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LIMIT CYCLES OF POLYNOMIAL DIFFERENTIAL EQUATIONS
WITH QUINTIC HOMOGENOUS NONLINEARITIES

REBIHA BENTERKI! AND JAUME LLIBRE?

ABSTRACT. In this paper we mainly study the number of limit cycles which
can bifurcate from the periodic orbits of the two centers

= -y, y=u;

i=—y(1l-(2*+9°)?), g=z01-(*+y°)?);
when they are perturbed inside the class of all polynomial differential systems
with quintic homogenous nonlinearities. We do this study using the averaging
theory of first, second and third order.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

In this paper we only consider differential equations in R? of the form

dx dy
1 _— = P —_— =
(1) o = Py, o =Q(y),
where P and @ are polynomials of degree at most 5 with only homogeneous non-
linearities. We recall that a limit cycle of the differential equation (1) is a periodic

orbit of this equation isolated in the set of all periodic orbits of equation (1).

The definition of limit cycle appeared in the years 1891 and 1897 in the works
of Poincaré [15]. Almost immediately, in 1990, they become the main object to
be studied in the statement of the second part of the 16-th Hilbert’s problem
[9]. Later on Van der Pol [16] in 1926, Liénard [11] in 1928 and Andronov [1] in
1929 shown that the periodic solution of a self-sustained oscillation of a circuit
in a vacuum tube was a limit cycle in the sense defined by Poincaré. After this
first observation of the existence of limit cycles in the nature, the existence, non—
existence, uniqueness and other properties of the limit cycles has been intensively
studied first by the mathematicians and the physicists, and more recently by the
chemists, biologists, economists, ... Nowadays the study of the limit cycles of the
planar differential systems has been one of the main problems of the qualitative
theory of the differential equations. See for instance the recent papers [18, 19, 20]
and the references quoted there.

A center is a singular point of a differential system (1) for which there exists a
neighborhood such that all the orbits in that neighborhood are periodic, with the
exception of the singular point.

A good way of producing limit cycles is by perturbing the periodic orbits of a
center. This technique has been studied intensively perturbing the periodic orbits
of the centers, mainly of centers of the quadratic polynomial differential systems,
see for instance the book of Christopher and Li [6], and the references there in.
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The techniques used for studying the limit cycles that can bifurcate from the
periodic orbits of a center, are mainly three: Abelian integrals (see [6]), Melnikov
functions (see [10]), and averaging theory (see [3]). In the plane at same order all
these techniques are equivalent (see [8]), they produce the same results, but the
computations can change with the different technique.

In this note we shall consider polynomial differential systems of the form

(2) j":Pl(xvy)"i_Pn(x’y)v ?JZQl(a%y)+Qn($,y),

where Py (z,y) and Qk(x,y) are homogeneous polynomials of degree k, i.e. we con-
sider polynomial differential systems with homogeneous nonlinearities. For n = 2
we have the class of all quadratic polynomial differential systems, whose centers
have been completely classified, and there are hundreds of papers studying how
many limit cycles can bifurcate from the periodic orbits of these centers, see again
[6]. For the general cubic polynomial differential systems the centers are not com-
pletely classified, but for the particular class of systems (2) with n = 3 their centers
have been classified, see [14, 17]. The study of the limit cycles which can bifurcate
from the periodic orbits of some centers of this last class (n = 3) were made in [12],
and for n =4, see [4] . In this work we will study the class n = 5.

The easiest center is the linear differential center £ = —y, §y = x . In fact, Iliev
[10] proved that the perturbation of this center inside the class of all polynomial
differential systems of degree n, using the Melnikov function at order k, produces
at most [k(n — 1)/2] limit cycles, where [z] denotes the integer part function of
z € R. Another easy center is the degenerate center & = —y((2% + 32)/2)™,
y = z((x? + y?)/2)™ with m > 1. In [2] the authors improve the bound of Iliev
perturbing the mentioned degenerate center. Thus, for n = 5 the Iliev result is at
most 2, 4 and 6 limit cycles at first, second and third order, respectively. While if
we perturb the center @ = —y((z% + y?)/2)?, ¥ = z((z* + y?)/2)? of degree 5 we
get at most 2, 4 and 7 limit cycles at first, second and third order, respectively (see
Theorem 1.1 of [2]). We remark that these results are not optimal for the following
polynomial differential system

3 3 5
t=-y+x Z e g + Zes Z ai7sxiy5_i,
s=1 s=1 =
3 3 5
g= x4y e+ Y > biay’ T
s=1 s=1 =0

of degree 5, because systems (3) does not have terms of degree 2, 3 and 4, only
have linear terms and homogeneous nonlinearities of degree 5.

(3)

The first objective of our work will be to provide the optimal upper bounds for
the number of limit cycles which can be obtained perturbing the centers & = —y,
9 = z with linear terms and homogeneous nonlinearities of degree 5 by using the
averaging theory of first, second and third order, see for more details section 3. In
other words, what is the maximum number of limit cycles of systems (3) for e # 0
sufficiently small which bifurcate from the periodic orbits of the centers £ = —y,
y = x using averaging theory of first, second and third order, respectively? The
answers to this question is given in Theorem 1.

Our second objective will be give the optimal upper bounds for the number of
limit cycles which can be obtained perturbing the center & = —y(1 — (22 + y?)?),
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y = (1 — (2 +y?)?) with linear terms and homogeneous nonlinearities of degree 5
by using the averaging theory of first, second and third order. More precisely, what
is the maximum number of limit cycles of the system

3 3 5
i=—y(l— (@2 +y")) +aYy A+ Y aia'y’,
s=1 s=1 =0
(4) 3 3 5
g= 21— @2+ +yd A+ "> by’
s=1 s=1 1=0

which bifurcate from the periodic orbits of the center @ = —y(1 — (22 + y?)?),
y = z(1 — (2% + y?)?) using averaging theory of first, second and third order? The
answer to this question is provided in Theorem 2.

We note that H = 2% + y? is a first integral of the two differential systems (3)
and (4) when ¢ = 0. Therefore, such systems when ¢ = 0 have a center at the
origin, and the periodic solutions surrounding them are circles.

Our main results are the following.

Theorem 1. For e # 0 sufficiently small and for k = 1,2,3 the mazimum number
of limit cycles of system (3) which bifurcate from the periodic orbits of the center
&= —y, y =z using averaging theory of k—th order is k.

Theorem 2. For k = 1,2 and 3 the mazimum number of limit cycles of system
(4) which bifurcate from the periodic orbits of the center i = —y(1 — (2% + y?)?),
Y = x(1— (22 +y?)?) using averaging theory of k —th order is 1, 2 and 4, respectively.

Theorems 1 and 2 are proved in section 4.

On the other hand we should consider polynomial differential systems with ho-
mogeneous nonlinearities of degree 5 as the ones of systems (3) and (4) such that
when ¢ = 0 the system reduces to

. 1
Tr = _Ey(x2 + y2)27

. 1
j= e+

We shall see that those systems have at most 1 limit cycle. But this result is
more general, because the mentioned polynomial differential systems with homo-
geneous nonlinearities of degree 5 are a particular case of the following polynomial
differential systems

1
i=———y(@®+y*) "2 4 Az + Py (2,y),
(5) n—1

. 1 _
§ = _1x(ac2+y2)(" D2 4 Ay + Qu(2,y),

when n is odd. The next result shows that systems (5) has at most one limit cycle.

Theorem 3. The polynomial differential systems (5) with linear terms and non-
linear terms of degree n odd at most have one limit cycle, and when it exists is
hyperbolic.

Theorem 3 is also proved in section 4. In fact this theorem implicity could be
obtained from the computations of the paper [7].
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2. POLAR COORDINATES AND CHERKAS TRANSFORMATION

We shall use the following result due to Cherkas [5].

Lemma 4. The differential equation
dr _ Ar+a(@)r"
9 1+ b@)rm=1’
doing the change of variables r — p given by p = r"~1/(1+b(0)r"~1), becomes the
Abel differential equation
d
= (= 1pEO)(N(0) — a(0))p +
[(n —1)(a(8) — 2X(8)) — V' (8)] p* + (n — 1) Ap.

Combining Lemma 4 with the polar change of coordinates (z,y) — (r,6) where
x =rcosf and y = rsinf we shall obtain the following result.

Corollary 5. Let P(x,y) and Q(z,y) be homogenous polynomials of degree n.
Then the differential system

(6) E=Xr—y+Pulzy), =+ +Qn(z,y),
can be transformed into the Abel equation

dp

— = —1)B(O)(AB(9) — A(0))p3
- L - DBOOBO) - AO)+

[(n = 1)(A(0) = 2AB(0)) — B'(0)] p* + (n — 1) Ap.

where
A(0) = cos 0P, (cosb,sin ) + sin 0Q,, (sin 0, cos §),
B(0) = cos0Q,,(cos b, sin ) — sin P, (sin b, cos §).

Proof. System (6) expressed in polar coordinates becomes
=X+ A@)r",  0=1+B(6)r".

Dividing 7 by 6 and using Lemma 4 the corollary follows. Il

3. AVERAGING THEORY

In this section we present the basic results from the averaging theory that we
shall need for proving the main results of this paper. The averaging theory up
to third order for studying specifically periodic orbits was developed in [3]. It is
summarized as follows.

Consider the differential system
(8) i(t) = eFy(t,x) + 2 Fy(t, ) + 3 F3(t, ) + e* R(t, x, €),

where F},F5, F3 :RxD —- R, R:RxDx (—sf,ef) — R are continuous functions,
T—periodic in the first variable, and D is an open subset of R. Assume that the
following hypotheses (i) and (ii) hold.
(1) Fl(t, ) S CZ(D), Fg(t, ) S Cl(D) for all t € R, Fy, F5, F3, R, DgFl,DIFQ
are locally Lipschitz with respect to z, and R is twice differentiable with
respect to e.
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We define Fyg: D — R for £k =1,2,3 as

1 T
Fip(z) = T/ Fi(s,x)ds
0
1 [T1oF
Fut) = 7 [ [8;@,@ (s,a) + F2<s,x>} ds,
552 550

2
Fo(z) = */ 5o (s, @)y (s,2)° + Lon (s, 2)y2(s, )

+ 53:2 (s,2)y1(s,x) + F5(s, ac)} ds,

where

\(5,2) = /O Fy(ta)dt

ya(s,x) = 2/08 [%?(t,x)yl(t,m) + Fy(t,x)| dt.

(ii) For V C D an open and bounded set and for each ¢ € (—e¢,e¢)\ {0}, there
exists a € V such that (Fyg + eFao + €2 F30)(a) = 0 and

d(Fio + eFao + €2 F39)
dxr

(a) # 0.

Then for |e] > 0 sufficiently small there exists a T—periodic solution z(t, ) of
the system such that z(0,e) — a as e — 0.

If Fyg is not identically zero, then the zeros of Fyg + cFyg + €2 F3g are mainly the
zeros of Fg for e sufficiently small. In this case the previous result provides the
averaging theory of first order.

If Fp is identically zero and F5q is not identically zero, then the zeros of Fyg +
eFyo + €2F30 are mainly the zeros of Fy for ¢ sufficiently small. In this case the
previous result provides the averaging theory of second order.

If F19 and Fyg are identically zero and F3q is not identically zero, then the zeros
of Fig + eFyg + €2 F3q are the zeros of Fzq for ¢ sufficiently small. In this case the
previous result provides the averaging theory of third order.
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4. PROOFS

Proof of Theorem 1. Using Corollary 5 we write the polynomial differential system
(3) as the Abel differential equation (7) with n =5 and where

A(9) = e((as1 + ease + €%ass) cos® 6
+(CL41 —+ b51 + € aq2 —+ 652) —+ 62(CL43 —+ b53)) COS5 981119
(a31 + bg1 +e(aszs + b42) +e? (a33 + b43)) cos* fsin? 0
(a21 + b31 + e(age + b32) + 62(a23 + b33)) cos® O sin® 0
“( )
)

I~ N N

(a11 + bo1 + a1z + bag) 4 €%(a13 + bas)) cos? Asin 0
(ao1 + b11 + £(agz + bia] + €%(aos + b13)) cos sin® O
(bor + €boz + €2b3) sin® ),

(<b51 + bsoe + b5382) cos® 0
—(as1 — ba1 +e(as2 — ba2)
—(a41 — bs1 + e(asa — bs2)
—(as1 — boy + e(asa — bag)
—( )
—(

++ 4+ 4+

S+
—~
>
~—~
I
)

+&%(as3 — bag)) cos® Osin @
+ £%(ay3 — bss)) cos* O sin? @
+ €2(as3 — bys)) cos® O sin® @
+&%( )) cos? fsin* @
+&%( )) cos 0sin® 0

a23 — bi3
a13 — bo3

az — bi1 +e(aze — bia
arr — bo1 +e(aiz — boz)
7(@01 + 62(102 + 53003) SiIl6 9) .

Now the Abel differential equation (7) is the normal form (8) for applying the
averaging theory up to third order in &, where in (8) we have now x = p, t = 0
and F (6, p) is the coefficient of €* in dp/df for k = 1,2,3, we do not write their
huge expressions, easy to compute and manipulate with an algebraic manipulator
as mathematica or mapple.

We compute the function Fip(p) defined in section 3, and we get

1
Fio(p) = ZP(16>\1 + (Bbo1 + a11 + as1 + ba1 + Basy + ba1) p).

Clearly the polynomial Fi(p) can have at most one positive real root, and there
are polynomial differential systems (4) for which they have such a positive real root.
So, from section 3 the proof of the theorem follows for k = 1.

For applying the averaging theory of second order we need that Fig(p) = 0. So
we take

(10) AL = Oa ba1 = _5b01 — 11 — a3l — bop — Sas.
Computing the function Fo(p) defined in section 3, we obtain
1
Faolp) = 10 (256A2 + 16R1p + Rap?)

where
Ry = 5boz + a1z + asz + bag + Sasz + bao,

R 50ap1bo1 + 10ag1a11 + 3ap1as1 + 3ag1be1 + 6boras
+2bo1b11 + 4ar1a21 + 6ai1bir + 18boragr + 14bg1bs;
(11) +6ar1a41 + 4a11b31 + 3az1as1 + a21ba1 + 3b11a3:
—b11b21 + 50bg1b51 + 10a11b51 + 6aziasy + 12b11a5:
+7as1a41 + 3a31b31 + 3b21a4a1 + barbs1 + Tasibs;
+Tbo1bs1 + 28a41a51 + 14b31a51 .

Clearly the coefficients A3, Ry and Ry are independent, so the polynomial Fq(p)
can have at most two positive real roots, and there are polynomial differential
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systems (3) for which they have such two positive real roots. Hence the theorem is
proved for k£ = 2.

In order to apply the averaging theory of third order we need that Fxo(p) = 0.
So we take

Ay = 0,
byo = —b5bgy — a1z — aza — baz — Sasy,
1
bs1 = —50ag1bg1 — 10apia11; — 3ao1a
(12) 51 50bor + 10011 & Tass +7b21( 01bo1 01011 01031

—3ap1ba1 — 6bg1az1 — 4aiiasr — 6a11b11 — 18bg1asr — 14b31as1
—14bg1b31 — 6aiias; — 4a11bz1 — 3az1a31 — az1bay + bi1bay
—6ag1as51 — 12b11as1 — 2bo1b11 — 3b11az1 — Taziaqr — 3az1b3;
—3bg1a41 — ba1b31 — 28ayya51).

Of course, we assume that the denominator 50bg; +10a11+7a31+7b2; # 0, otherwise
we isolated another coefficient. Computing the function Fsq(p) defined in section
3, we obtain

_ 1
393216(50b0;1 + 10ay; + Tag; + Tbay

We do not provide the big expressions of the coefficients k; for j = 0,1, 2, 3, because
some of them needs more than one page.

F30(p)

B p(ko + kip + kap® + ksp®).

In view of the expression of the polynomial F3¢(p) it follows immediately that
F50(p) can have at most three positive real roots, and that there are systems (3)
for which they have 0, 1, 2 or 3 positive real roots. This is due to the fact that
in every coefficient of the polynomial F5(p) appears some coefficient of the initial
polynomial differential system (3) which not appear in the other coefficients. For
instance, for the system

,183653y° 183653z (88y* —3)
3584 49152

183653 11
y=z+ 63W&4y +e (—4355 — 122y 4+ 23y* + 2%y + wyt + y5> ,

T=—-y+e

+e (x5 + ooty 4+ aBy? 4 a2yt ys) 7

the polynomials Fio(p) = Fa(p) = 0 and

Fio(p) = o (p = 3)(p — 2)(p — .

So this system has three positive real roots. This completes the proof of the theo-
rem. (]

Proof of Theorem 2. From Corollary 5 it follows that the polynomial differential
system (4) becomes the Abel differential equation (7) with n = 5 and with A(6)
exactly the one given in (9) and B(6) equal to the one given in (9) minus 1. Again
the Abel differential equation (7) is written in the normal form (8) for applying the
averaging theory, where x = p, t = 6 and F (6, p) is the coefficient £* of dp/df for
k=1,2,3.

We compute the function Fig(p) defined in section 3, and we get

1
FlO(p) = Zp(p + 1)(16)\1 + (51)01 =+ aill =+ a3 =+ b21 + 5CL51 =+ b41 + 16)\1)[))
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Clearly the polynomial Fjp(p) can have at most one positive real root, and there
are polynomial differential systems (4) for which they have such a positive real root.
So, from section 3 the proof of the theorem follows for k = 1.

Again the values (10) imply that Fig(p) = 0. Computing the function Fyo(p) we
obtain

1
Fyo(p) = ap(p +1)(256A2 + 16( Ry + 16X2)p + Rap?),

where R; and Ry are given in (11). The rest of the proof of the theorem for k = 2
follows as in the proof of Theorem 1.

Taking the values (12) we obtain that Fo(p) = 0. We calculate the function
F30(p) and we obtain

1
~ 3072(50b0; + 10a1; + Tag; + 7o)

We do not give the big expressions of the coefficients m; for j = 0,1,2,3,4. In
view of the expression of the polynomial F3(p) it follows easily that Fso(p) can
have at most four positive real roots, and that there are systems (4) for which
they have 0, 1, 2, 3 or 4 positive real roots. Again this is due to the fact that
in every coefficient of the polynomial F3q(p) appears some coefficient of the initial
polynomial differential system (4) which not appear in the other coefficients.

Fs0(p) p(p+1) (mo+ma p+map’+map’+map?).

Finally, a tedious but easy computation shows that for the particular polynomial
differential system (4) of the form

T=—-y (1 — (132 —|—y2)2) +e <xy4

60447 . 22 Tlz2y3 23 240xy* — x
9209607 141920 98282880
27937 Y
g = (1= (22 42 2) _ 2990 5 4 3,2 3 Y
Y “"( (@ +9%)7) e ~op000%" — =¥ T2 )+ Gerramso’

we obtain Fig(p) = Fao(p) = 0 and

Fao(p) = oommagPlp + 1)(2p = 1)(3p — 1)(4p = 1)(5p — 1).

So for this system four limit cycles bifurcate from the periodic orbits of the center
i =—y(1— (22 +9?)?), y = 2(1 — (2% + y*)?). Moreover, in coordinates (p, ), the
periodic orbits that bifurcate are p = 1/R with R = 2,3,4,5. This completes the
proof of the theorem when k& = 3. ]

For proving Theorem 3 we shall use the following result

Proposition 6 (see [13]). If h(z) is the displacement function associated to the
differential equation dp/df = S(p,0), then
o8

2T 85
95 (0, 9).0)d0 | p2x 52 / 95 ((s,y), 5)ds
h'(z) = /0 9 gpf(p(e,y),e)e o Op |,
0

where p(8,y) is the solution of the differential equation such that p(0,y) = y.

Proof of Theorem 3. The polynomial differential system (5) in polar coordinates
x =rcosf and y = rsin § becomes

(13) = Ar+a(@)r™, 6 =r""1h(0),
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where

a(0) = cos 0P, (cos b, sin 0) + sin 0Q,, (cos 0, sin §),

b(0) = cos0Q,,(cos b, sin ) — sin P, (cos 0, sin §).
Note that if b(6*) = 0 for some 6* € [0,27), then the straight line through the
origin of slope tan #* is invariant and consequently, the system cannot have limit
cycles surrounding the origin, or any other equilibrium (r*,6*) of the system. So
we can assume that b(f) # 0 for all 8 € [0, 27).

Doing the change p = 73~ and taking 6 as new independent variable we get

that system (13) is equivalent to the differential equation

dp a(h) A
b _(3-m (b(a)ﬁ b((,)) _ S(p,0).

Applying Proposition 6 to this differential equation we have that the displacement
function h(z) satisfies that h”(z) = 0, so h(z) = az+  with a, 8 € R. So h(z) has
at most one simple zero, and consequently our polynomial differential system has
at most one hyperbolic limit cycle. ([
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