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LIMIT CYCLES OF POLYNOMIAL DIFFERENTIAL EQUATIONS

WITH QUINTIC HOMOGENOUS NONLINEARITIES

REBIHA BENTERKI1 AND JAUME LLIBRE2

Abstract. In this paper we mainly study the number of limit cycles which
can bifurcate from the periodic orbits of the two centers

ẋ = −y, ẏ = x;
ẋ = −y(1 − (x2 + y2)2), ẏ = x(1 − (x2 + y2)2);

when they are perturbed inside the class of all polynomial differential systems
with quintic homogenous nonlinearities. We do this study using the averaging

theory of first, second and third order.

1. Introduction and statement of the results

In this paper we only consider differential equations in R2 of the form

(1)
dx

dt
= P (x, y),

dy

dt
= Q(x, y),

where P and Q are polynomials of degree at most 5 with only homogeneous non-
linearities. We recall that a limit cycle of the differential equation (1) is a periodic
orbit of this equation isolated in the set of all periodic orbits of equation (1).

The definition of limit cycle appeared in the years 1891 and 1897 in the works
of Poincaré [15]. Almost immediately, in 1990, they become the main object to
be studied in the statement of the second part of the 16–th Hilbert’s problem
[9]. Later on Van der Pol [16] in 1926, Liénard [11] in 1928 and Andronov [1] in
1929 shown that the periodic solution of a self–sustained oscillation of a circuit
in a vacuum tube was a limit cycle in the sense defined by Poincaré. After this
first observation of the existence of limit cycles in the nature, the existence, non–
existence, uniqueness and other properties of the limit cycles has been intensively
studied first by the mathematicians and the physicists, and more recently by the
chemists, biologists, economists, ... Nowadays the study of the limit cycles of the
planar differential systems has been one of the main problems of the qualitative
theory of the differential equations. See for instance the recent papers [18, 19, 20]
and the references quoted there.

A center is a singular point of a differential system (1) for which there exists a
neighborhood such that all the orbits in that neighborhood are periodic, with the
exception of the singular point.

A good way of producing limit cycles is by perturbing the periodic orbits of a
center. This technique has been studied intensively perturbing the periodic orbits
of the centers, mainly of centers of the quadratic polynomial differential systems,
see for instance the book of Christopher and Li [6], and the references there in.
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The techniques used for studying the limit cycles that can bifurcate from the
periodic orbits of a center, are mainly three: Abelian integrals (see [6]), Melnikov
functions (see [10]), and averaging theory (see [3]). In the plane at same order all
these techniques are equivalent (see [8]), they produce the same results, but the
computations can change with the different technique.

In this note we shall consider polynomial differential systems of the form

(2) ẋ = P1(x, y) + Pn(x, y), ẏ = Q1(x, y) + Qn(x, y),

where Pk(x, y) and Qk(x, y) are homogeneous polynomials of degree k, i.e. we con-
sider polynomial differential systems with homogeneous nonlinearities. For n = 2
we have the class of all quadratic polynomial differential systems, whose centers
have been completely classified, and there are hundreds of papers studying how
many limit cycles can bifurcate from the periodic orbits of these centers, see again
[6]. For the general cubic polynomial differential systems the centers are not com-
pletely classified, but for the particular class of systems (2) with n = 3 their centers
have been classified, see [14, 17]. The study of the limit cycles which can bifurcate
from the periodic orbits of some centers of this last class (n = 3) were made in [12],
and for n = 4, see [4] . In this work we will study the class n = 5.

The easiest center is the linear differential center ẋ = −y, ẏ = x . In fact, Iliev
[10] proved that the perturbation of this center inside the class of all polynomial
differential systems of degree n, using the Melnikov function at order k, produces
at most [k(n − 1)/2] limit cycles, where [z] denotes the integer part function of
z ∈ R. Another easy center is the degenerate center ẋ = −y((x2 + y2)/2)m,
ẏ = x((x2 + y2)/2)m with m ≥ 1. In [2] the authors improve the bound of Iliev
perturbing the mentioned degenerate center. Thus, for n = 5 the Iliev result is at
most 2, 4 and 6 limit cycles at first, second and third order, respectively. While if
we perturb the center ẋ = −y((x2 + y2)/2)2, ẏ = x((x2 + y2)/2)2 of degree 5 we
get at most 2, 4 and 7 limit cycles at first, second and third order, respectively (see
Theorem 1.1 of [2]). We remark that these results are not optimal for the following
polynomial differential system

(3)

ẋ = −y + x
3∑

s=1

εsλs +
3∑

s=1

εs
5∑

i=0

ai,sx
iy5−i,

ẏ = x + y
3∑

s=1

εsλs +
3∑

s=1

εs
5∑

i=0

bi,sx
iy5−i,

of degree 5, because systems (3) does not have terms of degree 2, 3 and 4, only
have linear terms and homogeneous nonlinearities of degree 5.

The first objective of our work will be to provide the optimal upper bounds for
the number of limit cycles which can be obtained perturbing the centers ẋ = −y,
ẏ = x with linear terms and homogeneous nonlinearities of degree 5 by using the
averaging theory of first, second and third order, see for more details section 3. In
other words, what is the maximum number of limit cycles of systems (3) for ε ̸= 0
sufficiently small which bifurcate from the periodic orbits of the centers ẋ = −y,
ẏ = x using averaging theory of first, second and third order, respectively? The
answers to this question is given in Theorem 1.

Our second objective will be give the optimal upper bounds for the number of
limit cycles which can be obtained perturbing the center ẋ = −y(1 − (x2 + y2)2),
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ẏ = x(1− (x2 + y2)2) with linear terms and homogeneous nonlinearities of degree 5
by using the averaging theory of first, second and third order. More precisely, what
is the maximum number of limit cycles of the system

(4)

ẋ = −y(1 − (x2 + y2)2) + x
3∑

s=1

εsλs +
3∑

s=1

εs
5∑

i=0

ai,sx
iy5−i,

ẏ = x(1 − (x2 + y2)2) + y
3∑

s=1

εsλs +
3∑

s=1

εs
5∑

i=0

bi,sx
iy5−i,

which bifurcate from the periodic orbits of the center ẋ = −y(1 − (x2 + y2)2),
ẏ = x(1 − (x2 + y2)2) using averaging theory of first, second and third order? The
answer to this question is provided in Theorem 2.

We note that H = x2 + y2 is a first integral of the two differential systems (3)
and (4) when ε = 0. Therefore, such systems when ε = 0 have a center at the
origin, and the periodic solutions surrounding them are circles.

Our main results are the following.

Theorem 1. For ε ̸= 0 sufficiently small and for k = 1, 2, 3 the maximum number
of limit cycles of system (3) which bifurcate from the periodic orbits of the center
ẋ = −y, ẏ = x using averaging theory of k–th order is k.

Theorem 2. For k = 1, 2 and 3 the maximum number of limit cycles of system
(4) which bifurcate from the periodic orbits of the center ẋ = −y(1 − (x2 + y2)2),
ẏ = x(1−(x2+y2)2) using averaging theory of k –th order is 1, 2 and 4, respectively.

Theorems 1 and 2 are proved in section 4.

On the other hand we should consider polynomial differential systems with ho-
mogeneous nonlinearities of degree 5 as the ones of systems (3) and (4) such that
when ε = 0 the system reduces to

ẋ = −1

4
y(x2 + y2)2,

ẏ =
1

4
x(x2 + y2)2.

We shall see that those systems have at most 1 limit cycle. But this result is
more general, because the mentioned polynomial differential systems with homo-
geneous nonlinearities of degree 5 are a particular case of the following polynomial
differential systems

(5)

ẋ = − 1

n − 1
y(x2 + y2)(n−1)/2 + λx + Pn(x, y),

ẏ =
1

n − 1
x(x2 + y2)(n−1)/2 + λy + Qn(x, y),

when n is odd. The next result shows that systems (5) has at most one limit cycle.

Theorem 3. The polynomial differential systems (5) with linear terms and non-
linear terms of degree n odd at most have one limit cycle, and when it exists is
hyperbolic.

Theorem 3 is also proved in section 4. In fact this theorem implicity could be
obtained from the computations of the paper [7].
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2. Polar coordinates and Cherkas transformation

We shall use the following result due to Cherkas [5].

Lemma 4. The differential equation

dr

dθ
=

λr + a(θ)rn

1 + b(θ)rn−1
,

doing the change of variables r → ρ given by ρ = rn−1/(1 + b(θ)rn−1), becomes the
Abel differential equation

dρ

dθ
= (n − 1)b(θ)(λb(θ) − a(θ))ρ3 +

[(n − 1)(a(θ) − 2λb(θ)) − b′(θ)] ρ2 + (n − 1)λρ.

Combining Lemma 4 with the polar change of coordinates (x, y) → (r, θ) where
x = r cos θ and y = r sin θ we shall obtain the following result.

Corollary 5. Let P (x, y) and Q(x, y) be homogenous polynomials of degree n.
Then the differential system

(6) ẋ = λx − y + Pn(x, y), ẏ = x + λy + Qn(x, y),

can be transformed into the Abel equation

(7)
dρ

dθ
= (n − 1)B(θ)(λB(θ) − A(θ))ρ3+

[(n − 1)(A(θ) − 2λB(θ)) − B′(θ)] ρ2 + (n − 1)λρ.

where
A(θ) = cos θPn(cos θ, sin θ) + sin θQn(sin θ, cos θ),
B(θ) = cos θQn(cos θ, sin θ) − sin θPn(sin θ, cos θ).

Proof. System (6) expressed in polar coordinates becomes

ṙ = λr + A(θ)rn, θ̇ = 1 + B(θ)rn.

Dividing ṙ by θ̇ and using Lemma 4 the corollary follows. �

3. Averaging theory

In this section we present the basic results from the averaging theory that we
shall need for proving the main results of this paper. The averaging theory up
to third order for studying specifically periodic orbits was developed in [3]. It is
summarized as follows.

Consider the differential system

(8) ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4R(t, x, ε),

where F1, F2, F3 : R×D → R, R : R×D× (−εf , εf ) → R are continuous functions,
T–periodic in the first variable, and D is an open subset of R. Assume that the
following hypotheses (i) and (ii) hold.

(i) F1(t, ·) ∈ C2(D), F2(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, F3, R, D2
xF1,DxF2

are locally Lipschitz with respect to x, and R is twice differentiable with
respect to ε.
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We define Fk0 : D → R for k = 1, 2, 3 as

F10(x) =
1

T

∫ T

0

F1(s, x)ds,

F20(x) =
1

T

∫ T

0

[
∂F1

∂x
(s, x) · y1(s, x) + F2(s, x)

]
ds,

F30(x) =
1

T

∫ T

0

[1

2

∂2F1

∂x2
(s, x)y1(s, x)2 +

1

2

∂F1

∂x
(s, x)y2(s, x)

+
∂F2

∂x
(s, x)y1(s, x) + F3(s, x)

]
ds,

where

y1(s, x) =

∫ s

0

F1(t, x)dt,

y2(s, x) = 2

∫ s

0

[
∂F1

∂x
(t, x)y1(t, x) + F2(t, x)

]
dt.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf )\{0}, there
exists a ∈ V such that (F10 + εF20 + ε2F30)(a) = 0 and

d(F10 + εF20 + ε2F30)

dx
(a) ̸= 0.

Then for |ε| > 0 sufficiently small there exists a T–periodic solution x(t, ε) of
the system such that x(0, ε) → a as ε → 0.

If F10 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are mainly the
zeros of F10 for ε sufficiently small. In this case the previous result provides the
averaging theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10 +
εF20 + ε2F30 are mainly the zeros of F20 for ε sufficiently small. In this case the
previous result provides the averaging theory of second order.

If F10 and F20 are identically zero and F30 is not identically zero, then the zeros
of F10 + εF20 + ε2F30 are the zeros of F30 for ε sufficiently small. In this case the
previous result provides the averaging theory of third order.
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4. Proofs

Proof of Theorem 1. Using Corollary 5 we write the polynomial differential system
(3) as the Abel differential equation (7) with n = 5 and where

(9)

A(θ) = ε
(
(a51 + εa52 + ε2a53) cos6 θ

+(a41 + b51 + ε(a42 + b52) + ε2(a43 + b53)) cos5 θ sin θ
+(a31 + b41 + ε(a32 + b42) + ε2(a33 + b43)) cos4 θ sin2 θ
+(a21 + b31 + ε(a22 + b32) + ε2(a23 + b33)) cos3 θ sin3 θ
+(a11 + b21 + ε(a12 + b22) + ε2(a13 + b23)) cos2 θ sin4 θ
+(a01 + b11 + ε(a02 + b12] + ε2(a03 + b13)) cos θ sin5 θ
+(b01 + εb02 + ε2b03) sin6 θ

)
,

B(θ) = ε
(
(b51 + b52ε + b53ε

2) cos6 θ
−(a51 − b41 + ε(a52 − b42) + ε2(a53 − b43)) cos5 θ sin θ
−(a41 − b31 + ε(a42 − b32) + ε2(a43 − b33)) cos4 θ sin2 θ
−(a31 − b21 + ε(a32 − b22) + ε2(a33 − b23)) cos3 θ sin3 θ
−(a21 − b11 + ε(a22 − b12) + ε2(a23 − b13)) cos2 θ sin4 θ
−(a11 − b01 + ε(a12 − b02) + ε2(a13 − b03)) cos θ sin5 θ
−(a01 + ε2a02 + ε3a03) sin6 θ

)
.

Now the Abel differential equation (7) is the normal form (8) for applying the
averaging theory up to third order in ε, where in (8) we have now x = ρ, t = θ
and Fk(θ, ρ) is the coefficient of εk in dρ/dθ for k = 1, 2, 3, we do not write their
huge expressions, easy to compute and manipulate with an algebraic manipulator
as mathematica or mapple.

We compute the function F10(ρ) defined in section 3, and we get

F10(ρ) =
1

4
ρ
(
16λ1 + (5b01 + a11 + a31 + b21 + 5a51 + b41) ρ

)
.

Clearly the polynomial F10(ρ) can have at most one positive real root, and there
are polynomial differential systems (4) for which they have such a positive real root.
So, from section 3 the proof of the theorem follows for k = 1.

For applying the averaging theory of second order we need that F10(ρ) ≡ 0. So
we take

(10) λ1 = 0, b41 = −5b01 − a11 − a31 − b21 − 5a51.

Computing the function F20(ρ) defined in section 3, we obtain

F20(ρ) =
1

64
ρ

(
256λ2 + 16R1ρ + R2ρ

2
)
,

where

(11)

R1 = 5b02 + a12 + a32 + b22 + 5a52 + b42,

R2 = 50a01b01 + 10a01a11 + 3a01a31 + 3a01b21 + 6b01a21

+2b01b11 + 4a11a21 + 6a11b11 + 18b01a41 + 14b01b31

+6a11a41 + 4a11b31 + 3a21a31 + a21b21 + 3b11a31

−b11b21 + 50b01b51 + 10a11b51 + 6a21a51 + 12b11a51

+7a31a41 + 3a31b31 + 3b21a41 + b21b31 + 7a31b51

+7b21b51 + 28a41a51 + 14b31a51.

Clearly the coefficients λ2, R1 and R2 are independent, so the polynomial F20(ρ)
can have at most two positive real roots, and there are polynomial differential



ON THE LIMIT CYCLES OF POLYNOMIAL DIFFERENTIAL EQUATIONS 7

systems (3) for which they have such two positive real roots. Hence the theorem is
proved for k = 2.

In order to apply the averaging theory of third order we need that F20(ρ) ≡ 0.
So we take

(12)

λ2 = 0,

b42 = −5b02 − a12 − a32 − b22 − 5a52,

b51 =
1

50b01 + 10a11 + 7a31 + 7b21
(−50a01b01 − 10a01a11 − 3a01a31

−3a01b21 − 6b01a21 − 4a11a21 − 6a11b11 − 18b01a41 − 14b31a51

−14b01b31 − 6a11a41 − 4a11b31 − 3a21a31 − a21b21 + b11b21

−6a21a51 − 12b11a51 − 2b01b11 − 3b11a31 − 7a31a41 − 3a31b31

−3b21a41 − b21b31 − 28a41a51).

Of course, we assume that the denominator 50b01+10a11+7a31+7b21 ̸= 0, otherwise
we isolated another coefficient. Computing the function F30(ρ) defined in section
3, we obtain

F30(ρ) =
1

393216(50b01 + 10a11 + 7a31 + 7b21)2
ρ(k0 + k1ρ + k2ρ

2 + k3ρ
3).

We do not provide the big expressions of the coefficients kj for j = 0, 1, 2, 3, because
some of them needs more than one page.

In view of the expression of the polynomial F30(ρ) it follows immediately that
F30(ρ) can have at most three positive real roots, and that there are systems (3)
for which they have 0, 1, 2 or 3 positive real roots. This is due to the fact that
in every coefficient of the polynomial F30(ρ) appears some coefficient of the initial
polynomial differential system (3) which not appear in the other coefficients. For
instance, for the system

ẋ = −y + ε2 183653y5

3584
− ε3

183653x
(
88y4 − 3

)

49152
+ ε

(
x5 + x4y + x3y2 + x2y3 + y5

)
,

ẏ = x + ε3 183653y

16384
+ ε

(
−11

4
x5 − 12x4y + x3y2 + x2y3 + xy4 + y5

)
,

the polynomials F10(ρ) ≡ F20(ρ) ≡ 0 and

F30(ρ) = −183653

24576
(ρ − 3)(ρ − 2)(ρ − 1)ρ.

So this system has three positive real roots. This completes the proof of the theo-
rem. �

Proof of Theorem 2. From Corollary 5 it follows that the polynomial differential
system (4) becomes the Abel differential equation (7) with n = 5 and with A(θ)
exactly the one given in (9) and B(θ) equal to the one given in (9) minus 1. Again
the Abel differential equation (7) is written in the normal form (8) for applying the
averaging theory, where x = ρ, t = θ and Fk(θ, ρ) is the coefficient εk of dρ/dθ for
k = 1, 2, 3.

We compute the function F10(ρ) defined in section 3, and we get

F10(ρ) =
1

4
ρ(ρ + 1)(16λ1 + (5b01 + a11 + a31 + b21 + 5a51 + b41 + 16λ1)ρ).
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Clearly the polynomial F10(ρ) can have at most one positive real root, and there
are polynomial differential systems (4) for which they have such a positive real root.
So, from section 3 the proof of the theorem follows for k = 1.

Again the values (10) imply that F10(ρ) ≡ 0. Computing the function F20(ρ) we
obtain

F20(ρ) =
1

64
ρ(ρ + 1)(256λ2 + 16(R1 + 16λ2)ρ + R2ρ

2),

where R1 and R2 are given in (11). The rest of the proof of the theorem for k = 2
follows as in the proof of Theorem 1.

Taking the values (12) we obtain that F20(ρ) ≡ 0. We calculate the function
F30(ρ) and we obtain

F30(ρ) =
1

3072(50b01 + 10a11 + 7a31 + 7b21)
ρ(ρ+1)(m0+m1ρ+m2ρ

2+m3ρ
3+m4ρ

4).

We do not give the big expressions of the coefficients mj for j = 0, 1, 2, 3, 4. In
view of the expression of the polynomial F30(ρ) it follows easily that F30(ρ) can
have at most four positive real roots, and that there are systems (4) for which
they have 0, 1, 2, 3 or 4 positive real roots. Again this is due to the fact that
in every coefficient of the polynomial F30(ρ) appears some coefficient of the initial
polynomial differential system (4) which not appear in the other coefficients.

Finally, a tedious but easy computation shows that for the particular polynomial
differential system (4) of the form

ẋ = −y
(
1 −

(
x2 + y2

)2
)

+ ε

(
xy4 − 60447

220960
y5

)
+ ε2 71x2y3

441920
− ε3 240xy4 − x

28282880
,

ẏ = x
(
1 −

(
x2 + y2

)2
)

+ ε

(
− 27937

220960
x5 − x4y + x3y2

)
+ ε3 y

28282880
,

we obtain F10(ρ) ≡ F20(ρ) ≡ 0 and

F30(ρ) =
1

7070720
ρ(ρ + 1)(2ρ − 1)(3ρ − 1)(4ρ − 1)(5ρ − 1).

So for this system four limit cycles bifurcate from the periodic orbits of the center
ẋ = −y(1 − (x2 + y2)2), ẏ = x(1 − (x2 + y2)2). Moreover, in coordinates (ρ, θ), the
periodic orbits that bifurcate are ρ = 1/R with R = 2, 3, 4, 5. This completes the
proof of the theorem when k = 3. �

For proving Theorem 3 we shall use the following result

Proposition 6 (see [13]). If h(z) is the displacement function associated to the
differential equation dρ/dθ = S(ρ, θ), then

h′′(z) = e

∫ 2π

0

∂S

∂ρ
(ρ(θ, y), θ)dθ




∫ 2π

0

∂2S

∂ρ2
(ρ(θ, y), θ)e

∫ θ

0

∂S

∂ρ
(ρ(s, y), s)ds

dθ


 ,

where ρ(θ, y) is the solution of the differential equation such that ρ(0, y) = y.

Proof of Theorem 3. The polynomial differential system (5) in polar coordinates
x = r cos θ and y = r sin θ becomes

(13) ṙ = λr + a(θ)rn, θ̇ = rn−1b(θ),
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where
a(θ) = cos θPn(cos θ, sin θ) + sin θQn(cos θ, sin θ),
b(θ) = cos θQn(cos θ, sin θ) − sin θPn(cos θ, sin θ).

Note that if b(θ∗) = 0 for some θ∗ ∈ [0, 2π), then the straight line through the
origin of slope tan θ∗ is invariant and consequently, the system cannot have limit
cycles surrounding the origin, or any other equilibrium (r∗, θ∗) of the system. So
we can assume that b(θ) ̸= 0 for all θ ∈ [0, 2π).

Doing the change ρ = r3−n and taking θ as new independent variable we get
that system (13) is equivalent to the differential equation

dρ

dθ
= (3 − n)

(
a(θ)

b(θ)
ρ +

λ

b(θ)

)
= S(ρ, θ).

Applying Proposition 6 to this differential equation we have that the displacement
function h(z) satisfies that h′′(z) = 0, so h(z) = αz + β with α, β ∈ R. So h(z) has
at most one simple zero, and consequently our polynomial differential system has
at most one hyperbolic limit cycle. �
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Arréridj 34265, El anasser, Algeria

E-mail address: r benterki@yahoo.fr
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