1λ1 + k2λ2 + k3λ3 = 0 is equivalent to

k3(−
√
a+

√
a− 4z)− k2(

√
a+

√
a− 4z) = 0,

or in other words

(5)
k3
k2

=

√
a+

√
a− 4z

−√
a+

√
a− 4z

.

It is clear that the left-hand side of (5) is a rational number (once that
k2, k3 ∈ Z), and that choosing z in a convenient way the right-hand side of
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(5) is irrational. Therefore (5) cannot hold for this convenient choice of z.
Hence for this special singular point (0, 0, z), the dimension of the minimal
vector subspace of R3 containing the set

{
(k1, k2, k3) ∈ Z3 : k1λ1 + k2λ2 + k3λ3 = 0, (k1, k2, k3) 6= (0, 0, 0)

}
.

is clearly one, generated by (k1, 0, 0). Thus it follows from Theorem 11 that
system (4) can only have one generalized rational first integral, which is a
function of H1. This completes the proof of the proposition. �

4. Proof of Proposition 5

We consider system (1) with a 6= 0 and b = −c = 2a, that is

(6) ẋ = a(y − x), ẏ = −2ay − xz, ż = −2az + xy.

First we note that by the rescaling (x, y, z, t) 7→ (X,Y,Z, T ) with

X =
x

a
, Y =

y

a
, Z =

z

a
, T = at,

we get that system (6) becomes

(7) x′ = y − x, y′ = −2y − xz, z′ = −2z + xy,

where now the prime indicates derivative with respect to the new time T
and we have renamed the variables (X,Y,Z) again as (x, y, z). We note that
system (7) has the rational first integral H2 = (x2 − 2z)2/(y2 + z2), which
obviously is a first integral of Darboux type.

We have found the second independent first integral
√

y2 + z2

x2 − 2z

(
1− 2

√
2

A
F

(
arcsin

(
1 + i

2

√
A

y − iz

)
,
B

A

))

which is not of Darboux type, where A = x2 − 2z −
√

x4 − 4zx2 − 4y2,

B = x2 − 2z +
√

x4 − 4zx2 − 4y2 and F (φ,m) is the elliptic integral of
the first kind, see for more details [1]. This completes the proof of the
proposition.

5. Proof of Proposition 6

In this section using the Darboux theory of integrability we prove Propo-
sition 6. We need the following definition.

A polynomial g(x, y, z) is said to be weight homogeneous if there exists
s = (s1, s2, s3) and l ∈ N such that for all µ ∈ R \ {0} we have

g(µs1x, µs2y, µs3z) = µlg(x, y, z),

where N is the set of natural numbers. We shall refer to s as the weight
exponent of g, and to l as the weight degree of g with respect to s.

Proposition 12. For the Lü system with a 6= 0 and (b2+ c2)[(b+ c)2+(c+
2a)2] 6= 0, the unique exponential factors modulo constants is exp(x) with
cofactor a(y − x).
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For proving Proposition 12 we shall use the ideas from the proof of The-
orem 2.1 of [18].

Proof. Let F = exp(g/h) be an exponential factor of the Lü system with
cofactor K, where g, h ∈ C[x, y, z] with (g, h) = 1. Then from the definition
of exponential factor and in view of Proposition 8 we have that either h is
a constant that we can take h = 1, or h is a Darboux polynomial of system
(1).

Case 1. We first assume that F is of the form F = exp(g) with g =
g(x, y, z) ∈ C[x, y, z], and cofactor q = q(x, y, z). So, we have

(8) a(y − x)
∂g

∂x
+ (cy − xz)

∂g

∂y
+ (−bz + xy)

∂g

∂z
= q,

with q ∈ C[x, y, z] of degree at most one, that without loss of generality we
write as

q = q(x, y, z) = l0 + l1x+ l2y + l3z.

In order to simplify the computations we do the rescaling

x = µ−1X, y = µ−2Y, z = µ−2Z, t = µT,

with µ ∈ R \ {0}. Then the Lü system (1) becomes

X ′ = a(Y − µX),

Y ′ = −XZ + µcY,

Z ′ = XY − µbZ,

(9)

where the prime denotes the derivative of the variables with respect to T .

Now we define

(10) G(X,Y,Z) = µlg(µ−1X,µ−2Y, µ−2Z),

where l is the highest weight degree of g with respect to the weight exponents
(1, 2, 2). We write

(11) G(X,Y,Z) =

m∑

i=0

µiGi(X,Y,Z),

where Gi is the weight homogeneous part with weight degree-(l − i) of G,
and l ≥ m. We also define

(12) Q(X,Y,Z) = µ2q(µ−1X,µ−2Y, µ−2Z) = l3Z + l2Y + µl1X + µ2l0.

Equation (8) can be written as

a(Y − µX)
m∑

i=0

µi∂Gi

∂X
+ (−XZ + µcY )

m∑

i=0

µi∂Gi

∂Y

+ (XY − µbZ)

m∑

i=0

µi∂Gi

∂Z
= µl−1(l3Z + l2Y + µl1X + µ2l0).

(13)

We distinguish several subcases.
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Subcase 1.1: l = 1. An easy computation shows that G = l2X + k with the
cofactor Q = l2a(Y −µX). Hence, the Lü system always has the exponential
factors exp(l2x+k/µ) with the cofactor q = l2a(y−x). Simplifying constants
we can take the exponential factor exp(x) with cofactor a(y − x).

Subcase 1.2: l = 2. Comparing the terms with the same degree in µ of (13)
we get that

L[G0] = 0,

L[G1] = aX
∂G0

∂X
− cY

∂G0

∂Y
+ bZ

∂G0

∂Z
+ l3Z + l2Y,

L[G2] = aX
∂G1

∂X
− cY

∂G1

∂Y
+ bZ

∂G1

∂Z
+ l1X,

l0 = 0,

(14)

where L is the linear partial differential operator of the form

(15) L = aY
∂

∂X
−XZ

∂

∂Y
+XY

∂

∂Z
.

The characteristic equations associated to this linear partial differential op-
erator are

dX

dZ
=

aY

XY
,

dY

dZ
= −XZ

XY
.

This system has the general solution

X2 − 2aZ = d1, Y 2 + Z2 = d2,

where d1 and d2 are constants of integration. According to this, we do the
change of variables

(16) u = X2 − 2aZ, v = Y 2 + Z2, w = Z.

Its inverse transformation is

(17) X = ±
√
u+ 2aw, Y = ±

√
v − w2, Z = w.

In the following, for simplicity, we only consider the case X =
√
u+ 2aw,

Y =
√
v − w2, Z = w. Under the changes (16) and (17), the differential

operator L becomes
√
u+ 2aw

√
v − w2

∂

∂w
.

Therefore the first equation of (14) becomes the following ordinary differen-
tial equation

√
u+ 2aw

√
v − w2

∂Ḡ0

∂w
= 0,

where Ḡk is Gk written in the variables u, v, w. Therefore we have that Ḡ0 =
Ḡ0(u, v). Since G0, u and v have weight degrees 2, 2 and 4, respectively, we
must have G0 = c0(X

2 − 2aZ), where c0 ∈ C.
Substituting G0 into the second equation of (14) we obtain that

L[G1] = 2ac0X
2 + (2abc0 + l3)Z + l2Y.
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In coordinates u, v, w we have

√
u+ 2aw

√
v − w2

∂Ḡ1

∂w
= 2ac0(u+ 2aw) + (2abc0 + l3)w + l2

√
v − w2.

Integrating this equation we have

Ḡ1 = 2ac0

∫ √
u+ 2aw√
v − w2

dw + (2abc0 + l3)

∫
w√

u+ 2aw
√
v − w2

dw

+ l2

∫
dw√

u+ 2aw
+ R̄1(u, v),

where R̄1 is an arbitrary function in u and v. Since the first two integrals
are elliptic functions, in order that G1 be a weight homogeneous polynomial
we should have c0 = 0 and l3 = 0. Therefore G0 = 0. Since G0 is the
component of G with the highest weight-degree, this implies G = 0 and the
Lü system does not have exponential factors of the form exp(g) when l = 2.

Subcase 1.3: l = 2n + 1 and n ≥ 1. From (13) we get that L[G0] = 0. As
in the previous subcase the general solution of L[G0] = 0 is an arbitrary
function of the form G0 = G0(X

2 − 2aZ, Y 2 + Z2). Both X2 − 2aZ and
Y 2 + Z2 have even degree, then G0 must have even degree. Hence G0 = 0
because the weight degree of G0 is l = 2n + 1. Since G0 is the component
of G with the highest weight-degree, this implies G = 0. Therefore, we have
g = 0 and so the Lü system has no exponential factors of the form exp(g)
when l = 2n+ 1.

Subcase 1.4: l = 4n − 2 and n ≥ 2. Comparing the terms with the same
degree in µ in (13) we have

L[G0] = 0,

L[Gj ] = aX
∂Gj−1

∂X
− cY

∂Gj−1

∂Y
+ bZ

∂Gj−1

∂Z
, j = 1, . . . , l − 2

L[Gl−1] = ax
∂Gl−2

∂X
− cY

∂Gl−2

∂Y
+ bZ

∂Gl−2

∂Z
+ l2Y + l3Z,

0 = aX
∂Gl−1

∂X
− cY

∂Gl−1

∂Y
+ bZ

∂Gl−1

∂Z
+ l1X,

0 = l0.

(18)

From the first equation in (18) we get that

G0 =

n∑

i=1

ai(X
2 − 2aZ)2i−1(Y 2 + Z2)n−i.
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Substituting G0 into the second equation of (18), we can prove that

L[G1] =
n∑

i=1

[2a(2i − 1)− 2c(n − i)]ai(X
2 − 2aZ)2i−1(Y 2 + Z2)n−i

+

n∑

i=1

[(4a2 − 2ab)(2i − 1)]ai(X
2 − 2aZ)2i−2(Y 2 + Z2)n−iZ

+

n∑

i=1

2(b+ c)(n − i)ai(X
2 − 2aZ)2i−1(Y 2 + Z2)n−i−1Z2.

Using the transformations (16) and (17) and working in a similar way to the
subcase 1.2 for solving Ḡ0 we get the following ordinary differential equation

√
u+ 2aw

√
v −w2

∂Ḡ1

∂w
=

n∑

i=1

[2a(2i − 1)− 2c(n − i)]aiu
2i−1vn−i

+

n∑

i=1

[(4a2 − 2ab)(2i − 1)]aiu
2i−2vn−iw

+

n∑

i=1

2(b+ c)(n − i)aiu
2i−1vn−i−1w2.

Using

d

dw

(√
u+ 2aw

√
v − w2

)
=

−uw + a(v − 3w2)√
u+ 2aw

√
v − w2

,

and

n∑

i=1

[2a(2i − 1)− 2c(n − i)]aiu
2i−1vn−i

=
1

a

n∑

i=1

[2a(2i − 1)− 2c(n − i)]aiu
2i−1vn−i−1[av − uw − 3aw2 + uw + 3aw2]

=
1

a

n∑

i=1

[2a(2i − 1)− 2c(n − i)]aiu
2i−1vn−i−1(−uw + a(v − 3w2))

+
1

a

n∑

i=1

[2a(2i − 1)− 2c(n − i)]aiu
2ivn−i−1w

+ 3

n∑

i=1

[2a(2i − 1)− 2c(n− i)]aiu
2i−1vn−i−1w2,
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it is easy to deduce that the integration of the previous equation with respect
to w is

Ḡ1 =

n∑

i=1

1

a
[2a(2i − 1)− 2c(n − i)]aiu

2i−1vn−i−1
√
u+ 2aw

√
v − w2

+

(
(4a2 − 2ab)a1v

n−1 +

[ n−1∑

i=1

[(4a2 − 2ab)(2i + 1)ai+1

+
1

a
(2a(2i − 1)− 2c(n− i))ai]u

2ivn−i−1

]
+

1

av
2a(2n − 1)anu

2n

)
·

∫
w dw√

u+ 2aw
√
v −w2

+
n∑

i=1

[2(b+ c)(n − i) + 3(2a(2i − 1)− 2c(n − i))]aiu
2i−1vn−i−1·

∫
w2 dw√

u+ 2aw
√
v −w2

+ T̄1(u, v),

where T̄1(u, v) is an arbitrary smooth function in u and v. Since Ḡ1 is
a weight homogeneous polynomial of weight degree 4n − 3, we must have
T̄1(u, v) = 0 because the weight degrees of u and v are even. Moreover, since

the integrals of w/
√
u+ 2aw

√
v − w2 and w2/

√
u+ 2aw

√
v − w2 involve el-

liptic integrals in order that Ḡ1(u, v, w) be a polynomial in their variables√
u+ 2aw,

√
v − w2 and w we get that

(19)

(4a2 − 2ab)a1 = 0,

(4a2 − 2ab)(2i + 1)ai+1 +
1
a(2a(2i − 1)− 2c(n − i))ai = 0,

for i = 1, . . . , n − 1,

2(2n − 1)an = 0,

(2(b+ c)(n − i) + 3(2a(2i − 1)− 2c(n − i)))ai = 0,
for i = 1, . . . , n.

It is easy to prove that since a 6= 0, conditions (19) are equivalent to one
of the following conditions:

(i) b = 2a = −c, n = 1/2 and there exists i0 ∈ {1, . . . , n− 1} such that
ai0 6= 0.

(ii) b = 2a, n = 1/2 and G0 = an(x
2 − 2az)2n−1.

(iii) a0 = a1 = · · · = an = 0, that is, G0 = 0.

Since n is a natural number the two first cases are not possible and therefore
only the third case is possible. Therefore G0 = 0 and since this is the
component of G with the highest weight-degree, this implies that G = 0.
Then g = 0 which yields that the Lü system has no exponential factors of
the form exp(g) in this case l = 4n − 2 with n ≥ 2.
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Subcase 1.5: l = 4n and n ≥ 1. From (18) we have

G0 =
n∑

i=0

ai(X
2 − 2aZ)2i(Y 2 + Z2)n−i.

Substituting G0 into the second equation of (18) we can prove that

L[G1] =

n∑

i=0

[4ai− 2c(n − i)]ai(X
2 − 2aZ)2i(Y 2 + Z2)n−i

+

n∑

i=0

2[4a2 − 2ab]iai(X
2 − 2aZ)2i−1(Y 2 + Z2)n−iZ

+

n∑

i=0

2(b+ c)(n − i)ai(X
2 − 2aZ)2i(Y 2 + Z2)n−i−1Z2.

Then we have

Ḡ1 =

n∑

i=0

1

a
[4ai− 2c(n − i)]aiu

2ivn−i−1
√
u+ 2aw

√
v − w2

+

( n−1∑

i=0

(
2(4a2 − 2ab)iai+1 +

1

a
(4ai− 2c(n − i))ai

)
u2i+1vn−i−1

+
1

v
4nanu

2n+1

)∫
w√

u+ 2av
√
v −w2

dw

+
n∑

i=0

[2(b+ c)(n − i) + 3(4ai− 2c(n − i))]aiu
2ivn−i−1·

∫
w2

√
u+ 2av

√
v − w2

dw + T̄2(u, v),

where T̄2(u, v) is an arbitrary smooth function in u and v. In order that G1

be a weight homogeneous polynomial of weight degree 4n− 1, we must have
T̄2(u, v) = 0 and

2(4a2 − 2ab)iai+1 +
1

a
(4ai− 2c(n − i))ai = 0, i = 0, 1, . . . , n− 1,

4anan = 0,

[2(b + c)(n − i) + 3(4ai − 2c(n − i))]ai = 0, i = 0, 1, . . . , n.

(20)

We can easily prove that since a 6= 0, conditions (20) are equivalent to one
of the following conditions:

(i) a0 = a1 = · · · = an = 0, and consequently G0 = 0.
(ii) an = 0. If b = 2a, then b = −c, in contradiction with (b+ c)2 + (c+

2a)2 6= 0.
(iii) an = 0, b 6= 2a and b = −c. Then [4ai− 2c(n− i)]ai = 0. Therefore,

from (20) , we obtain c = 0, in contradiction with b2 + c2 6= 0.
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(iv) an = 0, b 6= 2a and b+ c 6= 0. Then

2(b+ c)(n − i)ai − 6a(4a2 − 2ab)iai+1 = 0.

So, for i = 0 we have a0 = 0. For i = n−1 we get an−1 = 0. Working
with i = n − 2, n − 3, . . . , 1 we obtain an−2 = · · · = a1 = 0. Hence
G0 = 0.

In summary G0 = 0 and since this is the component of G with the highest
weight-degree, this implies thatG = 0, and the Lü system has no exponential
factors of the form exp(g) when l = 4n with n ≥ 1.

In short we have proved that if F is of the form F = exp(g) with g ∈
C[x, y, z], then except constants it is of the form exp(x) with cofactor a(y−
x).

Case 2. Now we study the exponential factors of the form exp(g/h) with
(g, h) = 1 and cofactor q = q(x, y, z). Therefore g and h satisfy

a(y − x)
∂g

∂x
+ (cy − xz)

∂g

∂y
+ (−bz + xy)

∂g

∂z
= kg + qh,

where we have simplified by the common factor exp(g/h) and we have used
the fact that h is a Darboux polynomial of system (1) with cofactor k ∈ C,
see Theorem 1. We define K,Q and H as follows.

K(X,Y,Z) = k,

Q(X,Y,Z) = µ2q(µ−1X,µ−2Y, µ−2Z) = l3Z + l2Y + µl1X + µ2l0,

H(X,Y,Z) = h(µ−1X,µ−2Y, µ−2Z).

Using the weight change of variables, from (9)–(12) we get that G satisfies

a(Y − µX)
m∑

i=0

µi∂Gi

∂X
+ (−XZ + µcY )

m∑

i=0

µi∂Gi

∂Y

+ (XY − µbZ)

m∑

i=0

µi∂Gi

∂Z
= µk

m∑

i=0

µiGi

+ µl−1(l3Z + l2Y + µl1X + µ2l0)H(X,Y,Z).

(21)

Since h is a Darboux polynomial in view of Theorems 1 and 10, h can be
only of four different types. We separate then in four different cases.

Subcase 2.1: h = (x2 − 2az)n, n ≥ 1 with cofactor k = −2an, b = 2a and
c 6= −2a. Now equation (21) becomes

a(Y − µX)
m∑

i=0

µi∂Gi

∂X
+ (−XZ + µcY )

m∑

i=0

µi∂Gi

∂Y

+ (XY − 2aµZ)
m∑

i=0

µi∂Gi

∂Z
= −2anµ

m∑

i=0

µiGi

+ µl−1−2n(l3Z + l2Y + µl1X + µ2l0)(X
2 − 2aZ)n.

(22)
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We claim that l ≥ 2n. In order to prove the claim, first we assume that
l < 2n. Computing in (22) the terms of µj with j < 0, we get l1 = l2 = l3 =
0. For µ0 we get either l0 = 0, or l = 2n− 1 in which case we obtain

aY
∂G0

∂X
−XZ

∂G0

∂Y
+XY

∂G0

∂Z
= l0(X

2 − 2aZ)n.

Evaluating this equation on Y = Z = 0 we get that l0 = 0. Hence, in both
cases l0 = 0. In short, we get that l0 = l1 = l2 = l3 = 0 and thus Q = 0.
This implies that g is a Darboux polynomial of the Lü system with cofactor
−2an. It follows from Theorem 1 that g = α(x2 − 2az)n with α ∈ C. Then
(g, h) = (x2−2az)n which contradicts the assumption (g, h) = 1. Hence the
claim is proved.

By the claim we can write l = 2n+ ℓ for some non-negative integer ℓ. We
define the following differential operator

D = aX
∂

∂X
− cY

∂

∂Y
+ 2aZ

∂

∂Z
− 2an.

Then from (15), (22) we obtain that

L[G0] = 0,

L[Gℓ−i] = D[Gℓ−i−1], i = 1, . . . , ℓ− 1,

L[Gℓ−1] = D[Gℓ−2] + (l2Y + l3Z)(X2 − 2aZ)n,

L[Gℓ] = D[Gℓ−1] + l1X(X2 − 2aZ)n,

L[Gℓ+1] = D[Gℓ] + l0(X
2 − 2aZ)n,

L[Gj ] = D[Gj−1], j = ℓ+ 2, . . . , 2n+ ℓ,

0 = D[G2n+ℓ],

(23)

with Gi = 0 for i < 0. We write Gi = G
(0)
i +G

(1)
i such that

L[G
(0)
i ] = D[G

(0)
i−1], i = 1, . . . , 2n+ ℓ+ 1,

L[G
(1)
ℓ−i] = 0, i = 2, . . . , ℓ,

L[G
(1)
ℓ−1] = (l2Y + l3Z)(X2 − 2aZ)n,

L[G
(1)
ℓ ] = D[G

(1)
ℓ−1] + l1X(X2 − 2aZ)n,

L[G
(1)
ℓ+1] = D[G

(1)
ℓ ] + l0(X

2 − 2aZ)n,

L[G
(1)
j ] = D[G

(1)
j−1], j = ℓ+ 2, . . . , 2n + ℓ+ 1.

(24)

System (24) is equivalent to system (23) where we have split the poly-

nomial Gi of weight degree (l − i) in two pieces G
(0)
i and G

(1)
i , satisfying

G
(0)
i the equation L[G

(0)
i ] = D[G

(0)
i−1] for i = 1, . . . , 2n + ℓ + 1, from the

second equation of (23) we have that G
(1)
i = 0 for i = 0, . . . , ℓ− 2, G

(1)
i for

i = ℓ− 1, ℓ, ℓ + 1 satisfy the third, fourth and fifth equations of (23). Now
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the existence of G
(1)
ℓ+1 creates the existence of a G

(1)
ℓ+2, and so on satisfying

the last equation of (24).

Defining

G(0) =

m∑

i=0

µiG
(0)
i and G(1) =

m∑

i=0

µiG
(1)
i ,

we have that G = G(0) + G(1). We note that the first identity in equation
(24) is exactly the equation of a Darboux polynomial of the Lü system
with cofactor −2an (in the weight variables (X,Y,Z)). In other words,

g(0) = G(0)|µ=1 =
∑m

i=0G
(0)
i is a Darboux polynomial of the Lü system with

cofactor −2an. In view of Theorem 1 we get that g(0) = α(x2 − 2az)n with
α ∈ C.

Now from the third equation of (24) and introducing the change of vari-

ables given in (16) we get that setting G
(1)
ℓ−1(X,Y,Z) = Ḡ

(1)
ℓ−1(u, v, w) the

third equality in (24) becomes

√
u+ 2aw

√
v − w2

∂Ḡ
(1)
ℓ−1

∂w
= un(l2

√
v −w2 + l3w).

Solving it we conclude that

Ḡ
(1)
ℓ−1(u, v, w) =

l2
a
un

√
u+ 2aw + l3u

n

∫
w√

u+ 2aw
√
v − w2

dw.

Since G
(1)
ℓ−1 must be a polynomial in its variables, we obtain that

l3 = 0 and G
(1)
ℓ−1 =

l2
a
X(X2 − 2aZ)n.

Substituting G
(1)
ℓ−1 into the fourth equation of (24) and proceeding as for

the third equation of (24) we can prove that

Ḡ
(1)
ℓ (u, v, w) = (l1 + l2)u

n arctan

(
w√

v − w2

)
.

Again, using that G
(1)
ℓ must be a polynomial we conclude that l1 + l2 = 0

and G
(1)
ℓ = 0.

Substituting G
(1)
ℓ into the fifth equation of (24) and proceeding as above,

using that G
(1)
ℓ+1 is a polynomial we get that l0 = 0 and G

(1)
ℓ+1 = 0. Hence,

proceeding inductively the sixth equation of (24) yields that G
(1)
j = 0 for

j = ℓ+ 3, . . . , 2n+ ℓ. This proves that

g = (G(0) +G(1))|µ=1 = α(x2 − 2az)n +
l2
a
x(x2 − 2az)n.

But in this case (g, h) = (x2 − 2az)n which contradicts the assumption
(g, h) = 1. Then yields that the Lü system has no exponential factors of the
form exp(g/h) in this subcase.
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Subcase 2.2: We have h = (y2+z2)n with cofactor k = 2cn, n ≥ 1, b = −c 6=
0 and c 6= −2a. Working in a similar way to Subcase 2.1, we can prove that
g = α(y2 + z2)n + l2

a x(y
2 + z2)n. Then (g, h) = (y2 + z2)n which contradicts

the assumption (g, h) = 1. Hence the Lü system has no exponential factors
of the form exp(g/h) in this subcase.

Subcase 2.3: We have h = (x4 + 4
3cx

2z − 4
9c

2y2 − 8
9c

2xy)n with cofactor

k = 4
3cn, n ≥ 1, a = −c/3 and b = 0. Working in a similar way to Subcase

2.1, we can prove that g = g(0) = α(x4 + 4
3cx

2z − 4
9c

2y2 − 8
9c

2xy)n. Then

(g, h) = (x4 + 4
3cx

2z − 4
9c

2y2 − 8
9c

2xy)n which contradicts the assumption
(g, h) = 1. Hence the Lü system has no exponential factors of the form
exp(g/h) in this subcase.

Subcase 2.4: We have h = (x4+4cx2z−4c2y2+8c2xy+16c3z)n with cofactor
k = 4cn, n ≥ 1, c = −a and b = 4a. Working in a similar way to Subcase 2.1,
we can prove that g = g(0) = α(x4 + 4cx2z − 4c2y2 + 8c2xy + 16c3z)n.
Then (g, h) = (x4 + 4cx2z − 4c2y2 + 8c2xy + 16c3z)n which contradicts the
assumption (g, h) = 1. Hence the Lü system has no exponential factors of
the form exp(g/h) in this subcase.

In short, in Case 2 we have proved that the Lü system has no exponential
factors of the form exp(g/h) with (g, h) = 1.

Now, joining Cases 1 and 2 we have proved Proposition 12. �

Proof of Proposition 6. It follows from Theorem 7 that the Lü system has a
first integral of Darboux type if and only if there exist λi, µj ∈ C not all zero
such that equation (3) is satisfied where p, q are the numbers of Darboux
polynomials and exponential factors, respectively. Furthermore, Ki, Lj are
the cofactors of Darboux polynomials and exponential factors, respectively.
It follows from Theorem 1 that the cofactor of the Darboux polynomials of
system (1) when a 6= 0 is a constant that we denote by k. The proof of
Proposition 12 shows that the cofactor of the unique exponential factor is
a(y − x). So equation (3) is equivalent to

λ1k + µ1a(y − x) = 0.

This last relation is equivalent to µ1 = λ1 = 0. �
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[10] Y. Liu and Q. Yang, Dynamics of the Lü system on the invariant algebraic surface
and at infinity, to appear in Int. J. Bifurcation and Chaos.

[11] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. SCI. 20 (1963), 130–141.
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[13] J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifurcation and Chaos

12 (2002), 659–661.
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