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Abstract. We study the Darboux first integrals of a generalized Friedmann-Robertson-
Walker Hamiltonian system.

1. Introduction and statement of the main result

Given a system of ordinary differential equations depending on parameters in general
is very difficult to recognize for which values of the parameters the equations have first
integrals because there are no satisfactory methods to answer this question.

In this paper we study the first integrals of a generalized Friedmann-Robertson-Walker
Hamiltonian differential system in R4

ẋ = −px,

ẏ = py,

ṗx = x − ax3 − bxy2,

ṗy = −y − bx2y,

(1)

with a, b ∈ R being parameters and the dot denotes derivative with respect to time t.

The Hamiltonian of this system is

H0 =
1

2
(p2

y − p2
x) +

1

2
(y2 − x2) +

a

4
x4 +

b

2
x2y2.

When a = 0, system (1) coincides with the Friedmann-Robertson-Walker system that
modelates a universe, filled by a conformally coupled by a massive real scalar field (see [2]
for more details where the authors pesent analytical and numerical evidence of the existence
of chaotic motion). For a more general point of view on the Friedmann-Robertson-Walker
system see for instance the works [5, 7] and the references quoted therein.

In this paper we study the Darboux first integrals of a generalized Friedmann-Robertson-
Walker system (see (1)). We recall that a first integral of Darboux type is a first integral H
which is a function of Darboux type (see below (2) for a precise definition). The study of
the Darboux first integrals is a classical problem in the integrability theory of differential
equations.

2010 Mathematics Subject Classification. Primary 34A05, 34A34, 34C14.
Key words and phrases. Darboux first integrals, Darboux polynomials, generalized Friedman-Robertson-

Walker Hamiltonian system.

1

This is a preprint of: “Darboux integrability of a generalized Friedmann-Robertson-Walker Hamil-
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The vector field associated to system (1) is

X = −px
∂

∂x
+ py

∂

∂y
+ x(1 − ax2 − by2)

∂

∂px
− y(1 + bx2)

∂

∂py
.

Let U ⊂ C4 be an open set. We say that the non-constant function H : U → C is a first
integral ofo the polynomial vector field X on U if H(x(t), y(t), px(t), py(t)) is constant for
all values of t for which the solution (x(t), y(t), px(t), py(t)) of X is defined on U . Clearly
H is a first integral of X on U if and only if

XH = −px
∂H

∂x
+ py

∂H

∂y
+ x(1 − ax2 − by2)

∂H

∂px
− y(1 + bx2)

∂H

∂py
= 0

on U .

In this paper we want to study the so-called Darboux first integrals of the Friedman–
Robertson–Walker polynomial differential systems (1), using the Darboux theory of inte-
grability (originated in the papers [4]). For a present state of this theory see the Chapter
8 of [6], the paper [8], and the references quoted in them.

We emphasize that the study of the existence of first integrals is a classical problem in
the theory of differential systems, because the knowledge of first integrals of a differential
system can be very useful in order to understand and simplify the topological structure of
their orbits. Thus, their existence or not can also be viewed as a measure of the complexity
of a differential system.

We recall that a first integral is of Darboux type if it is of the form

(2) fλ1
1 · · · fλp

p Fµ1
1 · · · Fµq

q ,

where f1, . . . , fp are Darboux polynomials (see section 2 for a definition), F1, . . . , Fq are
exponential factors (see section 2 for a definition), and λj , µk ∈ C for all j and k.

The functions of the form (2) are called Darboux functions, and they are the base of
the Darboux theory of integrability, which looks when these functions are first integrals
or integrating factors. In this last case, the first integrals associated to integrating factors
given by Darboux functions are the Liouvillian first integrals, see for more details [6, 8].

The Darboux theory of integrability is essentially an algebraic theory of integrability
based in the invariant algebraic hypersurfaces that a polynomial differential system has. In
fact to every Darboux polynomial there is associated some invariant algebraic hypersurface
(see again section 2), and the exponential factors appear when an invariant algebraic surface
has multiplicity larger than 1, for more details see [3, 6, 8]. As far as we know is the unique
theory of integrability which is developed for studying the first integrals of polynomial
differential systems. In general the other theories of integrability do not need that the
differential system be polynomial.

We say that the Hamiltonian system (1) is completely integrable if it has two independent
first integrals H1 and H2 in involution. That is, H1 and H2 are independent if their gradients
are linearly independent over a set of full Lebesgue measure in C4. Moreover, H1 and H2

are in involution if the Poisson bracket {Hi,H0} = 0 for i ∈ {1, 2}.

When b = 0 system (1) is completely integrable. More precisely we have the following
result.

Theorem 1. System (1) with b = 0 is completely integrable with the first integrals

H1 = −p2
x − x2 +

a

2
x4 and H2 = p2

y − y2.
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When a = 0, system (1) is the well-known simplified Friedman-Robertson-Walker Hamil-
tonian system. Its Darboux integrability was studiend in [10]. In that paper, the authors
proved the following theorem.

Theorem 2. The unique first integrals of Darboux type of system (1) with a = 0 and b ̸= 0
are functions of Darboux type in the variable

H0 =
1

2
(p2

y − p2
x) +

1

2
(y2 − x2) +

b

2
x2y2.

From now on we will consider the case in which ac ̸= 0.
The main result of this paper is the following.

Theorem 3. The unique first integrals of Darboux type of the generalized Friedman-Robertson-
Walker Hamiltonain system (1) with ab ̸= 0 are functions of Darboux type in the variable
H0.

We prove Theorem 3 in section 3.

Since the Darboux theory of integrability of a polynomial differential system is based on
the existence of Darboux polynomials and their multiplicity, the study of the existence or
not of Darboux first integrals needs to look for the Darboux polynomials. These will be
done in the next Theorems 9 and 10, whose results are the main steps for proving Theorem
3.

We must mention that any comment on the existence or non–existence of first integrals
additional to the Hamiltonian itself appears in the reference [2]. In that paper the authors
are mainly concerned with the chaotic behavior of the Friedman–Robertson–Walker poly-
nomial Hamiltonian system. Of course, roughly speaking the chaotic motion is against the
existence of first integrals.

Corollary 4. The generalized Friedman–Robertson–Walker Hamiltonian system (1) is
completely integrable with first integrals of Darboux type if and only if b = 0.

The proof is completly clear.

2. Basic results

Let h = h(x, y, px, py) ∈ C[x, y, px, py] \ C. As usual C[x, y, px, py] denotes the ring of all
complex polynomials in the variables x, y, px, py. We say that h is a Darboux polynomial of
system (1) if it satisfies

Xh = Kh,

the polynomial K = K(x, y, px, py) ∈ C[x, y, px, py] is called the cofactor of h and has degree
at most two. Every Darboux polynomial h defines an invariant algebraic hypersurface h = 0,
i.e. if a trajectory of system (1) has a point in h = 0, then the whole trajectory is contained
in h = 0, see for more details [6]. When K = 0 the Darboux polynomial h is a polynomial
first integral.

An exponential factor E of system (1) is a function of the form E = exp(g/h) ̸∈ C with
g, h ∈ C[x, y, pX , py] satisfying (g, h) = 1 and

XE = LE,

for some polynomial L = L(x, y, px, py) of degree at most 2, called the cofactor of E.

A geometrical meaning of the notion of exponential factor is given by the next result.
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Proposition 5. If E = exp(g/h) is an exponential factor for the polynomial differential
system (1) and h is not a constant polynomial, then h = 0 is an invariant algebraic hyper-
surface, and eventually eg can be exponential factors, coming from the multiplicity of the
infinite invariant hyperplane.

The proof of Proposition 5 can be found in [3, 9]. We explain a little the last part of
the statement of Proposition 5. If we extend to the projective space PR4 the polynomial
differential system (1) defined in the affine space R4, then the hyperplane at infinity always
is invariant by the flow of the extended differential system. Moreover, if this invariant
hyperplane has multiplicity higher than 1, then it creates exponential factors of the form
eg, see for more details [9].

Theorem 6. Suppose that the polynomial vector field X of degree m defined in C4 admits p
invariant algebraic hypersurfaces fi = 0 with cofactors Ki, for i = 1, . . . , p and q exponential
factors Ej = exp(gj/hj) with cofactors Lj, for j = 1, . . . , q. Then there exists λi, µj ∈ C
not all zero such that

p∑

i=1

λiKi +

q∑

j=1

µjLj = 0

if and only if the function of Darboux type

fλ1
1 · · · fλp

p Eµ1
1 · · · Eµq

q

is a first integral of X .

Theorem 6 is proved in [6].

From Theorem 6 it follows easily the next well–known result.

Corollary 7. The existence of a rational first integral for a polynomial differential system
implies either the existence of a polynomial first integral or the existence of two Darboux
polynomials with the same non–zero cofactor.

The following result is well–known.

Lemma 8. Assume that exp(g1/h1), . . . , exp(gr/hr) are exponential factors of some poly-
nomial differential system

(3) x′ = P (x, y, px, py), y′ = Q(x, y, px, py), p′
x = R(x, y, px, py), p′

y = U(x, y, px, py)

with P, Q, R, U ∈ C[x, y, px, py] with cofactors Lj for j = 1, . . . , r. Then

exp(G) = exp(g1/h1 + · · · + gr/hr)

is also an exponential factor of system (3) with cofactor L =
∑r

j=1 Lj.

3. Proof of Theorem 3

According with section 2 for proving Theorem 3 we need to characterize the Darboux
polynomials of system (1).

The following result characterizes the polynomial first integrals of system (1) with b ̸= 0,
i.e. it characterizes the Darboux polynomial with zero cofactor.

Theorem 9. The unique polynomial first integrals of system (1) with ab ̸= 0 are polyno-
mials in the variable H0.



INTEGRABILITY OF FRIEDMANN-ROBERTSON-WALKER EQUATIONS 5

Proof. Doing the change of variables

(4) z1 = px − py, z2 = px + py,

system (1) becomes

ẋ = −1

2
(z1 + z2),

ẏ = −1

2
(z1 − z2),

ż1 = x + y + x(−ax2 + by(x − y)),

ż2 = x − y − x(ax2 + by(x + y)),

(5)

and H0 writes as

H0 =
1

2

(
y2 − x2 − z1z2 + bx2y2 +

a

2
x4

)
.

Now we restrict to H0 = 0. We get that

(6) z2 =
2bx2y2 + 2y2 − 2x2 + ax4

2z1
.

Then system (5) on H0 = 0 becomes, after the rescaling by dτ = z1 dt:

x′ = −1

2
z2
1 − 1

2
(bx2y2 + y2 − x2 +

a

2
x4),

y′ = −1

2
z2
1 +

1

2
(bx2y2 + y2 − x2 +

a

2
x4),

z′
1 = z1(x + y + x(−ax2 + by(x − y)),

(7)

where the prime denotes the derivative with respect to the variable τ . If f = f(x, y, px, py)
is a polynomial first integral of system (1) then, if we denote by g = g(x, y, z1, z2) the
polynomial first integral f written in the new variables (x, y, z1, z2), we have that g is also
a polynomial first integral of the differential system (5). Furthermore, if we denote by
h = h(x, y, z1) the polynomial first integral g restricted to the invariant hypersurface (6),
then h is a rational first integral of the differential system (7) in the sense that it is the
quotient of a polynomial in the variables (x, y, z1) and a power of z1. Furthermore h satisfies

(
− 1

2
z2
1 − 1

2
(bx2y2 + y2 − x2 +

a

2
x4)

)∂h

∂x

+
(

− 1

2
z2
1 +

1

2
(bx2y2 + y2 − x2 +

a

2
x4)

)∂h

∂y
+ z1(x + y + x(−ax2 + by(x − y))

∂h

∂z1
= 0.

(8)

We write

(9) h =
n∑

j=−n

hj(x, y, z1)

where each hj is the quotient of a polynomial in the variable (x, y, z1) with degree j and
the denominator a power in the variable z1. Here we define the degree of hj as j. Hence,
computing the terms of degree n + 4 we have

x2

4
(ax2 + 2by2)

(∂hn

∂y
− ∂hn

∂x

)
+ z1x(−ax2 + by(x − y))

∂hn

∂z1
= 0.
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We write it as

(10) L[hn] = 0, where L =
x2

4
(ax2 + 2by2)

( ∂

∂y
− ∂

∂x

)
+ z1x(−ax2 + by(x − y))

∂

∂z1
.

The characteristic equations associated to the linear partial differential operator L are

(11)
dx

dy
= −1,

dy

dz1
=

x(ax2 + 2by2)

4z1(−ax2 + by(x − y))
.

We consider two cases.

Case 1: a = −2b. In this case (11) has the general solution

x + y = d1,
(y − x)2

e2y/xz1
= d2,

where d1 and d2 are constants of integration. According to this, we make the change of
variables

(12) u = x + y, v =
(y − x)2

e2y/xz1
, w = y.

Its inverse transformation is

(13) x = u − w, z1 = (2w − u)2(e2w/(u−w)v), y = w.

Under the change of variables (12) and (13) equation (10) becomes the following ordinary
differential equation (for fixed u and v):

b

2
u(u − 2w)(u − w)2

∂h̄n

∂w
= 0

where h̄n is hn written in the variables u, v and w. Solving it we have

h̄n = h̄n(u, v) = hn

(
x + y,

(y − x)2

e2y/xz1

)
.

Since the numerator of hh is a polynomial of degree n we must have

(14) hn =

n∑

k=0

αk(x + y)k, αk ∈ R.

Now using the transformations (12) and (13) and working in a similar manner to solve h̄n,
computing the terms of degree n + 3, we get

(15) hn−1 =
n−1∑

k=0

βk(x + y)k, βk ∈ R.

Now, using the transformations (12) and (13) and working in a similar manner to solve
h̄n−2, computing the terms of degree n + 2, we get

b

2
u(u − w)2

∂h̄n

∂w
= (2w − u)3e4w/(u−w)v2

n∑

k=1

kαku
k−1.

Integrating this equations, we obtain that h̄n−2 = h̄n−2(u, v, w) is

1

2b

( n∑

k=1

kαku
k−2

)(
e

4w
u−w (33u2 − 48uw + 16w2) − 44

e4
u2v2Ei

( 4u

u − w

))
+ kn−2(u, v)
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where Ei(z) is the exponential integral function, see for instance [1]. Going back to the
variables x, y and z1 we obtain that hn−2(x, y, z1) is

1

2b

( n∑

k=1

kαk(x + y)k−2

)(
e

4y
x (33(x + y)2 − 48y(x + y) + 16y2)

− 44

e4
(x + y)2

(x − 4)4

e4y/xz2
1

Ei
(4(x + y)

y

))
+ kn−2

(
x + y,

(y − x)2

e2y/xz1

)
.

Since the numerator of hn−2(x, y, z1) is a polynomial of degree n − 2 we must have
n∑

k=1

kαk(x + y)k−1 = 0.

So αk = 0 for k = 1, . . . , n. Then hn = α0, which implies that h = α0/zm
1 for some

nonnegative integer m. Then from (8) we get

(16) −mα0

zm
1

(x + y − ax3 + bx2y − bxy2) = 0.

Therefore, mα0 = 0 and consequently h is a constant, in contradiction with the fact that h
is a first integral. So, this case is not possible.

Case 2: a ̸= −2b. In this case the general solution of (11) is

x + y = d1,
(ax2 + 2by2)

√
bx

z
√

bx
1 e

2y
√

b+
√

2ax arctan

(√
2by√
ax

) = d2

where d1 and d2 are constants of integration. According to this, we make the change of
variables

(17) u = x + y, v =
(ax2 + 2by2)

√
bx

z
√

bx
1 e

2y
√

b+
√

2ax arctan

(√
2by√
ax

) , w = y.

Its inverse transformation is
(18)

x = u − w, z1 = (a(u − w)2 + 2bw2)
(
e2wv1/

√
b
)1/(w−u)

e
−
√

2a/b arctan

( √
2bw√

a(u−w)

)
, y = w.

Under the change of variables (17) and (18) equation (10) becomes the following ordinary
differential equation (for fixed u and v):

(u − w)2

4
(a(u − w)2 + 2bw2)

∂h̄n

∂w
= 0

where h̄n is hn written in the variables. Solving it we have

h̄n = h̄n(u, v) = hn

(
x + y,

(ax2 + 2by2)
√

bx

z
√

bx
1 e

2y
√

b+
√

2ax arctan

(√
2by√
ax

)
)

.

Since hn has degree n in the numerator we must have

(19) hn =

n∑

k=0

αk(x + y)k, αk ∈ R.
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Now using the transformations (17) and (18) and working in a similar manner to solve h̄n,
computing the terms of degree n + 3, we get

(20) hn−1 =

n−1∑

k=0

βk(x + y)k, βk ∈ R.

Now, using the transformations (17) and (18) and working in a similar manner to solve
h̄n−2, computing the terms of degree n + 2, we get

(u − w)2

4

∂h̄n−2

∂w
= (a(u − w)2 + 2bw2)

(
e2wv1/

√
b
)2/(w−u)

e
−2

√
2a/b arctan

( √
2bw√

a(u−w)

)
n∑

k=1

kαku
k−1.

(21)

When u = 0, if we denote by h̃n−2 = h̃n−2(v, w) the restriction of h̄n−2 on u = 0 we have

h̃n−2 = 4(a + 2b)α1e
−2

√
2a/b arctan

(
−2

√
b/a

)((
e2wv1/

√
b
)2/w

w

+ 2e4Ei

(
− 4 +

2 log(e2wv1/
√

b)

w

)(
2w − log(e2wv1/

√
b)

)
+ cn−2(v),

where again Ei(z) is the exponential integral function. Going back to the variables x, y

and z1 if we denote by ĥn−2 the function h̃n−2 in the variables (x, y, z1) we get

ĥn−2 = 4(a + 2b)α1e
−2

√
2a/b arctan

(
−2

√
b/a

)(
y
(ax2 + 2by2

z1

)2/(xy)
e
− 2

√
2a√

bxy
arctan

(√
2by√
ax

)

+ 2e4Ei

(
− 4 +

2y

x

(
log

(ax2 + 2by2

z1

)
−

√
2a

b
arctan

(√
2by√
ax

))

(
2y − 1

x
log

(ax2 + 2by2

z1

)
−

√
2a

b
arctan

(√
2by√
ax

))

+ cn−2

(
(ax2 + 2by2)

√
bx

z
√

bx
1 e

2y
√

b+
√

2ax arctan

(√
2by√
ax

)
)

.

Taking into account that ĥn−2 must be a polynomial, we must have cn−2 = 0 and α1 = 0
(because a + 2b ̸= 0). Therefore, hn−2 = (x + y)gn−2 for some polynomial gn−2. Going to
the variables u, v, w we have that h̄n−2 = uḡn−2 where, after simplifying by u, ḡn−2 satisfies

(u − w)2

4

∂ḡn−2

∂w
= (a(u − w)2 + 2bw2)

(
e2wv1/

√
b
)2/(w−u)

e
−2

√
2a/b arctan

( √
2bw√

a(u−w)

)
n∑

k=2

kαku
k−2.

Now proceeding in the same way as we did for hn−2 we obtain that α2 = 0 (compare the
above equation with (21). Proceeding inductively we obtain that αk = 0 for k = 1, . . . , n.
Then hn = α0, which implies that h = α0/zm

1 for some nonnegative integer m. Then from
(8) we get (16), i.e., mα0 = 0 and consequently h is a constant, in contradiction with the
fact that h is a first integral. This concludes the proof of the theorem. �
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Now we characterize the existence of Darboux polynomials.

Theorem 10. System (1) with ab ̸= 0 has no Darboux polynomial with non-zero cofactor.

Proof. Let f be a Darboux polynomial with non-zero cofactor K. Then K has cofactor of
degree at most 2. We write it as

K = a0 + a1x + a2y + a3px + a4py + a5x
2 + a6xy + a7xpx + a8xpy + a9y

2 + a10ypx

+ a11ypy + a12p
2
x + a13pxpy + a14p

2
y.

Note that system (1) is invariant under the transformation σ : C4 → C4 with

σ(x) = −x, σ(y) = −y, σ(px) = −px, σ(py) = −py.

If f is a Darboux polynomial of system (1) then g = f · σ(f) is a Darboux polynomial of
system (1) invariant by σ and with cofactor

K1 = K + σ(K) = 2(a0 + a5x
2 + a6xy + a7xpx + a8xpy + a9y

2 + a10ypx + a11ypy

+ a12p
2
x + a13pxpy + a14p

2
y).

Let f be a Darboux polynomial of system (1) with non-zero cofactor K. If f is invariant by
σ then K = K1 and if f is not invariant by σ then we consider g = f · σ(f) a new Darboux
polynomial of system (1) invariant by σ and with cofactor K1. We have

(22) px
∂g

∂x
− py

∂g

∂y
+ x(1 − ax2 − by2)

∂g

∂px
− y(1 + bx2)

∂g

∂py
= K1g.

We write g as a polynomial in the variable px as

g =
k∑

i=0

gi(x, y, py)p
j
x,

where each gi is a polynomial in the variables x, y, py. Without loss of generality we can

assume that gk(x, y, py) ̸= 0. Then computing the coefficient of pk+2
x in (22) we get

2a12gk = 0 which yields a12 = 0.

Now computing the coefficient of pk+1
x in (22) we obtain

−∂gk

∂x
= 2(a7x + a10y + a13py)gk.

Solving it we get

gk = Kk(y, py)e
a7x2+2a10yx+2a13pyx.

Since gk must be a polynomial we get a7 = a10 = a13 = 0.

Now we write g as a polynomial in the variable py as

g =
m∑

i=0

ḡi(x, y, px)pj
y,

where each ḡi is a polynomial in the variables x, y, px. Without loss of generality we can
assume that ḡm(x, y, px) ̸= 0. Then computing the coefficient of pm+2

y in (22) we get

2a14ḡm = 0 which yields a14 = 0.

Now computing the coefficient of pm+1
y in (22) we obtain

∂ḡm

∂y
= −2(a8x + a11y)ḡm.
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Solving it we get

ḡm = Kn(x, px)e2a8xy+a11y2
.

Since ḡm must be a polynomial we get a8 = a11 = 0. Hence, K1 = 2(a0+a5x
2+a6xy+a9y

2).
Then

−px
∂g

∂x
+ py

∂g

∂y
+ x(1 − ax2 − by2)

∂g

∂px
− y(1 + bx2)

∂g

∂py
= 2(a0 + a5x

2 + a6xy + a9y
2)g.

Now we write g =
∑ℓ

j=0 gj(x, y, px, py) is written as a sum of homogeneous polynomials of
degree j. Then computing the terms of degree ℓ + 2 we get

−x

(
(ax2 + by2)

∂gℓ

∂px
+ bxy

∂gℓ

∂py

)
= 2(a5x

2 + a6xy + a9y
2)gℓ.

Solving it we get

gℓ = K

(
x, y,

apyx
2 − bpxxy + bpyy

2

ax2 + by2

)
e
− 2px(a5x2+a6xy+a9y2)

bxy2 .

Since it must be a polynomial we get a5 = a6 = a9 = 0. Then, K1 = 2a0.

Now proceeding as in the proof of Theorem 9 introducing the change of variables (4) and
the restriction H0 = 0 (see (7)) we get that g(x, y, px, py) = h(x, y, z1) with

(
− 1

2
z2
1 − 1

2
(bx2y2 + y2 − x2 +

a

2
x4)

)∂h

∂x
+

(
− 1

2
z2
1 +

1

2
(bx2y2 + y2 − x2 +

a

2
x4)

)∂h

∂y

+ z1(x + y + x(−ax2 + by(x − y))
∂h

∂z1
= 2a0z1h.

(23)

We write h as in (9). Now we consider two cases.

Case 1: a = −2b. In this case, we get hn and hn−1 as in (14) and (15). Now, using the
transformations (12) and (13) and working in a similar manner to solve h̄n−2, computing
the terms of degree n + 2 in (23), we get

b

2
u(u − w)2

∂h̄n−2

∂w
= (2w − u)3e4w/(u−w)v2

n∑

k=1

kαku
k−1

+ 2a0(2w − u)e2w/(u−w)v

n∑

k=0

αku
k.

Integrating this equation and going back to the variables x, y and z1 we get that

h̄n−2 = − 1

2b(x + y)
e−2+2y/x (y − x)2

e2y/xz1

(
e2

(
− 4a0

n∑

k=0

αku
k − e2y/x(33(x + y)2

− 48(x + y)y + 16y2)
(y − x)2

e2y/xz1

n∑

k=1

kαku
k−1

)

+ 8e−2(x+y)/x

(
2a0

n∑

k=0

αku
kEi

(2(x + y)

x

)

+ 11

n∑

k=1

kαku
k−1(x + y)2

(y − x)2

e2y/xz1
Ei

(4(x + y)

x

)))
+ kn−2

(
x + y,

(y − x)2

e2y/xz1

)
.



INTEGRABILITY OF FRIEDMANN-ROBERTSON-WALKER EQUATIONS 11

Since the numerator of hn−2 must be a polynomial of degree n − 2 we have
n∑

k=1

kαk(x + y)k−1 = 0, and a0

n∑

k=0

αk(x + y)k = 0.

This implies that αk = 0 for k = 1, . . . , n and a0α0 = 0.

Case 2: a ̸= −2b. In this case, we get hn and hn−1 as in (14) and (15). Now, using the
transformations (17) and (18) and working in a similar manner to solve h̄n−2, computing
the terms of degree n + 2 in (23), we get

(u − w)2

4

∂h̄n−2

∂w
= (a(u − w)2 + 2bw2)

(
e2wv1/

√
b
)2/(w−u)

e
−2

√
2a/b arctan

( √
2bw√

a(u−w)

)
n∑

k=1

kαku
k−1

+ 2a0

(
e2wv1/

√
b
)1/(w−u)

e
−
√

2a/b arctan

( √
2bw√

a(u−w)

)
n∑

k=0

αku
k.

When u = 0 (denoting by h̃n−2 the restriction of h̄n−2 to u = 0, we get

w2

4

∂h̃n−2

∂w
= (a + 2b)α1w

2
(
e2wv1/

√
b
)2/w

e
−2

√
2a/b arctan

(√
2b√
a

)

+ 2a0α0

(
e2wv1/

√
b
)1/w

e
−
√

2a/b arctan

(√
2b√
a

)
.

Integrating this equation, and going back to the variables x, y and z1 (denoting by ĥn−2

the function h̃n−2 in the variables x, y, z1) we get that

ĥn−2 = 4e
−
√

2a/b arctan

(√
2b√
a

)(
2α1(a + 2b)e4Ei

(
2

y
log

(
zx
1

(a + 2b)y2
e
−

√
2a
b

arctan

(√
2by√
ax

))
− 4

)

(
2y − log

(
zx
1

(a + 2b)y2
e
−

√
2a
b

arctan

(√
2by√
ax

)))
+

(
zx
1

(a + 2b)y2
e
−

√
2a
b

arctan

(√
2by√
ax

))1/y

(
α1(a + 2b)

( zx
1

(a + 2b)y2
e
−

√
2a
b

arctan

(√
2by√
ax

))1/y

y

− 2α0a0

log
(

zx
1

(a+2b)y2 e
−

√
2a
b

arctan
(√

2by√
ax

))
− 2y

))
+ kn−2

(
(ax2 + 2by2)

√
bx

z
√

bx
1 e

2y
√

b+
√

2ax arctan

(√
2by√
ax

)
)

.

Since the numerator of ĥn−2 must be a polynomial of degree n − 2 we have α1 = 0 and
a0α0 = 0. Proceeding inductively, as we did in the proof of Theorem 9 we obtain that
αk = 0 for k = 1, . . . , n and a0α0 = 0.

In summary, in both cases we get that αk = 0 for k = 1, . . . , n and a0α0 = 0.

If α0 = 0 then h = 0, in contradiction that h is a Darboux polynomial. Therefore a0 = 0
and K1 = 0. Thus g = f · σ(f) is a polynomial first integral. By Theorem 9 the unique
polynomial first integrals are polynomials in the variable H0, we must have that f is a
polynomial in the variable H0 which is not possible because f is a Darboux polynomial of
system (1) with non–zero cofactor. This concludes the proof of the theorem. �
Theorem 11. The unique rational first integrals of system (1) with b ̸= 0 are rational
functions in the variable H0.
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Proof. It follows directly from Corollary 7 and Theorems 9 and 10. �
Now we proceed as in the proof of Theorem 10.

Proof of Theorem 3. It follows from Theorems 6, 9 and 10 and Proposition 5 that in or-
der to have a first integral of Darboux type we must have q exponential factors Ej =
exp(gj/hj(H0)) with cofactors Lj such that

∑q
j=1 µjLj = 0. Let G =

∑q
j=1 µjgj/hj(H0),

then E = exp(G) is an exponential factor of system (1) with cofactor L =
∑q

j=1 µjLj (see

Lemma 8) and G satisfies that XG = 0, that is, G must be a rational first integral of system
(1). By Theorem 11 it must be a rational function in the variable H0. �
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