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Abstract. In this paper we find necessary and sufficient condi-
tions in order that a planar quasi–homogeneous polynomial differ-
ential system has a polynomial or a rational first integral. We also
prove that any planar quasi–homogeneous polynomial differential
system can be transformed into a differential system of the form
u̇ = uf(v), v̇ = g(v) with f(v) and g(v) polynomials, and vice
versa.

1. Introduction

The characterization of polynomial or rational integrability of a dif-
ferential system goes back to Poincaré, see [20, 21, 22] and has attracted
the attention of many authors, see for instance [2, 3, 8, 14, 17, 18, 19,
23, 24] and references therein. For quasi–homogeneous polynomial dif-
ferential systems if we control the polynomial first integrals we are
controlling all analytical first integrals of the system, see [15, 17].

We assume that there exists an analytic first integral H for an an-
alytic differential system of the form ẋ = P (x, y), ẏ = Q(x, y).
The analytic functions H, P and Q can be decomposed in sum of
quasi–homogeneous polynomials of the same weight degree, i.e. H =
Hm + Hm+1 + . . ., P = Pr + Pr+1 + . . . and Q = Qr + Qr+1 + . . ..
Then, the quasi–homogeneous polynomial of the lowest weight degree
Hm must be a first integral of the quasi–homogeneous differential sys-
tem ẋ = Pr(x, y), ẏ = Qr(x, y), see [12, 16]. So the study of the
integrability of the quasi–homogeneous polynomial differential systems
is a good first step for studying the integrability of more general dif-
ferential systems, see for instance [1, 16].

Some links between Kowalevskaya exponents of quasi–homogeneous
polynomial differential systems and the degree of their quasi–homogeneous
polynomial first integrals are established in [6, 9, 17, 24].
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Recently in [10] the polynomial and rational integrability of homo-
geneous polynomial differential systems has been characterized. In the
present paper we give the characterization of polynomial or rational in-
tegrability for quasi–homogeneous polynomial differential systems. In
[2] the rational and polynomial integrability of a quasi–homogeneous
polynomial differential systems is characterized in terms of conserva-
tive dissipative decompositions of the corresponding vector field. In
our work, the characterization is different, shorter and easier because
essentially is based in the fact that any quasi–homogeneous polynomial
differential system can be transformed in a differential system of the
form u̇ = uf(v), v̇ = g(v), with f(v) and g(v) polynomials. Moreover
the converse is also true. Note that this last differential system is of
separable variables.

As usual C denotes the set of the complex numbers and C[x, y] de-
notes the ring of all polynomials in the variables x and y with coeffi-
cients in C. Let C(x, y) be its quotient field, that is, the field of rational
functions in the variables x and y with coefficients in C. In this work
we deal with polynomial differential systems of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P (x, y), Q(x, y) ∈ C[x, y]. The dot denotes derivative with re-
spect to an independent variable t real or complex. We say that the
degree of the system is n = max{degP, degQ}. For the sake of sim-
plicity, we assume for the rest of the paper that system (1) is not linear,
that is, n > 1. The linear case is included in the results of [10] where
all the homogeneous systems were studied.

Let N denote the set of positive integers. The polynomial differential
system (1) is quasi–homogeneous if there exists s1, s2, d ∈ N such that
for arbitrary α ∈ C,

(2) P (αs1x, αs2y) = αs1−1+dP (x, y), Q(αs1x, αs2y) = αs2−1+dQ(x, y),

where s1 and s2 are called the weight exponents of system (1), and d
the weight degree with respect to the weight exponents s1 and s2. We
say that system (1) satisfying conditions (2) is a quasi–homogeneous
system of weight (s1, s2, d). In the particular case that s1 = s2 = 1,
then system (1) is the classical homogeneous polynomial differential
system of degree d. Our aim is to characterize the quasi–homogeneous
systems (1) of weight (s1, s2, d) which have a polynomial or a rational
first integral.

We recall that given a planar polynomial differential system (1), we
say that a function H : U ⊆ C2 → C, with U an open set, is a
first integral of system (1) if H is continuous, not locally constant and
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constant on each trajectory of the system contained in U . We note
that if H is of class at least C1 in U , then H is a first integral if it is
not locally constant and

P (x, y)
∂H

∂x
+ Q(x, y)

∂H

∂y
≡ 0

in U . We call the integrability problem the problem of finding such a
first integral and the functional class where it belongs. We say that
the system has a polynomial first integral if there exists a first integral
H(x, y) ∈ C[x, y]. Analogously, we say that the system has a rational
first integral if there exists a first integral H(x, y) ∈ C(x, y).

We say that a function V : W ⊆ C2 → C, with W an open set, is an
inverse integrating factor of system (1) if V is of class C1, not locally
zero and satisfies the following linear partial differential equation

(3) P (x, y)
∂V

∂x
+ Q(x, y)

∂V

∂y
=

(
∂P

∂x
+
∂Q

∂y

)
V (x, y)

in W . The knowledge of an inverse integrating factor defined in W
allows the computation of a first integral in U = W \ {V = 0} doing
the line integral

H(x, y) =

∫ (x,y)

(x0,y0)

P (x, y)dy − Q(x, y)dx

V (x, y)
,

where (x0, y0) ∈ U is any point. An easy computation shows that the
polynomial V (x, y) = s2yP (x, y)−s1xQ(x, y) is an inverse integrating
factor for the quasi–homogeneous system (1) of weight (s1, s2, d).

A proof of this well-known fact can be found in Proposition 15 of
[8]. This result generalizes the particular case for homogeneous systems
that can be found in Lemma 3 of [4]. Therefore the quasi–homogeneous
systems (and in particular the homogeneous ones) have always a poly-
nomial inverse integrating factor. In [5] necessary conditions were given
in order to have a polynomial inverse integrating factor for general poly-
nomial differential systems. To see the relation between the functional
classes of the inverse integrating factors and their associated first inte-
grals see Theorem 3 of [11].

Our main results are stated in Lemma 2, Theorem 9 and Proposi-
tion 11. Theorem 9 characterizes when a quasi–homogeneous polyno-
mial differential system (1) has either a polynomial, or a rational first
integral. In Lemma 2 and Proposition 11 we show that any planar
quasi–homogeneous polynomial differential system can be transformed
into a differential system of the form u̇ = uf(v), v̇ = g(v) with f(v)
and g(v) polynomials, and vice versa. The rest of the paper is organized
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as follows. In section 2 we present some lemmas (including Lemma 2)
which will allow us to prove Theorem 9 and Proposition 11 in section
3.

2. Preliminary results

Lemma 1. Given a quasi–homogeneous system (1) of weight (s1, s2, d),
we can suppose without restriction that s1 and s2 are coprime.

Proof. Let r be the maximum common divisor of s1 and s2. Then
s1 = rs∗

1 and s2 = rs∗
2 with s∗

1 and s∗
2 coprime. Let xipyjp be a monomial

with nonzero coefficient of P (x, y). We know its existence because P
and Q are coprime. We also know that

P (αs1x, αs2y) = αs1−1+dP (x, y) for all α ∈ C.
Therefore we have (αs1x)ip(αs2y)jp = αs1ipαs2jpxipyjp = αs1−1+dxipyjp

which implies s1ip + s2jp = s1 − 1 + d, or equivalently s1(ip − 1) +
s2jp = d − 1. Consequently d − 1 is divisible by r except if (ip, jp) =
(1, 0). If P (x, y) = x, then we consider a monomial xiqyjq with nonzero
coefficient of Q(x, y). Taking into account that

Q(αs1x, αs2y) = αs2−1+dQ(x, y) for all α ∈ C,
we obtain s1 iq + s2(jq − 1) = d − 1. From here we deduce that d − 1
is divisible by r except if (iq, jq) = (0, 1). Therefore the unique case to
study is P (x, y) = x and Q(x, y) = y, i.e. ẋ = x and ẏ = y, which is
a homogenous system of degree 1 with (s1, s2, d) = (1, 1, 1). We have
excluded linear systems from consideration. In any other case we have
that d− 1 is divisible by r and we can write d− 1 = r∗(d∗ − 1).

In short, we claim that system (1) is (s∗
1, s

∗
2, d

∗) quasi–homogeneous
with s∗

1 and s∗
2 coprime. Indeed, we have that the monomial xipyjp of

P (x, y) must verify that s1(ip − 1) + s2 jp = d − 1, but substituting
s1 = rs∗

1, s2 = rs∗
2 and d− 1 = r∗(d∗ − 1) we obtain s∗

1(ip − 1) + s∗
2jp =

d∗ − 1. In a similar way for any monomial xiqyjq of Q(x, y) we obtain
s∗
1 iq + s∗

2(jq − 1) = d∗ − 1. Hence we obtain a quasi–homogeneous
system of weight (s∗

1, s
∗
2, d

∗). �
Lemma 2. The change of variables

(4) x = u
1
s2 , y = (uv)

1
s1 whose inverse is u = xs2 , v = ys1/xs2 ,

and the rescaling of time given by u
− d−1
s1s2 v

− s1−1−m
s1 , with m ∈ N ∪ {0},

transforms a quasi–homogeneous system (1) of weight (s1, s2, d) into a
polynomial system of the form

(5) u̇ = uf(v), v̇ = g(v).
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Moreover we can choose m in such a way that the polynomials f(v)
and g(v) are coprime.

Proof. The change of variables (4) transforms the quasi–homogeneous
system (1) of weight (s1, s2, d) into the form
(6)

u̇ = s2u
s2−1
s2 P (u

1
s2 , (uv)

1
s1 ),

v̇ = u
− s1+s2

s1s2 v
s1−1
s1

[
− s2u

1
s1 v

1
s1P (u

1
s2 , (uv)

1
s1 ) + s1u

1
s2Q(u

1
s2 , (uv)

1
s1 )

]
.

Notice that if we take α = u
1

s1s2 we have P (αs1 , αs2v
1
s1 ) = P (u

1
s2 , (uv)

1
s1 )

and by the quasi–homogeneity we have

αs1−1+dP (1, v
1
s1 ) = u

s1−1+d
s1s2 P (1, v

1
s1 ).

In a similar way and also by quasi–homogeneity we have

Q(u
1
s2 , (uv)

1
s1 ) = u

s2−1+d
s1s2 Q(1, v

1
s1 ).

Hence system (6) becomes

(7)
u̇ = s2u

1+ d−1
s1s2P (1, v

1
s1 ),

v̇ = u
d−1
s1s2 v

[
− s2P (1, v

1
s1 ) + s1v

− 1
s1Q(1, v

1
s1 )

]
.

Now we divide the system by u
d−1
s1s2 v

s1−1−m
s1 and we have

(8)
u̇ = s2uv

m+1−s1
s1 P (1, v

1
s1 ),

v̇ = v
m
s1

[
− s2v

1
s1P (1, v

1
s1 ) + s1Q(1, v

1
s1 )

]
.

We know that the monomials xipyjp of P (x, y) and the monomials xiqyjq

of Q(x, y) satisfy

(9) s1(ip − 1) + s2jp = d− 1, s1 iq + s2(jq − 1) = d− 1.

Hence u̇ has the monomials in v of the form v
m+1+jp−s1

s1 , and v̇ has the
monomials in v of the form

v
m+1+jp

s1 or v
m+jq
s1 .

The identities (9) modulo s1 are of the form

(10) s2jp = d− 1 (mod s1), s2(jq − 1) = d− 1 (mod s1).

If s1 and s2 are coprime, i.e. (s1, s2) = 1, then there exists s−1
2 ∈ Z such

that s−1
2 s2 = 1 (mod s1). Since s1 and s2 are coprime, by the Bézout

identity there exist two integers x and y such that s1x + s2y = 1.
Hence, modulo s1 we have s2y = 1 and we take s−1

2 = y. Therefore the
identities (10) can be simplified multiplying by s−1

2 and we obtain

jp = s−1
2 (d− 1) (mod s1), jq − 1 = s−1

2 (d− 1) (mod s1),
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and consequently jp ≡ jq − 1 (mod s1) for all jp and jq. We define
m ∈ N∪{0} the smaller value such thatm+1+jp ≡ m+jq ≡ 0 (mod s1),
and with this choice all the monomials that appear in system (8) have
nonnegative integer exponents and consequently system (8) is polyno-
mial and of the form u̇ = uf(v) and v̇ = g(v). We need to see that the
obtained system (8) is coprime.

Note that for the choice of m, being the smallest one, it cannot
happen that v|f(v) and v|g(v), because in this case we could choose m
even smaller.

Let ξ ∈ C such that P (1, ξ
1
s1 ) = 0, i.e. ξ is a root of f(v). We

are going to see that this root ξ is not a root of g(v). If g(ξ) = 0

then we have that −s2ξ
1
s1P (1, ξ

1
s1 ) + s1Q(1, ξ

1
s1 ) = 0 which implies

Q(1, ξ
1
s1 ) = 0. Hence we have P (1, ξ

1
s1 ) = Q(1, ξ

1
s1 ) = 0. Now we

consider the algebraic curve ys1 − ξxs2 = 0, and we parameterize it as
follows x = αs1 , y = αs2ξ1/s1 , with α ∈ C. By quasi–homogeneity and

taking into account that P (1, ξ
1
s1 ) = Q(1, ξ

1
s1 ) = 0 we have

P (αs1 , αs2ξ
1
s1 ) = αs1−1+dP (1, ξ

1
s1 ) = 0,

Q(αs1 , αs2ξ
1
s1 ) = αs2−1+dQ(1, ξ

1
s1 ) = 0.

Hence, P (x, y) and Q(x, y) vanish at the same place. Therefore by
the Bézout theorem, P and Q would have a common factor, in con-
tradiction with the initial hypothesis that P and Q were coprime. We
observe that this argument does not hold in the case that f(v) is a
constant different from zero and g(v) ≡ 0. In this case, system (1)
is linear, see Lemma 3, and linear systems have been excluded from
consideration. �

One immediate consequence of Lemma 2 is that if system (5) has
H(u, v) as a first integral, then the quasi–homogeneous system (1) of
weight (s1, s2, d) has a first integral of the form H(xs2 , ys1/xs2). On
the other hand, if H̃(x, y) is a first integral of the quasi–homogeneous
system (1) of weight (s1, s2, d) then H̃(u1/s2 , (u, v)1/s1) is a first integral
of system (5).

Lemma 3. Consider system (1) with P and Q coprime. The particular
case when f(v) is constant different from zero and g(v) ≡ 0 corresponds
to the system ẋ = s1x and ẏ = s2y.

Proof. The condition g(v) ≡ 0 implies that the inverse integrating fac-
tor V (x, y) ≡ 0, i.e. s2yP (x, y) − s1xQ(x, y) ≡ 0. In this case P (x, y)
is divisible by x due to P and Q are coprime. Hence, we can find a
polynomial M(x, y) such that P (x, y) = s1xM(x, y) and consequently
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Q(x, y) = s2yM(x, y). However as P and Q are coprime we have
that M(x, y) must be a constant different from zero, and with a time–
rescaling we obtain the system ẋ = s1x and ẏ = s2y. This linear system
has the rational first integral H = xs2y−s1 and has not any polynomial
first integral. �

Now we are going to study the polynomial and rational integrability
of system (5).

Lemma 4. Consider a polynomial system of the form (5), where f(v)
and g(v) are coprime.

(i) The polynomial V (u, v) = ug(v) is an inverse integrating factor
of system (5).

(ii) If system (5) has a rational (resp. polynomial) first integral,
then it has a first integral of the form H(u, v) = h(v)us where
h(v) is a non constant rational (resp. polynomial) function and
s ∈ N.

(iii) If system (5) has a a rational first integral, then deg f < deg g.
(iv) If system (5) has a a rational first integral, then g(v) (equivalently

V (u, v)) is square-free.
(v) If g(v) is square-free and its factorization in C[v] is given by

g(v) = c(v−α1)(v−α2) · · · (v−αk) where c ∈ C\{0}, αi ∈ C for
i = 1, 2, . . . , k, we have that f(αi)g

′(αi) ̸= 0 for i = 1, 2, . . . , k.
(vi) If V (u, v) is square-free and degf < deg g, then a first integral

of system (5) is H(u, v) = u−1(v−α1)
γ1(v−α2)

γ2 · · · (v−αk)
γk

with γi = f(αi)/g
′(αi) for i = 1, 2, . . . , k.

(vii) System (5) has a rational first integral if and only if g(v) is
square-free, deg f < deg g and γi ∈ Q for i = 1, 2, . . . , k.

(viii) System (5) has a polynomial first integral if and only if g(v) is
square-free, deg f < deg g and γi ∈ Q− for i = 1, 2, . . . , k.

Proof. (i) It is easy to see that the function V (u, v) = ug(v) satisfies
the partial differential equation (3), i.e.

(11) uf(v)
∂V

∂u
+ g(v)

∂V

∂v
= (f(v) + g′(v))V.

(ii) Assume that system (5) has a rational or polynomial first integral
of the form

H(u, v) =
A(u, v)

B(u, v)
,
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where A and B are coprime polynomials that can be written in powers
of u into the form

A(u, v) = a0(v) + a1(v)u+ · · · + an(v)un,

B(u, v) = b0(v) + b1(v)u+ · · · + bm(v)um.

with n,m ∈ N ∪ {0} and an(v) bm(v) ̸= 0. The polynomial case corre-
sponds to m = 0 and b0(v) = 1.

In the particular case that n = m and if there exists k ∈ C such
that an(v) = kbm(v) we take as a first integral H(u, v) − k instead of
H(u, v) and we have

H(u, v) − k =
(a0 − kb0) + (a1 − kb1)u+ · · · (an−1 − kbn−1)u

n−1

b0(v) + b1(v)u+ · · · + bn(v)un
.

In the polynomial case, if n = m = 0 then we will have that H(u, v) =
a0(v) which implies v̇ = 0, and this gives a contradiction because f(v)
and g(v) are coprime.

We can assume that n ≥ m, because if H is a first integral of system
(5) then 1/H is also a first integral, and for the case n = m, we
can assume that an(v)/bn(v) is not constant as we have shown in the
previous paragraph. If H is a first integral of system (5) then it must
satisfy

(12) uf(v)
∂H

∂u
+ g(v)

∂H

∂v
= 0.

Substituting H = A/B in (12) and multiplying by B2 we have
(
uf(v)

∂A

∂u
+ g(v)

∂A

∂v

)
B −

(
uf(v)

∂B

∂u
+ g(v)

∂B

∂v

)
A = 0.

We now consider the highest degree coefficient in this expression, which
corresponds to un+m and we obtain that

un+m
[(
nf(v)an(v) + g(v)a′

n(v)
)
bm(v)

−
(
mf(v)bm(v) + g(v)b′m(v)

)
an(v)

]
= 0.

This identity says that un−man(v)/bm(v) is a first integral of system
(5). Therefore we have a first integral of the form ush(v) where s =
n − m ∈ N, h(v) is rational when H is rational, and is polynomial
when H is polynomial. Note that h(v) cannot be a constant and s
must be different from zero because both cases are in contradiction
with the hypothesis that f(v) and g(v) are coprime. Hence we have
proved statement (ii).

(iii) We assume that system (5) has a rational first integral and we
take the first integral of the form ush(v). If ush(v) is a first integral
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of system (5) we have uf(v) sus−1h(v) + g(v)ush′(v) = 0. Simplify-
ing us we have s f(v)h(v) + g(v)h′(v) = 0, and we have the following
differential equation

(13)
h′(v)

h(v)
=

−s f(v)

g(v)
.

Now we assume that deg f ≥ deg g and we consider the Euclidean
division of −sf(v) by g(v), so we have

−sf(v) = q(v)g(v) + ψ(v),

where ψ(v) cannot be zero taking into account that f and g are coprime
and degψ < deg g. Hence equation (13) takes the form

(14)
h′(v)

h(v)
= q(v) +

ψ(v)

g(v)
.

Integrating this differential equation we have

(15) h(v) = Ceq̃(v)e
∫ ψ(v)
g(v)

dv

where C is a constant of integration and q̃ ′(v) = q(v). Therefore the
first factor of (15) cannot cancel with the second factor of (15) and
this gives a contradiction with the fact that h(v) is a rational function.
Hence, we conclude that deg f < deg g.

(iv) From the proof of statement (iii) we have obtained the differ-
ential equation (13). We assume now that V (u, v) is not square-free.
Using an affine transformation of the form v → v + α with α ∈ C if it
is necessary, we can assume that v is a multiple factor of V (u, v) with
multiplicity µ > 1. Then we have that V (u, v) = ug(u) = uvµr(v) with
r(0) ̸= 0. We know that f(0) ̸= 0 because f and g are coprime. Now
we develop the right–hand side of (13) in simple fractions of v, that is,

−sf(v)

g(v)
=

cµ
vµ

+
cµ−1

vµ−1
+ · · · +

c1
v

+
α1(v)

r(v)
+ α0(v),

where α0(v) and α1(v) are polynomials with degα1(v) < deg r(v) and
ci ∈ C, for i = 1, 2, . . . , µ. Equating both expressions, we get that
cµ = −s f(0)/r(0) ̸= 0. Moreover as a consequence of statement (iii)
we know that α0(v) ≡ 0. Therefore equation (13) becomes

h′(v)

h(v)
=

cµ
vµ

+
cµ−1

vµ−1
+ · · · +

c1
v

+
α1(v)

r(v)
,
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with cµ ̸= 0. Now if we integrate this expression we get

h(v) = C exp

[
cµ

1 − µ

1

vµ−1

]
·

exp

[∫ (
cµ−1

vµ−1
+ . . . +

c1
v

+
α1(v)

r(v)

)
dv

]
,

where C is a constant of integration. The first exponential factor cannot
be simplified with any part of the second exponential factor. Thus,
we get a contradiction with the fact that h(v) is a rational function.
Therefore we conclude that V (u, v) and g(v) are square-free. This
proves statement (iv).

(v) Recalling that f and g are coprime and that αi is a root of g
it is clear that f(αi) ̸= 0 for i = 1, 2, . . . , k. As g is square-free, then
g′(αi) ̸= 0 for i = 1, 2, . . . , k.

(vi) We must prove that H(u, v) = u−1φ(v) where φ(v) = (v −
α1)

γ1(v − α2)
γ2 · · · (v − αk)

γk is a first integral of system (5), i.e.

uf(v)
∂H

∂u
+ g(v)

∂H

∂v
= u−1(−f(v)φ(v) + g(v)φ′(v)) = 0.

To see that this last expression is identically zero is equivalent to see
that φ′(v)/φ(v) = f(v)/g(v). Recalling the expression of φ(v) we have

φ′(v)

φ(v)
=

γ1

v − α1

+
γ2

v − α2

+ · · · +
γk

v − αk

.

Taking common denominator and recalling that g(v) = c(v − α1)(v −
α2)(v − α3) · · · (v − αk) we obtain

φ′(v)

φ(v)
=

1

g(v)

k∑

i=1

c γi

k∏

j=1,j ̸=i

(v − αj).

Now substituting the values of γi = f(αi)/g
′(αi) and taking into ac-

count that

g′(αi) = c

k∏

j=1,j ̸=i

(αi − αj),

we obtain

(16)
φ′(v)

φ(v)
=

1

g(v)

k∑

i=1

c f(αi)
k∏

j=1,j ̸=i

v − αj

αi − αj

=
f(v)

g(v)
.

Since deg f < deg g, the expression in the sum is the Lagrange poly-
nomial which interpolates the k points (αi, f(αi)), for i = 1, 2, . . . , k,
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see for more details [13]. Therefore, this polynomial is f(v) and we
conclude that expression (16) is identically satisfied.

(vii) We assume that system (5) has a rational first integral, then by
statement (ii) it has one of the form h(v)us where h(v) satisfies identity
(13). Using statements (iii), (iv) and (vi) we have that

(17)
f(v)

g(v)
=

γ1

v − α1

+
γ2

v − α2

+ · · · +
γk

v − αk

.

Hence, integrating identity (13) we obtain

(18) h(v) = C ((v − α1)
γ1(v − α2)

γ2 · · · (v − αk)
γk)−s .

Then, as h(v) must be a rational function and s ∈ N we have that
γi ∈ Q for i = 1, 2, . . . , k. Conversely, if γi ∈ Q for i = 1, 2, . . . , k
the first integral described in statement (vi) elevated to certain natural
power leads to a rational first integral of system (5).

(viii) If system (5) has a polynomial first integral, then reasoning
as in the previous statement we arrive to the same expression for
h(v) given by (18) which is polynomial if and only if γi ∈ Q− for
i = 1, 2, . . . , k. Conversely, if γi ∈ Q− for i = 1, 2, . . . , k the multi-
plicative inverse of the first integral described in statement (vi) gives
a polynomial first integral of system (5). This completes the proof of
the lemma. �

In order to relate the first integrals of the quasi–homogeneous system
(1) of weight (s1, s2, d) with the first integrals of system (5), we must
see how the change of variables described in Lemma 2 affects to the
rationality/polinomiality of a first integral of system (1). First we need
an auxiliary lemma about quasi–homogeneous polynomials.

Lemma 5. The following statements hold.

(i) Let Aℓ(x, y) be a quasi–homogeneous polynomial of weight ex-
ponents (s1, s2) and of weight degree ℓ, then ∂Aℓ/∂x is a quasi–
homogeneous polynomial of weight exponents (s1, s2) and of weight
degree ℓ − s1, and ∂Aℓ/∂y is a quasi–homogeneous polynomial
of weight exponents (s1, s2) and of weight degree ℓ− s2.

(ii) Let Aℓ(x, y) and Bm(x, y) be two quasi–homogeneous polynomi-
als of weight exponents (s1, s2) and of weight degrees ℓ and m,
respectively, then their product is a quasi–homogeneous polyno-
mial of weight exponents (s1, s2) and of weight degree ℓ + m
and their quotient is a quasi–homogeneous function of weight
exponents (s1, s2) and of weight degree ℓ−m.

(iii) Let A(x, y) be a polynomial. Then A(x, y) can be written as an
ordered finite sum of quasi–homogeneous polynomials of weight
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exponents (s1, s2) and of weight positive degrees, i.e. A(x, y) =
A0(x, y) + A1(x, y) + · · · + Aℓ(x, y) where Ai(x, y) is a quasi–
homogeneous polynomials of weight exponents (s1, s2) and of
weight degree i.

Proof. Although the proof is well-known, we give it here for sake of
completeness.

(i) First we recall the definition of quasi–homogeneous polynomial
of weight exponents (s1, s2) given in the introduction. We have that
Aℓ(x, y) is a quasi–homogeneous polynomial of weight exponents (s1, s2)
and of weight degree ℓ if

Aℓ(α
s1x, αs2y) = αℓAℓ(x, y), ∀α ∈ C.

Hence, if xiyj is a monomial with a nonzero coefficient of Aℓ(x, y) we
have αs1ixiαs2jyj = αℓxiyj from here we obtain s1i + s2j = ℓ for all
i, j. The polynomial ∂Aℓ/∂x has the monomial ixi−1yj (except for the
case i = 0) and using the same reasoning we will obtain the relation
s1(i − 1) + s2j. In fact taking into account that s1i + s2j = ℓ we get
s1(i − 1) + s2j = ℓ − s1 which implies that the polynomial ∂Aℓ/∂x is
a quasi–homogeneous polynomial of weight exponents (s1, s2) and of
weight degree ℓ− s1. The proof for ∂Aℓ/∂y is analogous.

(ii) We consider the product polynomial and we evaluate at (αs1x, αs2y)
and we have

Aℓ(α
s1x, αs2y)Bm(αs1x, αs2y) = αℓ+mAℓ(x, y)Bm(x, y) ∀α ∈ C.

The same reasoning is valid for the quotient.

(iii) Let xiyj be a monomial with a nonzero coefficient of A(x, y).
It is clear that belongs to a quasi–homogeneous polynomial of weight
exponents (s1, s2) and of weight degree s1i+s2j. Since i, j ≥ 0 we have
that this degree is not negative. As the number of monomials of A(x, y)
is finite we obtain a finite number of quasi–homogeneous polynomials
of weight exponents (s1, s2) and the weight degrees are ordered. �

Lemma 6. If system (1) has a rational (resp. polynomial) first integral
then system (1) has has a rational (resp. polynomial) first integral
which is a quasi–homogeneous function of weight exponents (s1, s2) and
of weight degree m ≥ 0.

Proof. The polynomial case could be deduced from the Proposition 1
in [17].

We consider H(x, y) = A(x, y)/B(x, y) the rational or polynomial
first integral of system (1) and, using Lemma 5 statement (iii) we write
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A(x, y) and B(x, y) as a sum of quasi–homogeneous polynomials of
weight exponents (s1, s2)

A(x, y) = A0(x, y) + · · · + Aa(x, y),

B(x, y) = B0(x, y) + · · · +Bb(x, y),

where a, b ∈ N ∪ {0} and Aa(x, y)Bb(x, y) ̸= 0. Note that the polyno-
mial case is b = 0 and B0(x, y) = 1. In the particular case a = b and if
there exists k ∈ C such that Aa(x, y) = kBa(x, y) we take H(x, y) − k
instead of H(x, y) in order to have a first integral where the degree of
the numerator is less than the degree of the denominator. We remark
that if H is a first integral then 1/H is also a first integral. There-
fore we can assume that a ≥ b and in the particular case that a = b
we can assume that the quotient Aa(x, y)/Ba(x, y) is not constant. If
H = A/B is first integral of system (1) it must satisfy

P (x, y)
∂H

∂x
+Q(x, y)

∂H

∂y
= 0.

Substituting H = A/B and multiplying by B2 we have

(19)

(
P
∂A

∂x
+Q

∂A

∂y

)
B −

(
P
∂B

∂x
+Q

∂B

∂y

)
A = 0.

Taking into account Lemma 5 we have that P is a quasi–homogeneous
polynomial of weight exponents (s1, s2) and of weight degree s1 − 1+ d
and Q is a quasi–homogeneous polynomial of weight exponents (s1, s2)
and of weight degree s2−1+d, and the polynomial P∂Ai/∂x+Q∂Ai/∂y
is a quasi–homogeneous polynomial of weight exponents (s1, s2) and of
weight degree d−1+i for i = 0, 1, 2, . . . , a and the same happens for the
polynomial P∂Bi/∂x+Q∂Bi/∂y for i = 0, 1, 2, . . . , b. Taking the terms
of highest degree in (19), which correspond to the quasi–homogeneous
polynomial of weight exponents (s1, s2) and of weight degree d−1+a+b
we obtain

(20)

(
P
∂Aa

∂x
+Q

∂Aa

∂y

)
Bb −

(
P
∂Bb

∂x
+Q

∂Bb

∂y

)
Aa = 0.

This equality says that Aa(x, y)/Bb(x, y) is a first integral of system
(1). The quotient of two quasi–homogeneous polynomials of weight
exponents (s1, s2) is a quasi–homogeneous function of weight exponents
(s1, s2) and of weight degree the difference between the weight degrees
of the two polynomials (see statement (ii) of Lemma 5). Hence, the
rational function Aa(x, y)/Bb(x, y) is a quasi–homogeneous function of
weight exponents (s1, s2) and of weight degree a− b ≥ 0. �
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The following lemma shows the relationship between first integrals
of system (1) and the ones of system (5).

Lemma 7. The following statements hold.

(i) System (1) has a rational first integral if and only if system (5)
has a rational first integral.

(ii) If system (1) has a polynomial first integral, then system (5) has
a polynomial first integral.

(iii) If system (5) has a polynomial first integral, then system (1) has
a first integral of the form xℓp(x, y) where p(x, y) is a (s1, s2)
quasi–homogeneous polynomial and ℓ ∈ Z.

Proof. In all this proof we assume that s1 and s2 are coprime using
Lemma 1.

(i) We assume that system (1) has a rational first integral, then
using Lemma 6, we know that it has a first integral which is a quasi–
homogeneous function of weight exponents (s1, s2) and of the form
Aa(x, y)/Bb(x, y) where Aa(x, y) is a quasi–homogeneous polynomial
of weight exponents (s1, s2) and of weight degree a and Bb(x, y) is
a quasi–homogeneous polynomial of weight exponents (s1, s2) and of
weight degree b. We consider the first integral

H(x, y) =

(
Aa(x, y)

Bb(x, y)

)L

=
Aa(x, y)

L

Bb(x, y)L
,

where L ∈ N is such that the degree of the numerator and the denomi-
nator is a multiple of s1s2. Hence, we can assume that we have a ratio-
nal first integral of system (1) of the form A(x, y)/B(x, y) where A(x, y)
and B(x, y) are quasi–homogeneous polynomials of weight exponents
(s1, s2) and of weight degree a and b respectively where a = s1s2ã and

b = s1s2b̃ with ã and b̃ ∈ N. Let xiyj be a monomial with a nonzero
coefficient of A(x, y) (or B(x, y)). By quasi–homogeneity we have
s1i+ s2j = a which implies s1i+ s2j = s1s2ã, that is, s2j = s1(s2ã− i).
As s1 and s2 are coprime, we deduce that j is a multiple of s1, that is,
j = s1j̃ with j̃ ∈ N∪{0}. The change of variables described in Lemma
2 tells us that if H = A(x, y)/B(x, y) is a first integral of system (1),

then H(u
1
s2 , (uv)

1
s1 ) is a first integral of system (5). Moreover we re-

call that H(x, y) is a quasi–homogeneous function of weight exponents

(s1, s2) and of weight degree a − b = s1s2(ã − b̃), and we shall denote

by m̃ = ã− b̃. We take α = u
1

s1s2 and by quasi–homogeneity we have

H(u
1
s2 , (uv)

1
s1 ) = H(αs1 , αs2v

1
s1 ) = αs2s2m̃H(1, v

1
s1 ) = um̃H(1, v

1
s1 ),



POLYNOMIAL AND RATIONAL FIRST INTEGRALS 15

where m̃ ∈ Z. As all the monomials xiyj that appear in H(1, v
1
s1 )

have j multiple of s1, we have that H(1, v
1
s1 ) is a rational function of

v. Therefore we have a first integral of system (5) of the form um̃h(v)
with h(v) a rational function and m̃ ∈ Z.

Conversely, we assume that system (5) has a rational first integral
H(u, v). By the change of variables described in Lemma 2 we have
that H(xs2 , ys1/xs2) is a first integral of system (1) which clearly is a
rational function.

(ii) We assume that system (1) has a polynomial first integral. By
similar arguments used in statement (i) we can assume that system (1)
has a polynomial first integral H(x, y) which is a quasi–homogeneous
polynomial of weight exponents (s1, s2) and of weight degree m =
s1s2m̃ with m̃ ∈ N. Analogously as in the previous section, we can see
that all the monomials xiyj that appear inH(x, y) have j multiple of s1,

i.e. j = j̃s1 with j̃ ∈ N ∪ {0}. Moreover, we have that H(u
1
s2 , (uv)

1
s1 )

is a first integral of system (5) and, by quasi–homogeneity, as before,
we can see that

H(u
1
s2 , (uv)

1
s1 ) = um̃H(1, v

1
s1 ).

As H(x, y) is a polynomial and all the monomials xiyj satisfy that j is

a multiple of s1, we have that h(v) = H(1, v
1
s1 ) is a polynomial in v.

Therefore, we have that um̃h(v) is a polynomial first integral of system
(5).

(iii) If system (5) has a polynomial first integral, using statement
(ii) of Lemma 4, we know that it has a first integral of the form ush(v)
with s ∈ N and h(v) a polynomial. Therefore by the change of variables
described in Lemma 2 we have that xs2sh(ys1/xs2) is a first integral of
system (1). As h(v) is a polynomial we can write it into the form
h(v) = c0 + c1v + · · · + ckv

k where ci ∈ C and we have

h

(
ys1

xs2

)
=
c0x

s2k + c1y
s1xs2(k−1) + · · · + cky

s1k

xs2k
.

We denote by

r(x, y) = c0x
s2k + c1y

s1xs2(k−1) + · · · + cky
s1k = xs2kh

(
ys1

xs2

)
,

and we have that xs2(s−k)r(x, y) is a rational first integral of system
(1). We note that r(x, y) is a quasi–homogeneous polynomial of weight
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exponents (s1, s2) due to

r(αs1x, αs2y) = (αs1x)s2kh

(
(αs2y)s1

(αs1x)s2

)
= αs1s2kxs2kh

(
ys1

xs2

)
,

which implies r(αs1x, αs2y) = αs1s2kr(x, y). �
The following example shows that there are systems (5) having poly-

nomial first integrals and such that their corresponding systems (1)
have no polynomial first integral.

Example 8. Consider the following differential system

(21) ẋ = x(3y2 − x2), ẏ = y(x2 + y2).

Its associated system (5) has a polynomial first integral, but system (21)
has a rational first integral and has no polynomial first integrals.

Proof. System (21) is a quasi–homogeneous system of weight expo-
nents (1, 1) and of weight degree 3. Applying the change of variables
described in Lemma 2 given in this case by x = u and y = uv we obtain
the system

(22) u̇ = u(3v2 − 1), v̇ = 2v(1 − v)(1 + v).

Comparing with system (5) we have that f(v) = 3v2 − 1 and g(v) =
2v(1 − v)(1 + v). System (22) has the polynomial first integral H̃ =
u2v(v − 1)(v + 1) and undoing the change we obtain that system (21)
has the rational first integral

H(x, y) =
y(y − x)(y + x)

x
.

Now we prove that system (21) has no polynomial first integrals. We
assume that it has a polynomial first integral and by Lemma 6 it must
have a homogeneous polynomial first integralHm(x, y) of degreem ≥ 0.
Moreover as Hm(x, y) is a first integral we have m > 0. Using the
change of variables of Lemma 2 and applying the results of Lemma 7,
system (21) would have a first integral of the form umh(v) where h(v)
will be a polynomial. We know that h(v), as we have seen in the proof
of statement (iii) of Lemma 4, must satisfy the differential equation
(13) and in this case we have

h′(v)

h(v)
=

−mf(v)

g(v)
=

−m(3v2 − 1)

2v(1 − v)(v + 1)
= −m

(−1
2

v
+

−1
2

v − 1
+

−1
2

v + 1

)
,

Solving this equation we obtain h(v) = C(v(v− 1)(v+ 1))m/2 where C
is a constant of integration that must be different from zero that we
take equal to 1 without loss of generality. Undoing the change x = u
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and y = uv, we obtain that Hm(x, y) = x−m/2ym/2(y2 − x2)m/2. Since
m > 0 we obtain that Hm(x, y) cannot be a polynomial and this gives
a contradiction with the existence of a polynomial first integral for
system (21). �

3. The main results

The following theorem is the main result of this paper and charac-
terizes when system (1) has a polynomial or a rational first integral.
As usual Q denotes the set of rational numbers, and Q+ (resp. Q−)
the set of positive (resp. negative) rational numbers.

Theorem 9. Consider system (1) which can be transformed by the
change defined in Lemma 2 in system (5). Using the same notation
than in previous lemmas, the following statements hold.

(a) System (1) has a rational first integral if and only if g(v) is
square-free, deg f < deg g and γi ∈ Q for i = 1, 2, . . . , k.

(b) System (1) has a polynomial first integral if and only if g(v)
is square-free, deg f < deg g, γi ∈ Q− for i = 1, 2, . . . , k and
1 + γ1 + γ2 + · · · + γk ≥ 0.

Proof. (a) By statement (i) of Lemma 7 system (1) has a rational first
integral if and only if, system (5) has a rational first integral. By
statement (vii) of Lemma 4 system (5) has a rational first integral if and
only if, g(v) is square-free, deg f < deg g and γi ∈ Q for i = 1, 2, . . . , k.

(b) We assume that system (1) has a polynomial first integral. By
statement (ii) of Lemma 7 we have that system (5) has a polynomial
first integral. By statement (viii) of Lemma 4 we have that g(v) is
square-free, deg f < deg g and γi ∈ Q− for i = 1, 2, . . . , k. We need to
see that 1 + γ1 + γ2 + · · · + γk ≥ 0.

We consider a polynomial first integral of system (1). By Lemma 6,
we can suppose that this first integral is a quasi–homogeneous polyno-
mial of weight exponents (s1, s2) and of weight degree m ≥ 0 and as it
is a nonconstant polynomial we have that m > 0. We denote this first
integral by Hm(x, y). As we have seen in the proof of statement (ii) of
Lemma 7, we have a polynomial first integral of system (5) of the form
um̃h(v) with m̃ > 0 and h(v) a polynomial. Moreover, as we have seen
in the proof of statement (iii) of Lemma 4, the polynomial h(v) has the
form

h(v) = C ((v − α1)
γ1(v − α2)

γ2 · · · (v − αk)
γk)−m̃ ,

where C is a constant of integration that we can take without loss of
generality equal to 1. In fact, due to the change of variables defined in
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Lemma 2 we obtain that the first integral um̃h(v) is transformed to

H̃(x, y) = (xs2)m̃h

(
ys1

xs2

)

= xs2m̃

((
ys1

xs2
− α1

)γ1

· · · ,
(
ys1

xs2
− αk

)γk
)−m̃

= xs2m̃(1+γ1+···+γk)(ys1 − α1x
s2)−γ1m̃ · · · (ys1 − α1x

s2)−γkm̃,

and we observe that a certain power of H̃ gives a polynomial first
integral, taking into account that γi ∈ Q− for i = 1, 2, . . . , k, if and
only if 1 + γ1 + γ2 + · · · + γk ≥ 0.

Conversely, if we assume that g(v) is square-free, deg f < deg g,
γi ∈ Q− for i = 1, 2, . . . , k and 1+γ1+γ2+· · ·+γk ≥ 0, by statement (iii)
of Lemma 4 we have that system (5) has a polynomial first integral. As
γi ∈ Q−, then there exist N,n1, n2, . . . , nk ∈ N such that γi = −ni/N
for i = 1, 2, . . . , k. By statement (vi) of Lemma 4 we have that

H(u, v) = u−1(v − α1)
−n1
N · · · (v − αk)

−nk
N ,

is a first integral of system (5), and consequently

H̃(u, v) = uN(v − α1)
n1 · · · (v − αk)

nk ,

is a first integral of system (5). Recalling that 1+γ1 +γ2 + · · ·+γk ≥ 0
we have 1 − n1/N − n2/N − · · · − nk/N ≥ 0 which implies N − n1 −
n2 − · · · − nk ≥ 0. Undoing the change of variables given in Lemma 2
we obtain

H̃

(
xs2 ,

ys1

xs2

)
= xs2N

(
ys1

xs2
− α1

)n1

· · ·
(
ys1

xs2
− αk

)nk

= xs2(N−n1−···−nk)(ys1 − α1x
s2)n1 · · · (ys1 − αkx

s2)nk ,

which is a polynomial first integral of system (1). �

One small improvement of statement (b) in Theorem 9 is the next
result.

Lemma 10. If g(v) is square-free, deg f < deg g and P (x, y) has not
x as a divisor, then 1 + γ1 + γ2 + · · · + γk = 0.

Proof. We recall that P (x, y) is a quasi–homogeneous polynomial of
weight exponents (s1, s2) and of weight degree s1 − 1 + d and that
P (0, 0) = 0. Since P (x, y) has not x as a divisor, it has a monomial

with nonzero coefficient of the form yj̃p . By quasi–homogeneity this
implies that s2j̃p = s1 − 1 + d. Taking into account that for any
monomial xipyjp of P (x, y) we have s1ip + s2jp = s1 − 1 + d, it follows
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that j̃p > jp for any other monomial because s1ip > 0. Consequently
the polynomial

f(v) = s2v
m+1−s1

s1 P (1, v
1
s1 )

is of degree

m+ 1 − s1 + j̃p
s1

= k̃ − 1, where k̃ =
m+ 1 + j̃p

s1

.

Moreover we observe that if ã is the coefficient of the monomial yjp of

P (x, y) then we have f(v) = s2ãv
k̃−1 + · · · , where the dots mean terms

in v of lower degree. Let j̃q be the largest natural such that xĩqyj̃q is

a monomial with nonzero coefficient of Q(x, y). We denote by b̃ the
coefficient of this monomial. By the quasi–homogeneity of Q(x, y) we
have s1ĩq + s2j̃q = s2 − 1 + d. Therefore −s1 + s2j̃p = d − 1 and

s1ĩq + s2(j̃q − 1) = d− 1, which implies

−s1 + s2j̃p = s1ĩq + s2(j̃q − 1),

or equivalently

s2j̃p = s1(ĩq + 1) + s2(j̃q − 1).

Recalling that ĩq ≥ 0 and s1, s2 > 0 we obtain j̃p > j̃q − 1, or equiva-

lently j̃p + 1 > j̃q. Hence g(v) takes takes form

g(v) = v
m
s1 (−s2ãv

j̃p+1

s1 + · · · + s1b̃v
j̃q
s1 + · · · ).

where the dots mean terms in v of lower degree. Hence g(v) has degree

k̃ in v, i.e. g(v) = −s2ãv
k̃ + · · · .

Taking the common denominator in equation (17) of statement (vii)
of Lemma 4 we obtain

f(v)

g(v)
=

γ1

v − α1

+
γ2

v − α2

+ · · · +
γk

v − αk

=
(γ1 + γ2 + · · · + γk)v

k−1 + · · ·
vk + · · · .

Multiplying both sides by (v − α1)(v − α2) · · · (v − αk) the equality
becomes

f(v)

−s2ã
=
s2ãv

k−1 + · · ·
−s2ã

= (γ1 + γ2 + · · · + γk)v
k−1 + · · · ,

and equating coefficients we get γ1 + γ2 + · · · + γk = −1. �
In Lemma 2 we have shown that any quasi–homogeneous polynomial

differential system after a convenient change of variables can be trans-
formed into a polynomial differential system of the form u̇ = uf(v),
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v̇ = g(v) with f(v) and g(v) polynomials. The next result shows that
the converse also works.

Proposition 11. Consider the differential system u̇ = uf(v), v̇ =
g(v) with f(v) and g(v) polynomials. Then there exists a change of
variables and a rescaling of the independent variable such that in the
new variables the differential system is quasi–homogeneous.

Proof. Given s1 and s2 two positive integers, we consider the change of
variables described in (4) and we get the following system:

ẋ =
x

s2

f

(
ys1

xs2

)
, ẏ =

y

s1

[
f

(
ys1

xs2

)
+
xs2

ys1
g

(
ys1

xs2

)]
.

In order to get a polynomial system we multiply the system by xs2m̃ys1−1,
where m̃ = max{deg f, deg g−1}, and we get the following polynomial
system:

(23)

ẋ =
x

s2

xs2m̃ys1−1 f

(
ys1

xs2

)

ẏ =
y

s1

xs2m̃ys1−1

[
f

(
ys1

xs2

)
+
xs2

ys1
g

(
ys1

xs2

)]
.

We only need to prove that system (23) is quasi–homogeneous with
weight exponents (s1, s2). We denote by P (x, y) and Q(x, y) the poly-
nomials such that ẋ = P (x, y) and ẏ = Q(x, y) and we want to
show that identities (2) are satisfied for arbitrary α ∈ C. We define
d = 1 + s1s2m̃+ s2(s1 − 1) and have that

P (αs1x, αs2y) =
αs1x

s2

αs1s2m̃xs2m̃αs2(s1−1)ys1−1 f

(
αs2s1ys1

αs1s2xs2

)

= αs1+d−1 x

s2

xs2m̃ys1−1 f

(
ys1

xs2

)

= αs1+d−1P (x, y),

Q(αs1x, αs2y) =
αs2y

s1

αs1s2m̃xs2m̃αs2(s1−1)ys1−1

[
f

(
αs2s1ys1

αs1s2xs2

)

+
αs1s2xs2

αs2s1ys1
g

(
αs2s1ys1

αs1s2xs2

)]

= αs2+d−1 y

s1

xs2m̃ys1−1

[
f

(
ys1

xs2

)
+
xs2

ys1
g

(
ys1

xs2

)]

= αs2+d−1Q(x, y).
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Therefore, system (23) is a quasi–homogeneous polynomial differential
system of degree (s1, s2, d). �
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[11] J. Giné and J. Llibre, On the planar integrable differential systems. Z.
Angew. Math. Phys. 62 (2011), 567–574.
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