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LIMIT CYCLES FOR A CLASS

OF DISCONTINUOUS GENERALIZED LIENARD

POLYNOMIAL DIFFERENTIAL EQUATIONS

JAUME LLIBRE AND ANA C. MEREU

Abstract. We divide R2 in l sectors S1, ..., Sl, with l > 1 even. We de-
fine in R2 a discontinuous differential system such that in each sector Sk, for

k = 1, ..., l, is defined a smooth generalized Lienard polynomial differential
equation ẍ + fi(x)ẋ + gi(x) = 0, i = 1, 2 alternatively, where fi and gi are
polynomials of degree n−1 and m respectively. We apply the averaging theory

of first order for discontinuous differential systems to this class of non-smooth
generalized Lienard polynomial differential systems and we show that for any
n and m there are such non-smooth Lienard polynomial equations having at
least max{n, m} limit cycles. Note that this number is independent of l.

Roughly speaking this result shows that the non-smooth classical (m = 1)
Lienard polynomial differential systems can have at least the double number
of limit cycles than the smooth ones, and that the non-smooth generalized
Lienard polynomial differential systems can have at least one more limit cycle

than the smooth ones. Of course, these comparisons are done with the present
known results.

1. Introduction

A large number of problems from mechanics and electrical engineering, theory
of automatic control, economy, impact systems among others cannot be described
with smooth dynamical systems. This fact has motivated many researchers to the
study of qualitative aspects of the phase space of non-smooth dynamical systems.

One of the main problems in the qualitative theory of real planar continuous and
discontinuous differential systems is the determination of their limit cycles. The
non-existence, existence, uniqueness and other properties of limit cycles have been
studied extensively by mathematicians and physicists, and more recently also by
chemists, biologists, economists, etc (see for instance the books [1, 3, 22]). This
problem restricted to continuous planar polynomial differential equations is the
well known 16th Hilbert’s problem [8]. Since this Hilbert’s problem turned out a
strongly difficult one Smale [21] particularized it to Lienard polynomial differential
equations in his list of problems for the present century.

The classical Lienard polynomial differential equations

(1) ẍ+ f(x)ẋ+ g(x) = 0,

where f(x) and g(x) = x goes back to [9]. The dot denotes differentiation with
respect to the time t. This second order differential equation (1) can be written as
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the following first order differential system in R2

ẋ = y − F (x),
ẏ = −g(x), where F (x) =

∫ x

0

f(s)ds.

Many results on the number of limit cycles has been obtained for the continuous
generalized polynomial differential equations (1) being f(x) and g(x) polynomials
in the variable x of degrees n − 1 and m respectively. The continuous classical
Lienard polynomial differential equations (1) were studied in 1977 by Lins, de Melo
and Pugh [10] who stated the following conjecture: if f(x) has degree n − 1 > 0
and g(x) = x, then (1) has at most [(n − 1)/2] limit cycles. Here [z] denotes the
integer part function of z ∈ R. They also proved the conjecture for n = 2, 3. For
n = 4 this conjecture has been proved in 2012 (see [11]). For n ≥ 7 Dumortier,
Panazzolo and Roussarie proved that this conjecture is not true in [5], they show
that these differential equations can have [(n− 1)/2] + 1 limit cycles. Recently De
Maesschalck and Dumortier proved in [20] that the classical Lienard equation of
degree n ≥ 6 can have [(n− 1)/2] + 2 limit cycles. The conjecture for n = 5 is still
open.

Results on the number of limit cycles for continuous generalized Lienard polyno-
mial differential equations can be found in [12] where the authors show that there
are differential equations (1) having at least [(n +m− 2)/2] limit cycles. See also
[4, 6, 16, 17, 18, 19, 23].

The objective of this work is to star the study of the number of limit cycles
for a kind of discontinuous generalized Lienard polynomial differential systems.
Here we shall play with many straight lines of discontinuities through the origin
of coordinates and with two different continuous generalized Lienard polynomial
differential systems located alternatively in the sectors defined by these straight
lines.

A similar work but with only one classical Lienard polynomial differential system
and only one straight line of discontinuity was studied in [14] obtaining [n/2] limit
cycles, instead of the [(n − 1)/2] of the continuous classical Lienard polynomial
differential equation obtained in [10].

Now we shall define the discontinuous generalized Lienard polynomial differential
system that we will study. We consider the function h : R2 → R defined by

h(x, y) =

l
2 −1∏

k=0

(
y − tan

(
α+

2kπ

l

)
x

)
,

where l > 1 even. The set

h−1(0) =

l
2 −1∪

k=0

{
(x, y) : y = tan

(
α+

2kπ

l

)
x

}
,

divides R2 into l sectors, S1, S2, ..., Sl, i.e. h−1(0) is the product of l/2 straight
lines passing through the origin of coordinates dividing the plane in sectors of angle
2π/l.

In this work we study the maximum number of limit cycles given by the averaging
theory of first order, which can bifurcate from the periodic orbits of the linear
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center ẋ = y, ẏ = −x, perturbed inside the following class of discontinuous Lienard
polynomial differential systems:

(2) Ẋ = Z(x, y) =

{
Y1(x, y) if h(x, y) > 0,
Y2(x, y) if h(x, y) < 0,

where

(3) Y1(x, y) =

(
y − εF1(x)
−x− εg1(x)

)
, Y2(x, y) =

(
y − εF2(x)
−x− εg2(x)

)
,

ε is a small parameter, and Fi(x) and gi(x), for i = 1, 2 are polynomials in the
variable x of degrees n and m respectively. System (2) can be written using the
sign function as

(4) Ẋ = Z(x, y) = G1(x, y) + sign(h(x, y))G2(x, y),

where G1(x, y) =
1

2
(Y1(x, y) + Y2(x, y)) and G2(x, y) =

1

2
(Y1(x, y) − Y2(x, y)).

Our main result is the following one.

Theorem 1. Assume that for i = 1, 2 the polynomials Fi(x) and gi(x) have degree
n ≥ 1 and m ≥ 1 respectively, and that l > 1 is even. Then for |ε| sufficiently
small there are discontinuous Lienard polynomial differential systems (2) having at
least max{n,m} limit cycles bifurcating from the periodic orbits of the linear center
ẋ = y, ẏ = −x.

In short, taking into account Theorem 1 we can say roughly speaking that the
non-smooth classical Lienard polynomial differential systems can have at least
max{n, 1} limit cycles, i.e. roughly speaking the double number of limit cycles
than the smooth ones which at least have [(n− 1)/2] + 2 for n ≥ 6. Comparing the
mentioned result from [12], that smooth generalized Lienard polynomial differential
systems have at least [(n+m− 1)/2] limit cycles with Theorem 1, we can say that
the non-smooth generalized Lienard polynomial differential systems can have at
least one more limit cycle than the smooth ones. Of course all these comparisons
are done with the present known results.

2. Averaging theory of first order for discontinuous differential
systems

The first-order averaging theory developed for discontinuous differential systems
in [13] is presented in this section. It is summarized as follows.

Theorem 2. We consider the following discontinuous differential system

(5) x′(t) = εF (t, x) + ε2R(t, x, ε),

with
F (t, x) = F1(t, x) + sign(h(t, x))F2(t, x),

R(t, x, ε) = R1(t, x, ε) + sign(h(t, x))R2(t, x, ε),

where F1, F2 : R ×D → Rn, R1, R2 : R ×D × (−ε0, ε0) → Rn and h : R ×D → R
are continuous functions, T–periodic in the variable t and D is an open subset of
Rn. We also suppose that h is a C1 function having 0 as a regular value. Denote
by M = h−1(0), by Σ = {0} × D * M, by Σ0 = Σ\M ̸= ∅, and its elements by
z ≡ (0, z) /∈ M.
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Define the averaged function f : D → Rn as

f(x) =

∫ T

0

F (t, x)dt.

We assume the following three conditions.

(i) F1, F2, R1, R2 and h are locally L–Lipschitz with respect to x;
(ii) for a ∈ Σ0 with f(a) = 0, there exist a neighborhood V of a such that

f(z) ̸= 0 for all z ∈ V \{a} and dB(f, V, a) ̸= 0, (i.e. the Brouwer degree of
f at a is not zero).

(iii) If ∂h/∂t(t0, z0) = 0 for some (t0, z0) ∈ M, then(
⟨∇xh, F1⟩2 −⟨∇xh, F2⟩2

)
(t0, z0) > 0.

Then, for |ε| > 0 sufficiently small, there exists a T–periodic solution x(·, ε) of
system (5) such that x(t, ε) → a as ε → 0.

Remark 1. We note that if the function f(z) is C1 and the Jacobian of f at a is
not zero, then dB(f, V, a) ̸= 0. For more details on the Brouwer degree see [2] and
[15].

3. Proof of Theorem 1

The discontinuous Lienard differential systems (2) in polar coordinates (r, θ)
become

ṙ = −ε (cos θ Fi(r cos θ) + sin θ gi(r cos θ)) ,

θ̇ = −1 +
ε

r
(sin θ Fi(r cos θ) − cos θ gi(r cos θ)) ,

with i = 1 if sign (h(r cos θ, r sin θ)) > 0 and i = 2 if sign (h(r cos θ, r sin θ)) <
0. Taking the angle θ as new independent variable the discontinuous differential
systems become

(6) ṙ = ε (cos θ Fi(r cos θ) + sin θ gi(r cos θ)) + O(ε2).

The discontinuous differential system (6) is under the assumptions of Theorem
2 taking

t = θ, T = 2π, x = r, M = h−1(0) =

l
2 −1∪

k=0

{
(θ, r) : θ = α+

2kπ

l
, r > 0

}
. So

according with Theorem 2 we must study the zeros of the averaged function

(7)

f(r) =

l∑

k=1

[∫ α+
(2k−1)π

l

α+
2(k−1)π

l

(cos θ F1(r cos θ) + sin θ g1(r cos θ)) dθ+

∫ α+ 2kπ
l

α+
(2k−1)π

l

(cos θ F2(r cos θ) + sin θ g2(r cos θ)) dθ

]
.
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If we denote by F1(x) =
n∑

i=0

aix
i, F2(x) =

n∑

i=0

bix
i, g1(x) =

m∑

i=0

cix
i and g2(x) =

m∑

i=0

dix
i we have

f(r) =
l∑

k=1

[∫ α+
(2k−1)π

l

α+
2(k−1)π

l

(
n∑

i=0

air
i cosi+1 θ +

m∑

i=0

cir
i cosi θ sin θ

)
dθ+

∫ α+ 2kπ
l

α+
(2k−1)π

l

(
n∑

i=0

bir
i cosi+1 θ +

m∑

i=0

dir
i cosi θ sin θ

)
dθ

]
.

In order to calculate the exact expression of f(r) we use the following formulae
[2.513 3] and [2.513 4] proved in [7]:

∫
cos2m θ dθ =

1

22m

(
2m
m

)
θ +

1

22m−1

m−1∑

j=0

(
2m
j

)
sin(2m− 2j)θ

2m− 2j
,

∫
cos2m+1 θ dθ =

1

22m

m∑

j=0

(
2m+ 1

j

)
sin(2m− 2j + 1)θ

2m− 2j + 1
.

Thus we have

f(r) = f1(r) + f2(r) + f3(r) + f4(r),

where

f1(r) =
l∑

k=1

∫ α+
(2k−1)π

l

α+
2(k−1)π

l

(
n∑

i=0

air
i cosi+1 θ

)
dθ =

l∑

k=1




n∑

i = 1
i odd

air
i


 1

2i+1

(
i+ 1

(i+ 1)/2

)
π

l
+

1

2i

i−1
2∑

j=0

(
i+ 1
j

)
φi,j,k


 +

n∑

i = 0
i even

air
i

2i

i
2∑

j=0

(
i+ 1
j

)
φi,j,k




=

l∑

k=1




n∑

i = 1
i odd

air
i

2i+1

(
i+ 1

(i+ 1)/2

)
π

l
+

n∑

i=0

air
i

2i

[ i
2 ]∑

j=0

(
i+ 1
j

)
φi,j,k



,

with

φi,j,k =
sin
(
(i− 2j + 1)

(
α+ (2k−1)π

l

))
− sin

(
(i− 2j + 1)

(
α+ 2(k−1)π

l

))

i− 2j + 1
̸= 0;
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f2(r) =
l∑

k=1

∫ α+
(2k−1)π

l

α+
2(k−1)π

l

(
m∑

i=0

cir
i cosi θ sin θ

)
dθ = −

l∑

k=1

m∑

i=0

cir
i

i+ 1
ϕi,k,

with

ϕi,k = cosi+1

(
α+

(2k − 1)π

l

)
− cosi+1

(
α+

2(k − 1)π

l

)
̸= 0;

f3(r) =

l∑

k=1

∫ α+
(2k−1)π

l

α+
2(k−1)π

l

(
n∑

i=0

bir
i cosi+1 θ

)
dθ =

l∑

k=1




n∑

i = 1
i odd

bir
i

2i+1

(
i+ 1

(i+ 1)/2

)
π

l
+

n∑

i=0

bir
i

2i

[ i
2 ]∑

j=0

(
i+ 1
j

)
ψi,j,k



,

with

ψi,j,k =
sin
(
(i− 2j + 1)

(
α+ 2kπ

l

))
− sin

(
(i− 2j + 1)

(
α+ (2k−1)π

l

))

i− 2j + 1
̸= 0;

f4(r) =
l∑

k=1

∫ α+ 2kπ
l

α+
(2k−1)π

l

(
m∑

i=0

dir
i cosi θ sin θ

)
dθ = −

l∑

k=1

m∑

i=0

dir
i

i+ 1
ζi,k,

with

ζi,k = cosi+1

(
α+

2kπ

l

)
− cosi+1

(
α+

(2k − 1)π

l

)
̸= 0.

Thus

f(r) =
l∑

k=1




n∑

i = 1
i odd

ri

2i+1

(
i+ 1

(i+ 1)/2

)
π

l
(ai + bi)+

n∑

i=0

ri

2i

[ i
2 ]∑

j=0

(
i+ 1
j

)
(aiφi,j,k + biψi,j,k) −

m∑

i=0

ri

i+ 1
(ciϕi,k + diζi,k)

]
.

The function f(r) is a polynomial in the variable r of degree max{n,m} therefore
f(r) has at most max{n,m} positive roots. If r∗ is a simple zero of f(r), i.e.

f(r∗) = 0 and
df

dr

∣∣∣∣
r=r∗

̸= 0, then the Brouwer degree dB(f, V, r∗) ̸= 0 being V a

convenient open neighborhood of r∗ (see Remark 1). We can choose the coefficients
ai, bi, ci e di in such a way that f(r) has exactly max{n,m} simple positive roots.
Hence Theorem 1 is proved.
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4. Examples

In this section we illustrate Theorem 1 by studying the existence of 2π-periodic
solutions for two non-smooth Lienard polynomial differential systems.

Example 1. We consider l = 2 and α = 0. Thus the function h : R2 → R is
defined by h(x, y) = y and h−1(0) = {(x, y) ∈ R2 : y = 0}. System (2) becomes

(8) Ẋ = Z(x, y) =

{
Y1(x, y) if y > 0,
Y2(x, y) if y < 0,

where F1 = 1 + x + x2 +

(
1

9π
− 1

)
x3, F2 = 1 +

(
11

12π
− 1

)
x + x2 + x3, g1 =

7

8
+ x+

5

8
x2 and g2 = 1 + x+ x2. Thus we have

Y1(x, y) =




y − ε

(
1 + x+ x2 +

(
1

9π
− 1

)
x3

)

−x− ε

(
7

8
+ x+

5

8
x2

)


 ,

Y2(x, y) =


 y − ε

(
1 +

(
11

12π
− 1

)
x+ x2 + x3

)

−x− ε
(
1 + x+ x2

)


 .

The averaging function (7) is given by

f(r) =

∫ π

0

(cos θ F1(r cos θ) + sin θ g1(r cos θ)) dθ+

∫ 2π

π

(cos θ F2(r cos θ) + sin θ g2(r cos θ)) dθ =

−6 + 11r − 6r2 + r3.

The zeros of f(r) are r = 1, r = 2 and r = 3, and they are simple. Hence, by
Theorem 1 it follows that for ε ̸= 0 sufficiently small the discontinuous differential
system (8) has three periodic solutions.

Example 2. We consider l = 4 and α = π/4. Thus the function h : R2 → R is
defined by h(x, y) = (y−x)(y+x) and h−1(0) = {(x, y) : y = x}∪{(x, y) : y = −x}.
System (2) becomes

(9) Ẋ = Z(x, y) =

{
Y1(x, y) if (y − x)(y + x) > 0,
Y2(x, y) if (y − x)(y + x) < 0,

where F1 = x2, F2 = 12
√

2π+
72

√
2

5
x2, g1 = 1+x+x2+x3 and g2 = −88πx−32π

3
x3.

Thus we have

Y1(x, y) =

(
y − εx2

−x− ε
(
1 + x+ x2 + x3

)
)

Y2(x, y) =




y − ε

(
12

√
2π +

72
√

2

5
x2

)

−x− ε

(
−88πx− 32π

3
x3

)


 .
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The averaging function (7) is given by

f(r) =

∫ 3π
4

π
4

(cos θ F1(r cos θ) + sin θ g1(r cos θ)) dθ+

∫ 5π
4

3π
4

(cos θ F2(r cos θ) + sin θ g2(r cos θ)) dθ+

∫ 7π
4

5π
4

(cos θ F1(r cos θ) + sin θ g1(r cos θ)) dθ+

∫ 9π
4

7π
4

(cos θ F2(r cos θ) + sin θ g2(r cos θ)) dθ =

−6 + 11r − 6r2 + r3.

The zeros of f(r) are r = 1, r = 2 and r = 3, and they are simple. Hence, by
Theorem 1 it follows that for ε ̸= 0 sufficiently small the discontinuous differential
system (9) has three periodic solutions.
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