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Abstract. In this paper a three parameter family of planar differential systems with homogeneous
nonlinearities of arbitrary odd degree is studied. This family is an extension to higher degree of the
Loud’s systems. The origin is a nondegenerate center for all values of the parameter and we are interested
in the qualitative properties of its period function. We study the bifurcation diagram of this function
focusing our attention on the bifurcations occurring at the polycycle that bounds the period annulus of
the center. Moreover we determine some regions in the parameter space for which the corresponding
period function is monotonous or it has at least one critical period, giving also its character (maximum
or minimum). Finally we propose a complete conjectural bifurcation diagram of the period function of
these generalized Loud’s centers.

1 Introduction and statement of the results

The present paper deals with planar polynomial ordinary differential systems and we study the qualitative
properties of the period function of centers. Recall that a critical point p of a planar differential system is
a center if it has a punctured neighbourhood that consists entirely of periodic orbits surrounding p. The
largest neighbourhood with this property is called the period annulus of the center and in what follows it
will be denoted by &. The period function assigns to each periodic orbit in &2 its period. If the period
function is constant then the center is called isochronous. The study of the period function is a nontrivial
problem and questions related to its behaviour have been extensively studied. Let us quote, for instance,
the problems of isochronicity (see [6, 7, 25]), monotonicity (see [3, 23, 27]) or bifurcation of critical periods
(see [4, 12, 13]). Aside from the intrinsic interest of these problems, the study of the period function is
also important in the analysis of nonlinear boundary value problems and in perturbation theory. Indeed,
for instance, under the condition of non-criticality of the period function, zeros of appropriate Melnikov
functions guarantee the persistence of subharmonic periodic orbits of a Hamiltonian system after a small
periodic non-autonomous perturbation (see [8, 15]). Most of the work on planar polynomial differential
systems, including the present paper, is related to questions surrounding the well known Hilbert’s 16th
problem (see [9, 11, 22, 26] and references therein) and its various weakened versions.

Chicone [5] has conjectured that if a quadratic system has a center with a period function which is not
monotonic then, by an affine transformation and a constant rescaling of time, it can be brought to the Loud
normal form

T = —y+ Bzy,
§ =x + Dx? + Fy?,

2010 AMS Subject Classification: 34C0T; 34C23; 34C25.

Key words and phrases: period function, critical period, bifurcation, desingularization.

The first author is partially supported by the DGES/FEDER grant MTM2011-26674-C02-01 and the second author is
partially supported by the CONACIT grant 2009SGR-410 and by the DGES grant MTM2008-03437.


10.1016/j.jde.2013.07.025

and that the period function of these centers has at most two critical periods. The authors together with
P. Mardesi¢ have devoted a series of papers (see [17, 18, 19, 20, 23]) addressed to prove the second part
of Chicone’s conjecture. In the present paper we widen the scope of the study to a higher degree family
maintaining the reversibility, which in particular guarantees the origin to be a center, and the homogeneity
of the nonlinearities. More precisely, we study the period function of the center at the origin of the planar
differential system

i=—y+ Ba""ly,

1
§ =+ D" + Fa"2y2 M)

|
with p:= (B, F,D) € R? and an odd natural number n > 3. To the best of our knowledge this family of
differential systems was first considered in [2], where the authors studied the isochronicity problem for an
arbitrary natural number n. In a subsequent paper (see [24]), by analyzing the ideal generated by the period
constants, it is proved that (%, ;) has at most one (respectively, two) critical periods near the origin for n
odd (respectively, even). Expecting this local bound to be global, in this paper we tackle the case n odd.
This case has the additional advantage that the phase portrait of (%, ,,) is symmetric with respect to both
coordinate axes and, as we will see, this simplifies the computations that we must carry through.

Compactifying R? to the Poincaré disc, the boundary of the period annulus & of the center has two
connected components, the center itself and a polycycle. We call them, respectively, the inner and outer
boundary of the period annulus. Since period function is defined on the set of periodic orbits in &2, usually
the first step is to parametrize this set, let us say {7 }sc(0,1), so that one can study the qualitative properties
of the period function by means of the map s —— period of 7,, which is smooth on (0, 1). The critical periods
are the critical points of this function and its number, character (maximum or minimum) and distribution
do not depend on the particular parametrization of the set of periodic orbits used. For each fixed n, the
differential system under consideration depends on a three-dimensional parameter p, and our aim is to
decompose R? =UV; so that if y; and g belong to the same set Vj, then the corresponding period functions
are qualitatively the same (i.e., their critical periods are equal in number, character and distribution.) A
parameter o € R? is a regular value if it belongs to the interior of some V;, otherwise it is a bifurcation
value. The set of bifurcation values is % := UJV; and, roughly speaking, it consists of those parameters
1o € R3 for which some critical period emerges or disappears as u tends to pg. There are three different
situations to consider:

(a) Bifurcations of critical periods from the inner boundary (i.e., the center).
(b) Bifurcations of critical periods from the interior of the period annulus.

(c) Bifurcations of critical periods from the outer boundary (i.e., the polycycle).

We refer the reader to [18] for the definition of these notions.

One can readily verify that the change of coordinates {u = Az,v = Ay} brings the differential system
(L) into (L p) with ot = )\—1,1 1. Hence, since n is odd, the parameter space has the following radial
property. For each oy € R? the period function of the differential system (-2, 1,,) is, up to a reparameter-
ization of the set of periodic orbits, the same for any ¢ > 0. Thus, in order to understand A it suffices to
study its trace 2 N S? with the unit sphere S = {(B, F, D) € R? : B? + F? 4+ D? = 1} because the whole
bifurcation set 4 is just the positive cone with vertex at the origin over the spherical curve % N S2.

The aim of the present paper is to study the bifurcations from the outer boundary of the period annulus
and to prove our main result, Theorem A, it is more convenient to work in the planes {B = +1}. This, on
account of the aforementioned radial property, covers the whole three dimensional parameter space except
for the plane {B = 0}. Theorem A is a direct consequence of Theorems 3.10 and 3.12, which are devoted
to the cases B = —1 and B = 1, respectively. In order to be more precise about these results, let us follow
the obvious compact notation for each case B = +1. We define, see Figure 7, curves Q4 C {B = +1} that
are proved to consist of local bifurcation values of the period function at the outer boundary in the sense



Figure 1: Local bifurcation curve €2 in blue and its stereographical projection in red.

of [18, Definition 2.4]. In addition, we introduce auxiliary curves, denoted by 7t and %, and we show that
{B ==%1}\ (22U JL UZ+) does not contain local bifurcation values at the outer boundary, i.e., it consists
of local regular values. (Let us advance that the curves ¢ correspond to those parameters for which the
topology of the period annulus changes, see Figure 4, and Z+ correspond to the resonant parameters in the
normal forms that we use after desingularize the polycycle at its outer boundary.) We conjecture that the
curves 74 and Z4 contain in fact local regular values as well, i.e., that all the local bifurcation values at
the outer boundary lie on .

Theorem A gathers the results in Theorems 3.10 and 3.12 explained in the previous paragraph, but for
the sake of convenience and taking advantage of the radial property on the parameter space, we transfer
them on the sphere S?. To this end, let © denote the closure of the union of the radial projections of the
curves 0y C {B = 41} onto the sphere S?. It turns out that €2 is a Jordan curve in S?, see Figure 1.
Taking p := (—1,—n,—2n) € R3, let us denote by Zp (respectively, Zp) the connected component of
S? \ © containing (respectively, not containing) the point p/||p||. Finally, let %/ be the union of the circle
{B = 0} N'S? and the radial projections of the curves .74 and %+ onto the sphere S>. We are now in
position to state the main result of this paper:

Theorem A. Let n > 3 be an odd natural number and p = (B, F, D). Let {fn’u,ﬂ € Sz} be the family of
vector fields in (1) and consider the period function of the center at the origin. Then the set S*\ (QU %)
corresponds to local regular values of the period function at the outer boundary of the period annulus. In
addition,

(a) If po € Zp \ %, then the period function of (-2, u,) is monotonous decreasing near the outer boundary.

(b) If wo € Ip \ % , then the period function of (£, ,.,) is monotonous increasing near the outer boundary.
Finally, the parameters in Q are local bifurcation values of the period function at the outer boundary.

We expect that all the local bifurcation values at the outer boundary are inside €2, in other words that %
consists of local regular values. As we mentioned before, there are two types of parameters in %, the ones
where the topology of the period annulus changes, and the ones that are resonances for the normal forms
of the singularities at the polycycle. We believe that the proof for the second type of parameters could be
carried through with some additional analysis by applying the results obtained in [19]. The study for the
first type of parameters is much more difficult and it requires the development new techniques. Of course
it will still remain open the problem of how many critical periods bifurcate from the outer boundary when
we perturb parameters in €.
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Figure 2: Conjectural bifurcation diagram of the period function, where the red curve corre-
sponds to the bifurcation at the polycycle and the doted circle to the bifurcation at the center
(left). Theorem 4.3 proves the conjecture in the complementary of the grey region (right).

The bifurcation of critical periods from the inner boundary of the period annulus, i.e., the center itself,
is easier to study and it is fully understood thanks to the results in [24]. In short, [24, Theorem B] shows
that this type of bifurcation values lie on the plane {B — F'— Dn = 0} and that the (sharp) upper bound
for the number of critical periods that bifurcate from the inner boundary is one. The proof of this result
relies on the study of the ideal generated by the period constants. Obviously the most difficult part is the
bifurcation from the isochrones, that for the differential system (.7, ,,) lie on the straight lines 1 = A(1, 1, 0)
and g = A(n,n%, 1 —n) with A € R. Note also that the spherical trace ¢’ := {B — F — Dn = 0} N S? of this
plane is a great circle in the sphere.

The combination of the results in [24] with the ones obtained in the present paper lead us to propose a
conjecture for the global bifurcation diagram of the period function of the differential system (%), ). For
reader’s convenience, in order to obtain a more understandable view of the conjectural bifurcation diagram
we perform the stereographic projection o of the sphere S? choosing the point p/|[p| as “north pole”. The
suitability of this choice comes from the fact that, by Theorem 4.3, its corresponding differential system
has a globally monotonous period function, so that the projection on the plane of all the bifurcation curves
in S? will be bounded. Figure 2 displays the stereographic projection of the conjectural bifurcation diagram,
where the red curve is 0(£2) and the doted circle is o(%).

Conjecture. The image by the stereographic projection o of the bifurcation diagram of the period function
of {fn}u,u € SQ} consists in the union of the curves o(€¢) and o(Q), that correspond respectively to the
local bifurcation values at the inner and outer boundaries. These curves split the plane in sixz connected
components, and the period function of (£, ) is either monotonous or has exactly one critical period
according to Figure 2.

We point out that this conjecture claims in particular that there are no bifurcation of critical periods
from the interior of the period annulus. Besides Theorem A we have proved a number of results that give
support to this conjecture. Indeed, Theorem 4.3 shows the validity of the claim concerning the monotonicity
for parameters outside the grey region in Figure 2. Furthermore, we prove in Theorem 4.4 that there exists
at least one critical period in the four components where we conjecture that there exists exactly one. Finally
Proposition 4.6 shows the uniqueness of this critical period for parameters inside two segments. Let us note



that the curves o(%) and o () intersect in four points, see Figure 2, which correspond to the stereographic
projection of the two straight lines with isochrones that we mentioned before.

The paper is organized as follows. In Section 2 we obtain the bifurcation diagram of the phase portrait
of the differential system (1) for B # 0. Section 3 is devoted to the proof of Theorem A, that provides the
local behaviour of the period function near the polycycle at the outer boundary of the period annulus. The
most difficult cases are those in which the polycycle is unbounded and for the differential system under
consideration this occurs in three different situations. The key tool is to obtain an asymptotic development
of the period function near the polycycle which is uniform with respect to the parameters. To this end
we rely on the results that appear in [17, 18, 20], but previously we must compactify and desingularize
conveniently the polycycles. In Section 4 we study the global behaviour of the period function and we
prove some partial results about monotonicity, existence and uniqueness of critical periods. Finally in the
Appendix we give details concerning the radial and stereographic projections used to draw Figures 1 and 2.

The bifurcation of critical periods from the interior of the period annulus is one of the most challenging
problems in the study of the period function. (Its counterpart in the context of limit cycles is the so-called
blue-sky catastrophe.) For the quadratic Loud’s centers, see [18], the existence of curves in the parameter
space associated to this type of bifurcation is one of the reasons why Chicone’s conjecture is still open. For
the generalized Loud’s centers (%, ), the results in [24] seem to indicate the absence of this type of curve
in case that n is odd. Our results reinforce this evidence and so the present paper can be viewed as a first
step in the attempt to solve a problem that is more approachable than Chicone’s conjecture. We point out
that fixing the degree to be for instance n = 3 would allow us to go further in the proof of the conjectural
bifurcation diagram, but it is not the aim of the paper to tackle a particular case. Taking n to be arbitrary
complicates the proofs, while the fact that p is three-dimensional could make the statements cumbersome.
We make a special effort to avoid the latter, for instance, by performing a convenient stereographic projection
of the parameter space.

2 Study of the phase portrait

In this section we study the phase portrait of the family of vector fields
fmu = (—y + B{Enily)aw + (.’E 4+ Da™ + Fxnf2y2)ay

with ¢ = (B, D, F) and an odd natural number n > 3. In what follows sometimes we avoid the subscripts
in %, ,, for the sake of shortness.

Lemma 2.1. The function
(1—Ba"1)"'" 08 if B0,
k(z):= N _
exp ( " ) if B=0,

n—1

is an integrating factor for the differential system (1). The first integral is H(z,y) = A(x) + C(z)y? with

Ax):= /Ox(s + Ds™)k(s)ds and C(z):= $(1 — Ba"1)k(x).

For each value of 1 € R3 and n € N, the vector field .%, , has a center at the origin. Our goal in this
section is to determine its period annulus & as well as its outer boundary, which is a polycyle in some
compactification of R2. To this end we shall use the real projective plane RP? covered by the charts (z,y),
(u,v) = (£,%) and (¢,w) = (i, %) The expressions of %, , in (u,v) and ({,w) coordinates are given,
respectively, by

L(u,v) = (—uv(B +u" )0, + (D + (F — B)o* +u" (1 + v2))av>

un—l
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Figure 3: Phase portrait of —("~1.Z({,w) at the origin.

and

L(Cow) = C_—}l (P 4 D™ 4 ("N + (L) + W E - B4 Du?)a).

Since u" 1.2 (u,v) does not vanish at the origin for D # 0, to study the singular points of (1) at infinity it
suffices to study .Z(¢,w). Now we proceed to study the finite and infinite singular points in some detail:

e If B > 0, then system (1) has two invariant straight lines at Ly := {x = £BwT } If F(B+D)<0

holds additionally, then there exist two finite singular points on each invariant straight line,

{1,1\/—¥,Bﬁ} € L, and [—1,1,/—¥,Bﬁ} L,

which are nodes in case that F' > 0 and saddles in case that F' < 0.

e If D < 0, then there exist two finite singular points on {y = 0} at [:I:l, 0, (—D)ﬁ} , which are centers
when B + D > 0 and saddles when B + D < 0.

e There exists an infinite singular point at [0,1,0], which is degenerate. Since one can verify that
{w = 0} is not a characteristic direction of .Z({,w) at (0,0), it suffices to perform the blow up given
by {¢ = uw,w = w} to desingularize it. This yields to

- 1

L(u,w) = (u(—B+u"_1)8u+w(B—F—Dw2 —u"_1(1+w2))8w). (2)

w1y

The singular point at (u,w) = (0,0) is a saddle if B(B — F) > 0 and a node if B(B — F) < 0. If
B > 0, then there are two additional singular points on {w = 0} at (u,w) = (j:Bﬁ,O), which are

saddles if F' > 0 and nodes if F' < 0. It is easy to verify that the desingularization process yields to
the bifurcation diagram displayed in Figure 3.
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Figure 4: Bifurcation diagram of the phase portrait of the differential system (1) for B = —1,
left, and B = 1, right. The bifurcations that affect the polycycle at the outer boundary of the
period annulus occur only in the dotted lines 7.

e If D(B—F) > 0, then there exist four additional singular points at infinity, located at [:I:l, 1/ %, 0} ,
that are nodes if BD > 0 and saddles if BD < 0.

Figure 4 displays the bifurcation diagram of the phase portrait of system (1) for B # 0. One can easily
obtain it by taking into account the character and distribution of the singular points as explained above,
the symmetries with respect to the x and y axes, and the fact that it has a first integral which is quadratic
in y. As we will see, the bifurcations that affect the polycycle at the outer boundary of & will play an
important role in the forthcoming discussions. For B = —1 and B = 1 are given, respectively, by

T_:={D=0}U{D>0,F=—-1} and T,:={D > —-1,F =0} U{D = —1}. (3)

3 Bifurcation of critical periods from the polycycle

The program to carry through the study of the period function near the polycycle goes as follows. We first
desingularize the critical points in the polycycle. This gives rise to a new polycycle with only hyperbolic
saddles at the vertices that are orbitally linearizable. The pull-back of the vector field by the desingulariza-
tion is not polynomial anymore but meromorphic. Taking advantage of the symmetries of the system under
consideration it turns out that it suffices to analyse the time function associated to the passage through
one of the saddles in the desingularized polycycle. At this point the key tool to prove Theorem A will
be to compute the first terms in the asymptotic development of this time function. To this end we shall
apply the results that appear in [17, 20]. Thus for reader’s convenience we devote Subsection 3.1 to state
them and introduce the related notions. Next we consider the cases B < 0 and B > 0 in Subsections 3.2
and 3.3 respectively, that can be reparameterized without loss of generality to B = 41 on account of the
radial property of (.Z,,,,) explained in Section 1. We focus on those cases in which the period annulus is
unbounded because this is the really complicated setting.
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Figure 5: Definition of the time function associated to the passage through a saddle.

3.1 Technical tools

In this subsection we show how to compute the first terms in the asymptotic development of the time function
associated to the passage through an orbitally linearizable saddle of a family of meromorphic vector fields.

Let W be an open set of R¥ and consider an analytic family of meromorphic vector fields {X,,, u € W}
of the form

X/i(xvy) =

g7 (@P @419 + yQ(w, 3 1)Dy ), (4)
where p,q € Z. We assume that P and @ are analytic functions on V x W, where V is an open set of R?
containing the origin, and that verify P(x,0;u) > 0 and Q(0,y; u) < 0. Note then that, for each u € W,
xPy9X,,(z,y) is an analytic vector field on V' that has a hyperbolic saddle at the origin with hyperbolicity
ratio given by

Q(0,0; 1)

A(/,L): —m > 0.

Let 0 : I xW — ¥, and 7 : I x W — ¥, be two analytic transverse sections to X, defined by
o(sip) = (o1(sip), 02(si p)s ) and (s p) = (11(s3 ), 72 (83 10); 1)

such that o1(0; 1) = 0 and 72(0; ) = 0. (Here I stands for a small interval of R containing 0.) We denote
the Dulac and time mappings between the transverse sections X, and ¥, by R and T respectively. More
precisely (see Figure 5), if ¢ (t, (zo,0); ) is the solution of X, passing through (zo,y0) at ¢ = 0, for each
s> 0 we define R(s;u) and T'(s; ) by means of the relation

p(T(sp),0(s); 1) = 7(R(s; ). (5)
Definition 3.1. We say that {X,,, 4 € W} verifies the family linearization property (FLP in short) if there

exist an open set U C R? containing the origin and an analytic local diffeomorphism ® : U x W — V x W
of the form ®(z,y; ) = (ac +h.o.t.,y + h.o.t., ,u) such that

X, = 0 (G (a0 = ).

where f is an analytic function on U x W. O



Remark 3.2. It is easy to show that the family of meromorphic vector fields {X,,, p € W} defined in (4)
verifies FLP if it has a generalized Darbouz first integral

Hyy(w,y) = fi(a,y; )W - frola,y; ),

where f; € C*(U xW) for some open set U C R? containing the origin and 3; € C*(W). O

Definition 3.3. Let U be any open subset of R¥. We denote by Z(U) the set of germs of analytic functions
h(s; ) defined on (0,¢) x U for some € > 0 such that

h .
lim h(s; ) =0 and lim s Olsip) _ 0
s—0 s—0 S
uniformly (on p) on every compact subset of U. O

Definition 3.4. The function defined for s > 0 and @ € R by means of

| :
wis;a) = — if a # 1,
log s ifa=1,

is called the Ecalle-Roussarie compensator. (|

In order to simplify the expressions that appear henceforth we introduce the functions

e (1 (G685 +5)%)
)

M (u; ) == exp (/0 (ggg) + A) df) :

and the cover of the parameter space W given by

The next result is proved in [20, Theorem A].

Theorem 3.5 (First order development). Let {X,,, u € W} be the family of vector fields defined in (4) and
assume that it verifies the FLP. Let T' be the time function associated to the transverse sections ¥, and X,
as introduced in (5). Then the following holds:

(a) If p € Wy then T (s;p) = sP(A1(p) +Z(Wr)), where

0 Pyd—%
S Zermon / 0 %%'

(b) If p € Wo then T(s; ) = s (Ao(p) +Z(W2)), where

71(0) x)92P~ M dx
An() = (a;(o)A@(o)L(O)*)q/o M(P()Td?



(c) If p € Wy then T(s; ) = s™ (As(p)w(s;p+ 1 — Aq) + As(p) + Z(W3)), where Az and Ay are analytic
on Ws. Furthermore, if Nuo) = p/q then

o' A )\02 aq
AB(MO) — _( 1(0) PL(((;))O) (O)) )

Let us clarify that, for the sake of simplicity in the exposition, in the statement we write A(u) + Z(W)
meaning A(u) + h(s; p) with h € Z(W). In what follows we shall make this abuse of notation when there is
no danger of confusion. For the case p = 0 we shall need an additional term in the asymptotic development.
In order to treat this case we introduce the cover of the parameter space given by

The following is the main result in [17].

Theorem 3.6 (Second order development). Let {X,,, u € W} be the family of vector fields defined in (4)
taking p = 0 and assume that it verifies the FLP. Let T' be the time function associated to the transverse
sections X, and L as introduced in (5). Denoting

0 yq—l
Ai(p =/ dy,
1( ) o2(0) Q(Ovy)

the time function T (s; u) verifies the following:
(a) If p € Uy then T(s;p) = Ay (p) + s(IL (1) + Z(Uy)), where

a2(0) .
/(O)UQ(O)I/A/ 9 Q. (0,y)L(y)y? /A d_y

~5(0) 0(0)97!
T 0 Q(0,y)? y

Q(Oa 02 (0))

Iy (p) =
(b) If p € Uy then T(s; p) = A1 (p) + s (Ha(p) + Z(Uz)), where
ooy OO My M)y e
Ma(p) = 71(0) o2 (0)"L(0)" {q@(070> (P pow) e }

(c) If p € Us then T(s;p) = Ax(p) + s(Hs(p)w(s; Aq) + Ha(p) + Z(Us)), where Iz and 11y are analytic
on Us. Furthermore, if Nuo) = 1/q then

Qu(0,0)

I3 (po) = —qff/l(o)ffz(o)qL(O)P(O 02

We conclude this subsection with a technical result that we shall use henceforth in some computations
and that refers to the Gamma function, which is defined by

(o)
T(z):= / t*~te~'dt for any z € C with Re(z) > 0.
0

Lemma 3.7. Let w and z be any complexr numbers with strictly positive real part. Then

10



v w1, [ wldu  T(2)I(w)
@ [wta—arta [ gt - R

I'(z)l(w)
I'(z 4+ w)

! 1—(1—u)nt =t L _ 1 F(z)F(ﬁ) 1 .
(c) /0 ((T) —u ) du = 1) T+ 1) — provided Re(z) > —1 and n > 1.

n

1
— —, provided Re(z) > —1,
z

(b) /0 T (1—w) T =1) du=

Proof. The equalities in (a) are well known, see for instance (6.2.1) and (6.2.2) in [1]. The equality in (b)
follows directly from (@) in case that Re(z) > 0. On account of this, the equality on Re(z) > —1 will follow
by analytic continuation. Indeed, if Re(z) > —1 then the integral on the left hand side is convergent because
PN ) it B W analytic at « = 0. In addition, for each fixed w, the function on the right hand side
is a (univalued) holomorphic function on Re(z) > —1 because, see (6.1.34) in [1], zI'(z) — 1 as z tends
to 0. This proves (b). Let us turn finally to the assertion in (¢). For convenience we will first prove it on

Re(z) > 0. In this case,

L= =)\t . 1 ! ) wr |
I S A 2 - = 1— z—=1,,7—5-1 oz
/0 (( — ) U du = 1)Z/0 ( v)* v dv =,

where in the first equality we perform the change of variables v = (1 — u)"~! and in the second one we

use (a). As before the equality on Re(z) > —1 follows by analytic continuation. To show this we rewrite

the integrand as
n— z—1 n— z—1
1_(1_u) ! _uz—lzuz—l 1—(1—U) ! 1
n—1 (n—1u

1_(1_u)n71

z—1
e ) — 1 is analytic and vanishes at v = 0. [ ]

and we observe that the function u — (

3.2 The case B<O0

We treat first those parameters for which the center is global, i.e., setting B = —1, we consider p:= (D, F)
inside {D > 0,F > —1}, see Figure 4. In the next result T'(s;u) is the period of the periodic orbit of
system (1) passing through the point (1/s,0) € R? and we provide its asymptotic development for s ~ 0.

In its statement we denote )
n—
H_ = F=-1+1 6
U { +i } » (©)

i>0

which corresponds to the resonant parameters in the normal form of the saddle at infinity that we obtain
after desingularize the polycycle. Let us advance that the result follows by applying Theorem 3.5 and point
out that the case involving the Ecalle-Roussarie compensator is missing because it would cover F' =n — 2,
which is a resonant parameter

Lemma 3.8. Let us define Wy ={D >0,F >n—2}\Z_ and Wo ={D >0,F € (-1,n—2)} \ Z_.
(a) If p € Wy then T(s; ) = s" (A1 () + Z(Wh)), where Ay is analytic and strictly positive on W.

(b) If p € W then T(s;p) = s" 1 (Ag(p) + Z(Ws)), where Ay is analytic and strictly positive on Ws.
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Figure 6: Desingularization and transverse sections in Lemma 3.8.

Proof. The polycycle at the outer boundary of the period annulus is the line at infinity and in order to
study it we use the chart ({,w) = (%, %), see Section 2. It has only a singular point at (¢,w) = (0,0), which
is degenerated. To desingularize it we perform the blow up {¢( = uw,w = w} and we obtain (2). This is a
family of meromorphic vector fields of the form (4) with {p =n—1,¢ =1} and

P(u,w)=1+u""' and Q(u,w) = =1 — F — Dw? —u" (1 + w?),

so that \ = —?,28:83 =F+1.
In order to apply Theorem 3.5 it is first necessary to check that X, (u,w) with p € {D > 0, F > —1}\Z_

verifies the FLP, see Definition 3.1. Taking {x = %, Yy = %} into account, by applying Lemma 2.1 we know

that H (u,w):= AL)+ C(4) =L is a first integral of X, (u,w). Some easy computations show that

o
@

duA(l/u) = u’zF’gfo(u"’l) with fo(u):= —(u+ D)(u + 1)—1+%'

Clearly fj is an analytic function at u = 0. If fy(u) = 21‘;0 a;u’ is its Taylor’s development at u = 0 and
we set o = 2F + 3 for shortness, then %A(%) =2 i>0 a;u™ 1= Accordingly

a; .
_ v (n—1)i—a+1 : a—1
A(l/u) = iéo - TDi—atl TU , provided &= +1 ¢ N.

Since this condition writes as F' ¢ #Z_, we can assert that A(%) =u!'~f;(u"~ 1) with f; being an analytic
function at u = 0. On the other hand, C(1/u) = u=2F fo(u™~ 1) with fo(u) = (u + 1)%, which is analytic
at u = 0 as well. Therefore

w? fi(u" ) + fo(u"h)

H(u,w) = D

is a generalized Darboux first integral for X, (u,w) with p € {D >0, F > —1} \ Z_ and this, on account of
Remark 3.2, shows that the family of meromorphic vector fields under consideration verifies the FLP.

For convenience we study, see Figure 6, the time function associated to the passage from the transverse
sections Y, = {y = ex} to ¥, = {& = e}, where ¢ > 0. More precisely, taking (u,w)-coordinates, we
parametrize X, and 3, with o(s) = (s,1/¢) and 7(s) = (1/¢,¢es), respectively. Define i = (D, F,¢) and let
T'(s; i) be the time that spends the solution of (2) passing through the point o(s) € X, to reach 3,. Some
computations show that

F+1+ Du? \ 70 e
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By applying Theorem 3.5 we can assert that if 4 € Wi then T'(s; 1) = s~ (A (1) + Z(Wy x V), where V
is a neighbourhood of € = 0 and

1 n—1 _n—1
/e um (F+ 14+ Du2 2(F+1) du
)

A ) =
1) o F+1+Du2\D+e(F+1

Since the differential system (1) is symmetric with respect to both coordinate axes, it turns out that
T(s; ) = 4lim._,0 T(s; 2). In fact, following exactly the same approach as in the proof of [18, Theorem 3.6],
one can show that T'(s; ) = s" 1 (A1 (p) + Z(W1)) with

n—1 -1

Fil FTD) e

Ay(p) =4lim A(p) = / < + u2) w5 du.
e—0 D

This proves (a) because it is clear that A; is strictly positive on Wj.

On the other hand, by applying Theorem 3.5 again, if € Wy then T'(s; i) = s (AQ( )+ Z(WaxV)),
where V' is a neighbourhood of ¢ = 0 and

du.

Ag(i) = | —F*1 1/€1+un1n11
=N DTeF 1) w2

As before, T(s; p) = s* (Ao (p) + Z(W2)) with

F+1 (1+4ur—lyas—t
Ba) = 4l Bo() = 1y 5+ [T B,
u

and this completes the proof of the result because A, is strictly positive on Ws. [ ]

Let us consider now the case {D > 0, F < —1} and recall that we set B = —1 without lost of generality.
For these parameter values, see Figure 4, the outer boundary of the period annulus is a polycycle with four
singularities, all of them being hyperbolic saddles at infinity. In the next result 7'(s; 1) denotes the period
of the periodic orbit of system (1) passing through the point (1/4/s,0) € R?.

Lemma 3.9. Let us define the subsets Uy = {D >0,F € (—"—+1 1)}, Us; = {D >0,F < —"TH} and

2
={D>0,Fe (-3 —n3)}

(a) If p € Uy then T(s;p) = A1(p) + s(Ii (p) +Z(Ur)), where Ay and Iy are analytic on Uy. In addition
Iy is strictly positive.

(b) If p € Uy then T(s; u) Aq(p) + s~ 2D (2 () + Z(Uz)), where Ay and Il are analytic on Us.
Moreover, Ilo(n) = 0 with p € Uy if, and only, if F = —n and Iy is strictly positive (respectively,
negative) for F € ( n, ) (respectively, F' < —n).

(c) If p € Us then T(s;p) = Ar(p) + s(Ils(p)w(s; —%) + Iy () + Z(Us)), where Ay, 13 and Iy are
analytic on Us. Moreover, if o = (Do, Fy) with Fy = —"TH, then I13(up) > 0.

Proof. On account of Lemma 2.1 system (1) has a first integral of the form H(z,y) = A(z) + C(z)y?. In
addition, see Figure 4, the outer boundary of the period annulus is inside the level curve {H = r} where

[ee] D n
r:= lim A(x) :/ Lsnds.
T—>00 0 (]_ + Snfl) T a1

The polycycle is composed by the two segments of the line at infinity joining the hyperbolic saddles, together

with the two connected components of the curve given by the affine equation y2 + A(x() )T = 0. Since n is odd

13



it follows that x — Agﬂ()ggr is an even function, and consequently we can write C(z) = 9(x?), where 1 is

an analytic function. Moreover, taking lim; .o ;%F% = D into account, one can easily show by applying
L’Hopital’s rule that lim, ;42((?;? = ﬁ. Thus, since lim, % = %, we conclude that
2
T D
lim () = —_—
z—so00 2 F+1

(7)
On the other hand, the implicit differentiation in the equality that defines ¥ yields

1+ D"t — Fa"3y(x )

12N

Taking this equality into account, some long but straightforward computations show that the local coordinate

transformation given by {z = —m W= } and the reversion of time brings system (1) to a family
of vector fields of the form (4) with’ {p 0,¢ =251} and

P(z,w) = -2(F+1 —l—w%)\/—z —wy(l/w) and Q(z,w) = —2(1 —|—wn2;1) —z —wi(l/w).

These are well defined functions on w = 0 because, on account of (7),

P(z,0) = F—I—I\/ —zanszO -2 F+1 (8)

so that A = —ggg:g; = +1 Taking a small parameter € > 0, we consider the transverse sections to the

polycycle given by X, = {x = /e } and ¥, = {y = 0}, parameterized respectively with

s— (Ve,v/—(e) —s) and s — (1/4/5,0).

Using (z,w)-coordinates they write as o(s) = (s/e,1/e) and 7(s) = (—s1(1/s),s), respectively. Define
= (D, F,e) and let T'(s; i) be the time that spends the solution passing through o(s) € 2, to reach 2.

n—1 —2F
WFH (14w 2 ) ToT

Since one can verify that H(z, w) = - is a first integral for X,,(z,w), from Remark 3.2
it follows that the family of meromorphic vector fields under consideration satisfies the FLP. We can thus
apply Theorem 3.6. To this end let us first note that

2F

L(u) = % and M(u) =
e~z +1

If € Uy then T(s; i) = Ai(f) + sILy (i) + sZ(Uy x V), where V is a neighbourhood of & = 0. In addition,
setting ¢ = an for the sake of shortness, some computations show that

() = —= /1/E (L+w) s 'wi % dw
1 - — 3 R
0 (~wy(3))” (e ¥

4
Due to the symmetries of system (1) and the fact that we reversed the time, by construction we have that
T(s;p) = —4lim._,0 T'(s; fr). In fact one can show that T'(s; u) = Aq () + sIIi () + sZ(Uy) with

A . oo (1 4 w?) "7 wix dw
B0 =~ tiy A (i) and i) = ~4 T Ty ) = [+ EE0 ,

e—0

which is clearly positive. This proves the statement in (a).
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On the other hand if y € Uy then T'(s; i) = Ay (1) + s () + s)‘qI( ) ere V is again a
neighbourhood of £ = 0. In order to compute II, let us first note that, from ( = (F—D ) Therefore,
taking (8) into account as well, we obtain

fa(a) -1 1/ —p \ etz ) IAIRE
2 'LL = —_ _—
21 +en)M ) g \ F+1 \/ F—|—1 /1 F+1 zAg+1
+
VA ([ =D\ TME T(=)g)
2+ e \1+F I'(3-Ag)’

where in the last equality we use relation (b) in Lemma 3.7 with an appropriate rescaling in the variable z.
Accordingly, exactly as in the previous case, it follows that T'(s; ) = Ay () + s () + sMZ(Uy) with

D )A‘”% I(-\g)
1+ F I'(3-Ag)

Note that the Gamma function is a non-vanishing meromorphic function with poles at the non-positive
integers. Consequently ITs(u) = 0 with p € Us if, and only, if \g = %, i.e., ' = —n. One can also check that
Iy(p) < 0 for F < —n and Tz(p) > 0 for —n < F < —™ This proves (b).

Finally, if 4 € Uz then we have that 7(s; 1) = Ay (f1) + s(Is(2)w(s; Ag) + (i) + Z(Us xV)), where V
is again a neighbourhood of € = 0. Moreover, if fig = (DO, —"—H, 5) then some computations show that

~ R —1 n—1 n—1, _ntl
Hs(,uo)=4—DOU 2Dy (1+e2) .

Thus, exactly as before, T'(s; ) = Ay (p)+s (I3 ()w(s; Aq)+1Ly (1) +Z(Us) ), where IT; (1) = —4 lim._,o IL (f1).

Consequently IT3 (1) = 1 -1/ 550 D , which is positive because Dy > 0. This shows (¢) and completes the proof

of the result. ™

n2<u>=—4;ig5ﬁz(ﬂ>—2f(

The following result summarizes the results about the behaviour of the period function near the polycycle
that we have proved so far. Recall that we consider the differential system (1) with B = —1, i.e.,

i=—y—a"ly,
y n n—2,2 (9)
y=x+ Dx" + Fx" "y,

Define Q_ = {D =0,F > —n}U{D > 0,F = —n}. Recall as well that 7_ and Z_ are given in (3) and (6),
respectively. The reader is referred to [17] for the definition of local regular value of the period function
at the outer boundary. Roughly speaking these are the parameters for which no critical periods bifurcate
from the polycycle. A parameter which is not a local regular value at the outer boundary is called a local
bifurcation value at the outer boundary.

Theorem 3.10. Consider the period function of the center at the origin of the differential system (9). Then
the set R?\ (- UZ_UT_) corresponds to local regular values at the outer boundary of the period annulus.
For these parameters the period function is monotonous near the outer boundary and the corresponding
character is shown in Figure 7. Finally Q_ are local bifurcation values at the outer boundary.

Proof. Note first of all that if u* = (D*, F*) ¢ Q_ U Z%_ U T_ then either D* < 0 or it belongs to some of

the sets W; (respectively, U;) in the statement of Lemma 3.8 (respectively, Lemma 3.9). Let us postpone
the case D* < 0 and suppose for instance that p* € W; (the other cases follow exactly the same way).
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Figure 7: On the left (respectively, right), local behaviour of the period function at the bound-
aries of the period annulus for system (9) (respectively, (11)) and parameters (F, D) not in
Q_UZ_UT_ (respectively, Q1 UZ4 UTy). The left and right arrows in each rectangle stand,
respectively, for the monotonicity near the center and the polycycle. The grey regions consists
of parameters with at least one critical period.

In this case by (a) in Lemma 3.8 we can assert that if y ~ p* then T'(s;p) = s" 1 (Aq(p) + f(s;p)) with
f€Z(Wy) and Aq(p*) > 0. Taking Definition 3.3 into account we thus obtain

L OO+ s 2L () s (5.) — (0,00,

Hence there exist a neighbourhood U of p* and & > 0 such that Ts(s; ) > 0 for all s € (0,¢) and p € U.
This shows that no critical period bifurcates from the outer boundary for p ~ p*. In addition, since
s \¢ 0 corresponds to periodic orbits approaching to the polycycle, the period function of system (9) with
w = (D*, F*) is monotonous decreasing near the outer boundary.

Let us suppose finally that D* < 0. In this case, see Figure 4, the period annulus & is bounded and
the singularities at its outer boundary are two (finite) hyperbolic saddles. We shall take advantage of the
symmetry of the system with respect to both coordinate axes. Thus, let (—g,§) the the projection of & on
the y-axis and, for s > 0, let T(s;u) be the time that spends the periodic orbit of (9) for going from the
point (0, =y + s) to (0,9 — s). Note that the period of the periodic orbit is precisely ZT(S; ). By applying
[20, Theorem A] it follows that if A;(u) is the positive eigenvalue of the saddle, then

T(s; ) = —ﬁu) log s + Aa(u) + f(5:1),

where A, is analytic and f € Z(U) for some neighbourhood U of u*. Hence sT(s; 1) tends to —1/A(u*) as
(s, ) — (0, u*). This proves that p* is a local regular value and that the period function is monotonous
increasing near the polycycle. Finally the last assertion follows from the fact that in any neighbourhood of a
parameter pu € £2_ there are two parameter values yielding to a period function with opposite monotonicity
at the outer boundary. This completes the proof of the result. [ |

As we explain in the introduction, we conjecture that the parameters inside Z_ and 7_ are local regular
values as well, i.e., that all the local bifurcation values lie on )_.
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Figure 8: Desingularization and transverse sections in Lemma 3.11.

3.3 Thecase B >0

In this case we set B = 1 without loss of generality. Note, see Figure 4, that the polycycle at the outer
boundary of the period annulus contains finite hyperbolic saddles except for {F > 0,D > —1}. For these
parameter values the polycycle consists of the straight lines x = +1 together with their intersections at
infinity, which are degenerated singular points. The next result treats this case and in its statement T'(s; )
is the period of the periodic orbit of system (1) passing through the point (1 — s,0) € R%. Moreover we use

the notati()n
Ky = | | F=it (10)
' 2 ’

i>0

which is the set of resonant parameters in the normal form of the saddle that we obtain after desingularize
the polycycle. The result follows by applying Theorem 3.6 and we point out that the case involving the
Ecalle-Roussarie compensator is missing because it would cover F' = n — 1, which is a resonant parameter

Lemma 3.11. Define Uy ={D > -1,F >n—1}\ %y and Uy = {D > -1, F € (0,n— 1)} \ Z4.

(a) If w € Uy then T(s;p) = Ay () + s(Iy (u) + Z(Ur)), where Ay and 11y are analytic on Uy. In addition,
(1) = 0 with p € Uy if, and only, if D = 5=L- and 11, is strictly negative (respectively, positive) for

2F—n
—-1<D< ;;fn (respectively, D > le_fn)

(b) If p € Uy then T(s;p) = Al(u)—f—s*% (o () +Z(Us)), where Ay and Iy are analytic on Uy. Moreover,
Mo () = 0 with pu € Us if, and only, if F = 1 and Iy is strictly negative (respectively, positive) for
0 < F <1 (respectively, 1 < F <n —1).

Proof. To study this polycycle we use the chart (¢,w) = (%, %), as explained in Section 2, and we obtain the
vector field .2 (¢, w). The singular point at the origin is degenerated, so we blow up with {w = wjvy,{ = vy }.
This yields to a vector field that has two hyperbolic saddles located at (u1,v1) = (£1,0), which correspond
to the invariant straight lines x = 41 arriving to infinity, see Figure 8. Taking advantage of the symmetries
of system (1), to study T'(s; u) for s = 0 it suffices to consider the time function associated to the passage
through one of these saddles. To this end we perform a further translation {us =1 — uy,v2 = v1} to bring
the one at (u1,v1) = (1,0) to the origin. Omitting the subscript of the last coordinates for the sake of

simplicity, we thus obtain a vector field of the form (4) with {p =0,¢ = 1} and
R et C 0 L o 2 L \n—3 _oyn—1,2
P(u,v) = - and Q(u,v) = (u—1)(v* + F(1 —u)" > + D(1 — u)""v?).
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Note that A = — ggg’gg = % Taking a small parameter £ > 0, let us consider the transverse sections to

the polycycle given by 3, y =ex} and X, = {& = 0}, parameterized respectively with

s— (1—s,6(1—35)) and s — (0,1/s).

On account of {u =1—z,v = %}, in (u, v)-coordinates they write as o(s) = (s, ﬁ) and 7(s) = (1,s),
respectively. Setting i = (F, D, ), let T(s,,&) be the time that spends the solution of X, passing through
the point o(s) € X, to reach 3.
By applying Lemma 2.1 we can assert that PAI(u,v) = H(l—u,2) = A1 —u) + C(1 — u)Z is a first
integral for X, (u,v). In order to study it we first note that
d
du

_1_2F

AL =) = (1= D)) (1 - (1w

n—1
Since u — # is an analytic function at u = 0, this shows that -LA(1 — u) = u=fo(u) with

a=1+ T?—fl and fy analytic at uw = 0. If fo(u) = Zi>0 a;u’ is its Taylor’s series at u = 0, then

A(l —u) = Z _aﬁui_“"“ provided o ¢ N.
i—a
i>0
This condition is precisely F' ¢ %, and consequently A(1 —u) = u!=%f;(u) with f; analytic at u = 0. On
—2F —
the other hand, C(1 —u)=3(1— (1 —w)" )" " = u%fg(u) with fo analytic at v = 0. Hence
B(uv) = fiw)o? + fo(u)

Wt 2
is a generalized Darboux first integral for X, (u,v) with g € {F > 0,D > —1}\ %4 and this, on account of
Remark 3.2, proves that the family of meromorphic vector fields under consideration satisfies the FLP.

Some computations show that

By applying Theorem 3.6, if 1 € Uy then T'(s; i) = Ay (j1) 4511 (1) +sZ(Uyx V), where V is a neighbourhood
of ¢ = 0. In addition one can show that

. - /1/6 ((n— 2)F + (nD + 1)u?) (F + (1 + D)) ™ 2 qu
0

L (4) = ————— +
W8 = T pe (D+1+ Fe)s ut

By construction we have T'(s; 1) = 4 lim. 0 T(s; i). One can prove that T'(s; i) = A (p) 4 sy () +sZ(U7),
with Ay (p) = 4lime0 A1 () and

i () = ——— [ n— n u? u? w2 du
Hl(“):ﬂ%m(“)_wﬂ)%/o (= 2F + (D + Du) (F + (14 D)u) 5 25

Vrn—1) T(5—3)
2

= (=14 D@F = n) (F(D+1))*? T(2=3)’

where in the last equality we use twice (a) in Lemma 3.7. This proves (a) because the assertions concerning
the sign of II; follow easily using the properties of the Gamma function and that A(u) > 1 for p € Uy.
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Finally, if o € Uy then T'(s; i) = A1 (1) + s o (1) + s*Z(Uy x V), where V is a neighbourhood of & = 0

and
a F 1 1 ! (n—1)u At du
() = m{_F+n—1/o ((1—(1—u)"—1> (e

As before, T'(s; j1) = 4lime_o T'(s; i) and T(s; 1) = A1 (p) + s o (p) 4+ sMZ(Us) with

o VF 4 4 [ n—1 ML
HQ(”):Q%HQ(”):\/D—H{_F‘Ln—l/O ((m) —W>du}
A—1 4\/F F(_)‘)F(ﬁ)

VDT IG5

where to obtain the last equality we use (¢) in Lemma 3.7. On account of A\(u) € (0,1) for p € Us, this
shows that IIp (i) = 0 with p € Us if, and only if, A\ = —1— i.e., F = 1. The assertions concerning the sign

n—17
are straightforward and are left to the reader. This shows (b) and completes the proof of the result. [ ]

=(n-1)

Next result gives the behaviour near the polycycle of the period function of system (1) with B =1, i.e.,

jj = —y+ an_l ,
{ y y )

Y =a+ Da™ 4+ Fa" 22

The proof for those parameter values with an unbounded period annulus follows directly from Lemma 3.11.
In case of bounded period annulus the singularities at the polycycle are (finite) hyperbolic saddles, see
Figure 4, and the proof follows verbatim the approach we used to prove Theorem 3.10. In the statement €
stands for the union of {D = %,F >n — 1}, {D > -1, F = 1} and {D =-1,Fe(l,n— 1)} The
definition of 75 and % is given in (3) and (10), respectively.

Theorem 3.12. Consider the period function of the center at the origin of the differential system (11). Then
the set R?\ (4 UZ, UT,) corresponds to local regular values at the outer boundary of the period annulus.
For these parameters the period function is monotonous near the outer boundary and the corresponding
character is shown in Figure 7. Finally Q4 are local bifurcation values at the outer boundary.

We conjecture that all the local bifurcation values at the outer boundary are inside €24, in other words
that Z and T consists of local regular values.

4 Global behaviour of the period function
In this section we focus on the behaviour of the period function in its whole interval of definition. To this
end we will take advantage of some previous results about the period function of a potential system. Our

first result shows that we can indeed bring (1) to a potential system. It follows by applying [10, Lemma 5]
and taking Lemma 2.1 into account, where the functions A, C' and « are defined.

: : G
Lemma 4.1. The coordinate transformation {u = f(z),v = \/2C(z)y}, where f(x):= / ——ds,
y {u = fle)0 = V2O, where f() = [ —2o

brings system (1) to the potential differential system

{ b= (4011 (). 2
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Figure 9: The subsets M; and My for B = —1 (left) and B =1 (right) in Proposition 4.3.

Lemma 4.2. Let V' be an analytic even function with V(0) = 0 and suppose that the differential system

{ T = Y,

y=V'(x),

has a center at the origin. Let (—x,x,), with x, > 0, be the projection of its period annulus on the x-axis.
Then the following holds:

a € PETLO uUnclion o, € center 15 monoitonous, en r —— —z= 1S Monotonous on s Ly ).
If the period function of the center i t th V) t 0

(b) If VB does not vanish on (0,x,.), then the period function of the center is monotonous.

(c) If N:=4(3(V")? — V’V(?’))V2 — 12(V")2V"V + 3(V')* has at most one zero on (0,z,) counted with
multiplicities, then the center has at most one critical period counted with multiplicities.

Proof. The first assertion follows from a result by Opial, see [21, Theorem 6]. To show the other two we

N2 " /
apply a criterion proved in [20]. To this end, set p;:= %;7,2)‘2(", and define puy = %uk_l + ﬁ (“k‘;}v)

for k > 2. Since V' is an even function, by applying [20, Theorem A] it follows that if the number of zeros
of py on (0, ,), counted with multiplicities, is n > 0 and it is verified that n < k, then the number of critical
periods of the center, counted with multiplicities as well, is at most n. The assertion in (b) is a particular
case of the application of this criterion with & = 1, which shows that if ;1 does not vanish on (0, z; ), then
the center does not have any critical period. To see this it suffices to note that the function (V') — 2VV"
vanishes at z = 0 and that its derivative is equal to —2V V(). This proves (b). Finally the assertion in (c)
follows directly by applying the above criterion with & = 2 because one can verify that pus = ﬁ. This
completes the proof of the result. [ |

4.1 Monotonicity

We give now some regions of the parameter space where the period function is monotonous. As usual we
reparametrize the case B # 0 to B = +1. In the statement M; (respectively, My) stands for the union of
the light (respectively, dark) grey regions in Figure 9.
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Theorem 4.3. Consider the center at the origin of the differential system (1). Then the following holds:

(a) If B = %1 then the period function is monotonous increasing (respectively, decreasing) in case that (D, F)
belongs to M; (respectively, My).

(b) If B = 0 then the period function is monotonous increasing in case that D > 0 and F > 0, and it is
monotonous decreasing in case that (D, F) € {0 <nD < —F}U{nD < —|F|}.

Proof. By Lemma 4.1, the coordinate transformation {u = f(z),v = \/2C(z)y} brings system (1) to

U= —v,

{ b= V(u), (13)
with V = Ao f=1, where recall that A, C and s are related to the first integral of (1) and are given in
Lemma 2.1. Note in particular that V' is an even function because n is odd. It is also clear that if (—z;, x;)
is the projection of the period annulus of system (1) on the z-axis, then the projection of the period annulus
of (13) on the u-axis is (—uy, u,) with u, = f(z;).

We note at this point that V" = nof~! with n:= %. Some long but straightforward computations
show that
n(u) =1+ (F +nD — Byu""' 4+ D(F — nB)u?"~Y,

Our goal is to apply (b) in Lemma 4.2 taking advantage of the fact that V() = (%) of~1. To this end, on

account of f’ > 0, note that V(%) is positive (respectively, negative) on (0, f(acr)) if, and only if, 7 is strictly
increasing (respectively, decreasing) on (0, x,). One can check that

n(z) = (n—1)2"2S(z"" 1) with S(z) = F +nD — B+ 2D(F — nB)z.

The value of z, depends of course on u = (B, D, F'). For B = +1 this value can be obtained by means of
the study of the first portrait of (1) carried out in Section 2. Let us consider the case B = —1 first. Then,

see Figure 4, we have that z,, = +oo for D > 0 and z, = (—D)% for D < 0. Accordingly, since S is linear,
7’ does not change sign on (0, z,) if, and only if,

D(F+nD+1)(F+n)>0, for D>0,
and S(0)S(—1/D) > 0, which writes as
(F4+nD+1)(nD—-F—2n+1)>0, for D <0.

For B =1, see Figure 4, it turns out that z, = (—D)% for D < —1 and z, =1 for D > —1. Therefore 7’
does not change sign on (0, z,) if, and only if, S(0)S(—1/D) > 0, which writes as

(F4+nD—-1)(nD—-F+2n-1)>0, for D < —1,
and S(0)S(1) > 0, which writes as
(F+nD—1)(F—1+D(2F —n)) >0, for D> —1.
Taking the sign of S(0) also into account, Figure 9 displays the regions verifying these inequalities and this

proves (a). Finally if B = 0, then it turns out that

A ny  —E_
V' (f(z)) = (F>(m) = (z + Dz™)en-1*
On account of this we have that z, = (—%)ﬁ, for D < 0, and z,, = 400, for D > 0. Thus, ' does not
change sign on (0, z,) if, and only if, (F' + nD)F > 0 for D > 0 and S(0)S(—1/D) > 0, which writes as
(nD)? — F? > 0, for D < 0. Accordingly, taking the sign of S(0) = F' + nD also into account, we obtain the
inequalities in (b) and so the proof is completed. [ |
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4.2 Existence of critical periods

Our first result covers the case B # 0 and it is in fact a consequence of Theorems 3.10 and 3.12. The reader
is referred to them for the definition of the curves Q4, Z+ and 7.

Theorem 4.4. If (F, D) is inside the grey region in the left (respectively, right) diagram in Figure 7, but it
does not belong to Q_ UZ_ UT_ (respectively, Q4 U X+ U T,), then the period function of the differential
system (1) with B = —1 (respectively, B = 1) has at least one critical period.

Proof. The grey regions consists of parameters for which the period function has opposite monotonicity at
the center and the polycycle. The monotonicity near the center is determined by the first period constant,
which according to [24, Proposition 2.6] is given by A = B — F' — nD. The monotonicity near the polycycle
follows from Theorems 3.10 and 3.12. [ ]

We conjecture that the monotonicity of the period function near the inner and outer boundary determines
its global behaviour, i.e, that “nothing in between occurs”. To be more precise, see Figure 7, our conjecture
for B = +1 is that there exists exactly one critical period in the grey regions and that the period function
is monotonous in the complementary. The conjecture for B = 0 can be obtained by projecting the planes
B = =+1 in Figure 7 on the unit sphere B2+ F2?+4 D? = 1 as explained in Section 1, and computing the points
at the equator where the bifurcation curves land. For this reason we expect that if B = 0, then the period
function of system (1) has exactly one critical period in case that (F, D) € {—F < nD < 0}U{0 < —F < nD}
and it is monotonous otherwise. Concerning the first part of the conjecture for B = 0 we can prove the
following;:

Proposition 4.5. If B = 0 then the period function of (1) has at least one critical period in case that
(F,D) e {—F <nD <0}U{0 < —F <nD}.

Proof. By applying Lemma 4.1, the change of variables {u = f(z),v = \/QC(x)y} brings system (1) to

U= —0,

0 =V'(u),
with V := A o f~!, where recall that the functions A, C' and s are defined in Lemma 2.1. Note that V is
an even function because n is odd. Let (—u,,u,) with u, > 0 be the projection of the period annulus of
the center at the origin on the w-axis. By (a) in Lemma 4.2, if the period function is monotonous then

A(f; (w) A(z)

U — is monotonous on (0, u,). Clearly the latter occurs if, and only if, z — 7(z)z Is monotonous

on (0,z,) with z,.:= f~1(u,). As we already showed in the proof of Proposition 4.3, we have that x, = +o00
—1
for D > 0 and x, = (—D)»=T for D < 0. On the other hand,

(A'f —2A4f") () = ermt®" ! ((x + Dx")e%:”n_l/ et ds — 2/ (s + Ds”)enzFlSn_lds> .
0 0

Next we shall determine those parameters (F, D) for which the above function has opposite sign at © = 0 and

x =~ z,. This is a sufficient condition in order that x — }4(?))2 is non-monotonous on (0, z,.). By computing

the Taylor series of A'f — 2Af we get that its sign near x = 0 is F +nD. If D < 0 then z, = (—%)ﬁ,
and therefore

—F (_%)ﬁ 2F n—1
(A'f —2Af")(zy) = 20D / (s+ Ds™)en—1° ds <0.
0
Consequently, if F'+nD > 0 and D < 0, then the period function is non-monotonous. Finally, if D > 0

then x, = +00 and

— n— +Cx> n—
lim et (A'f =2Af")(z) = —2/ (s + Ds")e%s 'ds <0,
0

T—r 400

22



provided that F' < 0. Thus, we can assert that if ¥ +nD > 0 and F' < 0 then the period function is neither
monotonous. This completes the proof of the result. [ |
4.3 Uniqueness of critical period

The following result shows the validity of the conjecture posed in the introduction for parameters lying on
{B=1,F = —”T_l} and {B=—-1,F = ”T_l}

Proposition 4.6. Consider the center at the origin of system (1). Then the following holds:

a) If B=1 and F = ==L, then the period function is monotonous for D < %L and it has ezactly one
2n
.. . +1
critical period for D E%"zn , )

(b) If B=—1 and F = 51, then the period function is monotonous for D ¢( — St1,0) and it has exactly
one critical period for D E( — "2—:1, )

Proof. Once again we use that, by applying Lemma 4.1, {u = f(z),v = \/2C(z)y} brings system (1) to

U= —0,
{ b= V(u), (14)
with V = Ao f~!, where the functions A, C' and & are given in Lemma 2.1. Recall also that if (—x,., x,.) is
the projection of the period annulus of (1) on the z-axis, then the projection of the period annulus of (14)

on the u-axis is (—u,, u,) with u, = f(x,). Our aim is to apply (¢) in Lemma 4.2 and to this end the key
point is that F' = —2“-L B yields to x = 1, so that A(z) = 2% + %x"‘“ and

o= [
0 Vi—Bsr 1
and this enables us to express the function V' = 4(3(V")? — V’V(?’))V2 —12(V')2V"V + 3(V')* in a very
convenient way. Indeed, by computing implicitly the derivatives of V = A o f~!, some long but easy
computations show that N'(f(z)) = (n— 1)z p(a" 1), where p(z) = ao + a1z + aox? + agaz® + agz* + asa®
with
ap =2(n+1)*((n+1)B — 2nD),
ay = 4n(2n+1)(n — 5)D? + 6(n + 1)(n® + 6n+ 1)BD + (n — 5)(n 4 1)?B?,
az = 4D (2n(n — 7)D* — (n + 1)(5n® — 27n — 2)BD + (n — 6)(n + 1)>B?)
az = D*((n+1)(15n° — 40n — 47)B* — (20n* — 168 n — 12)BD — (4n + 12)D?),
as = 8D ((3n® — 11n — 6)B +2(n +2)D) ,
as = —32D*B?.

Let us consider the case B = 1 first. We have in this case, see Figure 4, z,, = (—D)"%11 for D < —1
and z, = 1 for D > —1. Therefore, it suffices to study the zeros of p on the interval I, := (0, sr), where
Sy = —%, for D < —1, and s, =1, for D > —1. Let us note here that s, = (f’l(ur))wrl = 2"+, For each
fixed n and D, let Z,(n, D) be the number of zeros of p on I, counted with multiplicities. Note that Z
can only change as we move n and D at those parameter values such that either p(0)p(s,) = 0, or p and p’
have a common root, which is controlled by the discriminant % of p with respect to . For B = 1 we have
that

p(0) = 2(n+ 1)2(n+ 1 — 2nD), p(L) =—12(n— 12D (1+ 5)*,

p(1) =3(n—1)(D+1)%(n+1+2D)>? Py =D2(D+1)%(n+1+2D)*Ay(n, D),
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with A being a polynomial of total degree 16. Moreover it follows that, for each fixed n > 9, A, (n, D) =0
has exactly two real roots D = d(n) verifying that +d+(n) € (n,n3). (This can be shown by studying
the zeros of the discriminant of AL with respect to D and the zeros of its leading coefficient in D. For
the sake of shortness we do not include this study here.) The bifurcation curves D = dy(n), D = —1,
D=0,D= —”TH and D = "Q—Jrrll split the half plane {n > 9, D € R} in seven connected regions and, by
construction, Z, is constant in each one. Since one can verify that Z (10, —10%), Z, (10, —10), Z4(10, —2),

Z,(10,—%) and Z, (10, 1) are zero, Z,(10,10) = 1 and Z,(10,10%) = 3, we can assert that

0 if D <%,
Zy(n,D)=¢ 1 if De (%t dy(n)),

3 ifD> d+(n),

for each m > 9. On account of d4(n) > n, by applying (¢) in Lemma 4.2 this shows that the period function
is monotonous for D < ”Q—J;l and that it has at most one critical period for D € ("Q—fll,n) . The fact that
this critical period exists follows from Theorem 4.4 and this completes the proof of (a) for n > 9. The cases

n =3, n=2>5 and n = 7 display more bifurcation values but one can arrive to the same conclusion.

Let us turn finally to the proof of (b). To this end note first that on account of (a) in Theorem 4.3 if

B=-1,D¢ ( — "2—*7'11, O) and F' = "T_l, then the period function is monotonous. Accordingly it only remains
to show that the period function has exactly one critical period for D 6( — "2—";3, 0). Since D < 0, Figure 4

shows that z, = (—D)%. Thus by (¢) in Lemma 4.2 it suffices to check that the number Z_(n, D) of zeros
of pon (0, —%), counted with multiplicities, is 1. Exactly as before, Z_ can only change at those n and D
such that p(O)p(—%) = 0 or the discriminant Z_ of p with respect to = vanishes. Some computations
show that Z_ does not vanish for D € (—"2—';1,0). On the other hand, p(O)p(—%) = 0 if, and only if|

D e {—=tl 0,1}. Consequently Z_(n, D) does not change for D € (— "+1,0). Accordingly, since one can

2n 2n
check that Z_(10,—4}) = 1, by (c) in Lemma 4.2 there exists at most one critical period for D € (—%tL,0).
We can assert that it exists thanks to Theorem 4.4 and this completes the proof of (b). [ ]

A The stereographic projection

Let { , ) stand for the scalar product in R3. Fix p = (p1,p2,p3) € S? and denote the tangent plane to S?
at the point —p by II. For each ¢ € S* \ {p} we consider the intersection point 5,(q) of the straight line

L:={p+ A(¢ —p), A\ = 0} with the plane II. Since (¢ + p,p) = 0 yields to A = ﬁ, we have that
_ 2(q —p)
op(q) =p+ —F——F €1l
o) 1—(p,q)

Assume that §:= /p? + p3 # 0. Then u,:= +(p3,0, —p1) and v,:=p x up, = +(—p1p2,p? + p3, —p2ps) form
an orthonormal basis of the plane II. One can verify that 6,(¢) = —p + ap(q)up + bp(q)v, with

P193 — P3q1
P1q1 + p2q2 + p3qs — 1

(@) = (. 5,(0) +1) = 3

and

P1P2q1 — Pig2 — P32 + P2p3qs
P11 + p2q2 + p3qs — 1

bola) = (v, () + 1) = 2

where ¢ = (q1,92,93). We thus obtain the expression of the stereographic projection o,:S?\ {p} — R?,
which is given by o,(q) := (a,(q),bp(q)). As we explain in the introduction we choose p = p/||p|| with
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p:= (=1, —n, —2n) for the sake of convenience. Clearly the radial projection p: R?\ {0} — S? is given by

1
p(B,F,D) = ———————(B,F,D).
VB2 + F? 4 D?
Some computations show that 7:= o, o p writes as 7(B, F, D) = 2 1ffn7§2 (7'1 (B,F,D), (B, F, D)) with
B—-F
7(B,F,D) = i
n n n
VI+5n2VF?+ D?+ B2 +nF +2nD + B
and
24+1)D —2nB —2n%F
TQ(BvFvD): (n i ) i i

(145n2)VF2+ D2+ B2+ 1+5n2 (nF +2nD + B))

Note that 7 maps R3\ {\p, A > 0} to R%. Based on the curves in Figure 7, we take the restriction of 7 on the
planes {B = £1} to draw Figure 2. Similarly, but using the radial projection p as well, we draw Figure 1.
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