
h
tt
p
:/
/w
w
w
.g
sd
.u
a
b
.c
a
t

GENERALIZED WEIERSTRASS INTEGRABILITY FOR THE

COMPLEX DIFFERENTIAL EQUATIONS
dy

dx
= a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + e(x)

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We characterize the differential equations of the form

dy

dx
= a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + e(x),

where a, b, c, d, e are meromorphic functions in the variable x, that admits either a gener-
alized Weierstrass first integral or a generalized Weierstrass inverse integrating factor.

1. Introduction and statement of the main results

Let x and y be complex variables. In this paper we study the differential equations of
the form

(1)
dy

dx
= a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + e(x),

where a, b, c, d, e are meromorphic functions in the variable x. In fact, when a(x) ≡ 0 and
b(x) ̸≡ 0 the differential equation (1) is an Abel differential equation; when a(x) = b(x) ≡ 0
and c(x) ̸≡ 0 is a Riccati differential equation; when a(x) = b(x) = c(x) ≡ 0 and d(x) ̸≡ 0
is a linear differential equation.

When a(x) ≡ 0, equations (1) where studied by the first time by Abel in his analysis
on the elliptic functions (see [1]). Abel equations appear in the reduction of order of many
second and higher order families of differential equations. Hence are frequently found in the
modeling of real problems in several areas. Thus, for instance Abel differential equations
appear in cosmology (see [11]), in control theory of electrical circuits (see [7]), in ecology
(see [6]), ...

In what follows instead of working with the differential equation (1) we shall work with
the equivalent differential system

(2) ẋ = 1, ẏ = a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + e(x),

where the dot denotes derivative with respect to the time t, real or complex.

The goal of this paper is to study the integrability of the differential equations (1) re-
stricted to a special kind of first integrals. For such systems the notion of integrability is
based on the existence of a first integral, and we want to characterize when the differential
equations (1) have either a generalized Weierstrass first integral or a generalized Weierstrass
inverse integrating factor.
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vol. 26(8), 836–841, 2013.
DOI: [10.1016/j.aml.2013.03.018]

10.1016/j.aml.2013.03.018


2 J. LLIBRE AND C. VALLS

When one studies the integrability of a differential system, the easiest class of functions
to look for first integral is the polynomial ones. After the polynomial first integrals, we
look for the analytic first integrals. Usually, this is a hard problem and instead of this, one
studies the first integrals that can be described by formal series. The use of formal series is
a classical tool in the study of differential equations (see for instance [5], where the author
used them for proving the Dulac’s conjecture). Here, since the equations (1) are polynomial
in the variable y, we study the first integrals that are polynomials in the variable y and
formal series in the variable x, called formal Weierstrass first integrals.

The integrability of the Abel differential equations has been studied by many authors,
see for instance [3, 4, 9, 12]. In [3], [4] and [9], the authors give a list of integrable Abel
differential equations with a, b, c and d rational functions.

As usual C[[x]] is the ring of formal power series in the variable x with coefficients in C,
and C[y] is the ring of polynomials in the variable y with coefficients in C. A polynomial
of the form

(3)

n∑

i=0

ai(x)yi ∈ C[[x]][y],

is called a formal generalized Weierstrass polynomial in y of degree n if and only if an(x) ̸≡ 0.
A formal generalized Weierstrass polynomial whose coefficients are convergent is called
generalized Weierstrass polynomial. In [8] it was introduced, by first time, the definition of
Weierstrass integrability although that this definition is given in a more general context.
In reference [10] are studied the Liénard systems which have a generalized Weierstrass first
integral or a generalized Weierstrass inverse integrating factor.

We recall that an analytic first integral H : U → C of system (2) where U is an open
subset of C2 is a non-locally constant analytic function such that it is constant on the
solution of system (2) contained in U .

Let V : W → C be a function satisfying

∂V

∂x
+

∂V

∂y
(a(x)y4 + b(x)y3 + c(x)y2 +d(x)y + e(x)) = (4a(x)y3 +3b(x)y2 +2c(x)y +d(x))V.

Then V is an inverse integrating factor, and it is known that there exists a first integral H
such that

(4)
1

V
=

∂H

∂y
,

a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + e(x)

V
= −∂H

∂x
.

We say that a differential system (2) is generalized Weierstrass integrable if it admits a
first integral or an inverse integrating factor which is a generalized Weierstrass polynomial.

When in (3) an(x) = 1 and ai(0) = 0 for i < n we have a Weierstrass polynomial
instead of a generalized Weierstrass polynomial. In [13] the Weierstrass and the generalized
Weierstrass integrability have been characterized for the Abel, the Riccati and the linear
differential equations. Moreover, the Weierstrass integrability also has been characterized
in [14] for the differential equations

(5)
dx

dy
= bn(x)yn + · · · + b1(x)y + b0(x),

with bn(0) ̸= 0 and bi(x) meromorphic functions for i = 0, 1, . . . , n. But the characterization
of the generalized Weierstrass integrability for the differential equations (5) remains open
for n > 3. The goal of this paper is to characterize the generalized Weierstrass integrability
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for n = 4, i.e., for the differential equation (1). More precisely: How to recognize functions
a(x), b(x), c(x), d(x) aand e(x) for which differential equation (1) is generalized Weierstrass
integrable?

Our first result is the following.

Proposition 1. System (2) with a(x) ̸≡ 0 has no generalized Weierstrass first integrals.

Now we shall look for inverse integrating factors of the form

(6) V = Vs(x)ys + Vs−1(x)ys−1 + · · · + V1(x)y + V0(x) =

s∑

i=0

Vi(x)yi

with Vs(x) ̸≡ 0.

Theorem 2. System (2) with a(x) ̸≡ 0 admits a generalized Weierstrass inverse integrating
factor of the form (6) if and only if s = 4 and one of the following three conditions holds.

(a) 3b(x)2 − 8a(x)c(x) ̸= 0,

d(x) =
(3b(x)2 − 8a(x)c(x))3/2

a(x)2

(
C1 +

∫
f2(x)

(3b(x) − 8a(x)c(x))7/2
dx

)
,

e(x) =
(3b(x)2 − 8a(x)c(x))2

a(x)3

(
C0 −

∫
a(x)f1(x)

(3b(x) − 8a(x)c(x))4
dx

)
,

where the functions f1(x) and f2(x) are given in (14) and (15), respectively.

(b) c(x) = 3b(x)2/(8a(x)), (3b(x)4−64a(x)b(x)(a(x)d(x)+a′(x))+64a(x)2(4a(x)e(x)+

b′(x))3/4 ̸= 0 and f3(x) = 0, where the function f3(x) is given in (16).

(c) c(x) = 3b(x)2/(8a(x)) and

e(x) =
−3b(x)4 + 64a(x)2d(x)b(x) + 64a(x)a′(x)b(x) − 64a(x)2b′(x)

256a(x)3
.

The expressions for the generalized Weierstrass inverse integrating factors are given along
the proof of Theorem 2.

The proofs of Proposition 1 and Theorem 2 are given in section 2, where we also provide
two examples satisfying the conditions given in statements (b) and (c) of Theorem 2.

The analytic conditions for the existence of generalized Weierstrass inverse integrating
factors have been computed with the help of the algebraic manipulator mathematica.

2. Proof of the results

Proof of Proposition 1. Imposing that system (2) has a first integral of the form

(7) H = Hs(x)ys + Hs−1(x)ys−1 + · · · + H1(x)y + H0(x) =
s∑

i=0

Hi(x)yi

(with Hs(x) ̸= 0) we obtain the following polynomial in y

(8)

s∑

i=0

H ′
i(x)yi +

s∑

i=0

iHi(x)yi−1(a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + e(x)) = 0,

whose coefficients must be zero. Since a(x) ̸≡ 0 we get a recursive differential system to
determine the functions Hi(x) for i = 0, . . . , s. The highest power is ys+3 and its coefficient
is sHs(x)a(x) = 0. Since we are assuming that a(x) ̸= 0 and Hs(x) ̸= 0, we have that
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s = 0. So H = H0(x). Then, from (8), it follows that H ′
0(x) = 0, that is H = H0 is a

constant in contradiction with the fact that H is a first integral. �
Proof of Theorem 2. Imposing that system (2) has an inverse integrating factor of the form
(6) we obtain a polynomial in y whose coefficients must be zero. Hence we get that

s∑

i=0

V ′
i (x)yi +

s∑

i=0

iVi(x)yi−1(a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + e(x))

= (4a(x)y3 + 3b(x)y2 + 2c(x)y + d(x))
( s∑

i=0

Vi(x)yi
)
.

(9)

Now, computing the coefficients in (9) of ys+3 we get sVs(x)a(x) = 4Vs(x)a(x), i.e. s = 4,
because Vs(x)a(x) ̸= 0.

Computing (9) with s = 4 the coefficients of yk for k = 6, 5, 4, 3, 2, 1, 0 are

(10)

e6 = −a(x)V3(x) + b(x)V4(x),

e5 = −2a(x)V2(x) + 2c(x)V4(x),

e4 = −3a(x)V1(x) − b(x)V2(x) + c(x)V3(x) + 3d(x)V4(x) + V ′
4(x),

e3 = −4a(x)V0(x) − 2b(x)V1(x) + 2d(x)V3(x) + 4e(x)V4(x) + V ′
3(x),

e2 = −3b(x)V0(x) − c(x)V1(x) + d(x)V2(x) + 3e(x)V3(x) + V ′
2(x),

e1 = −2c(x)V0(x) + 2e(x)V2(x) + V ′
1(x),

e0 = −d(x)V0(x) + e(x)V1(x) + V ′
0(x).

Solving e6 = 0 we get that

(11) V3(x) =
b(x)V4(x)

a(x)
.

Then, from e5 = 0 we obtain

(12) V2(x) =
c(x)V4(x)

a(x)
.

Now from e4 = 0 we have that

(13) V1(x) =
3d(x)V4(x) + V ′

4(x)

3a(x)
.

Moreover, from e3 = 0 we get

V0(x) =
12a(x)2e(x)V4(x) − 3b(x)V4(x)a′(x) + 3a(x)V4(x)b′(x) + a(x)b(x)V ′

4(x)

12a(x)3
.

Case 1: 3b(x)2 − 8a(x)c(x) ̸= 0. Substituting Vk(x) for k = 0, 1, 2, 3 into e2 = 0 we get that

V4(x) =
a(x)3

(3b(x)2 − 8a(x)c(x))3/2
.

Now we introduce V4(x) into the expressions e1 = 0 and e0 = 0. Solving e0 = 0 with respect
to e(x) we get

(14) e(x) =
(3b(x)2 − 8a(x)c(x))2

a(x)3

(
C0 −

∫
a(x)f1(x)

(3b(x) − 8a(x)c(x))4
dx

)
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being C0 a constant and

f1(x) = 3b(x)3c(x)a′(x)2 + 3a(x)b(x)(b(x)2c(x)a′′(x) + a′(x)(c(x)(4c(x)a′(x) − b(x)

(8b′(x) + b(x)d(x))) + 3b(x)2c′(x))) + a(x)2(−16c(x)2a′(x)b′(x) + 2b(x)c(x)

(−4c(x)a′′(x) + 4a′(x)(2c′(x) + c(x)d(x)) + 15b′(x)2) + 6b(x)2(b′(x)(c(x)d(x)

− 3c′(x)) − c(x)b′′(x)) + 3b(x)3(c′′(x) − d(x)c′(x))) + 4a(x)3(2c(x)(c′(x)(b(x)d(x)

− 4b′(x)) − b(x)c′′(x)) + 4c(x)2(b′′(x) − d(x)b′(x)) + 5b(x)c′(x)2).

Solving e1 = 0 with respect to d(x) we get

(15) d(x) =
(3b(x)2 − 8a(x)c(x))3/2

a(x)2

(
C1 +

∫
f2(x)

(3b(x) − 8a(x)c(x))7/2
dx

)
,

being C1 a constant and

f2(x) = −9b(x)4a′(x)2 + 3a(x)b(x)2(−3b(x)2a′′(x) + b(x)a′(x)(15b′(x) + 2c(x)2)

− 4c(x)a′(x)2) + a(x)2(−16b(x)c(x)3a′(x) + 16c(x)2a′(x)2 − 12b(x)2

(−3c(x)a′′(x) + 7a′(x)c′(x) + b′(x)(3b′(x) + c(x)2)) + b(x)3(9b′′(x) + 6c(x)c′(x)))

− 4a(x)3(4c(x)2(2a′′(x) + b(x)c′(x)) + 2c(x)(−8a′(x)c′(x) + 3b(x)b′′(x) + 3b′(x)2)

+ 3b(x)(b(x)c′′(x) − 10b′(x)c′(x)) − 8c(x)3b′(x)) + a(x)4(32c(x)c′′(x) − 80c′(x)2).

Hence statement (a) is proved.

Case 2: 3b(x)2 − 8a(x)c(x) = 0, i.e.

c(x) =
3b(x)2

8a(x)
.

We consider two subcases.

Subcase 2.1: (3b(x)4 − 64a(x)b(x)(a(x)d(x) + a′(x)) + 64a(x)2(4a(x)e(x) + b′(x))3/4 ̸= 0.
In this case, substituting c(x) and Vk(x) for k = 0, 1, 2, 3 into e1 and e0 we obtain two
expressions where appear V ′′

4 (x). Isolating from both expressions V ′′
4 (x) and equating them

we have a differential equation for V ′
4(x). Solving this differential equation we get

V4(x) =
a(x)3

(3b(x)4 − 64a(x)b(x)(a(x)d(x) + a′(x)) + 64a(x)2(4a(x)e(x) + b′(x))3/4
.
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Substituting V4(x) in e1 = 0 and e0 = 0 we obtain that the function f3(x) equal to

(16)

−4a(x)
(
1024

(
− 16d′(x)e(x)2 + 4(3d(x)e′(x) + e′′(x))e(x) − 7e′(x)2

)
a(x)7

−512
(
6(e(x)b′(x) + b(x)e′(x))d(x)2 −

(
13b′(x)e′(x) + 2e(x)(4e(x)a′(x)

+5b(x)d′(x) + 2b′′(x)) − 2b(x)e′′(x)
)
d(x) + 8e(x)2a′′(x) + 7e′(x)(b′′(x)

−b(x)d′(x)) − 2b′(x)e′′(x) + 2e(x)(10b′(x)d′(x) − 2a′(x)e′(x) + b(x)d′′(x)

−b(3)(x))
)
a(x)6 − 64

(
12e(x)e′(x)b(x)3 + (4d′(x)d(x)2 − 4d′′(x)d(x)

+7d′(x)2 − 48e(x)2b′(x))b(x)2 − 2
(
6b′(x)d(x)3 + (8e(x)a′(x) − 4b′′(x))d(x)2

+
(
7b′(x)d′(x) − 2(28a′(x)e′(x) + b(3)(x))

)
d(x) + 28e′(x)a′′(x) + 7d′(x)b′′(x)

−2b′(x)d′′(x) − 8a′(x)e′′(x) + e(x)(76a′(x)d′(x) − 8a(3)(x))
)
b(x)

−80e(x)2a′(x)2 + 19d(x)2b′(x)2 + 7b′′(x)2 + 24b′(x)2d′(x) − 22d(x)b′(x)b′′(x)
+40e(x)

(
b′(x)(d(x)a′(x) + 2a′′(x)) + a′(x)b′′(x)

)
− 4b′(x)(30a′(x)e′(x)

+b(3)(x))
)
a(x)5 + 16

(
3(−4e(x)d′(x) + 7d(x)e′(x) + e′′(x))b(x)4

−6
(
8e(x)(3e(x)a′(x) + d(x)b′(x)) + 9b′(x)e′(x)

)
b(x)3 − 4

(
8a′(x)d(x)3

−4a′′(x)d(x)2 + 4(3a′(x)d′(x) − a(3)(x))d(x) − 33e(x)b′(x)2 + 14d′(x)a′′(x)
−4a′(x)d′′(x)

)
b(x)2 + 8

(
24a′(x)b′(x)d(x)2 − (b′(x)a′′(x) + 6a′(x)b′′(x))d(x)

−60a′(x)2e′(x) + 7a′′(x)b′′(x) − 2b′(x)a(3)(x) + a′(x)(9b′(x)d′(x) + 60e(x)a′′(x)

−2b(3)(x))
)
b(x) − 8b′(x)

(
− 60e(x)a′(x)2 − 9b′′(x)a′(x) + b′(x)(21d(x)a′(x)

+8a′′(x))
))

a(x)4 + 4
(
3(d(x)d′(x) − d′′(x))b(x)5 + 3

(
− 3b′(x)d(x)2

+2(26e(x)a′(x) + b′′(x))d(x) + 8b′(x)d′(x) + 60a′(x)e′(x) − 4e(x)a′′(x)

+b(3)(x)
)
b(x)4 − 42b′(x)(20e(x)a′(x) + d(x)b′(x) + b′′(x))b(x)3 + 4

(
21b′(x)3

−4(24d(x)2a′(x)2 − 6d′(x)a′(x)2 + 8d(x)a′′(x)a′(x) − 4a(3)(x)a′(x)
+7a′′(x)2)

)
b(x)2 + 32a′(x)

(
− 60e(x)a′(x)2 − 9b′′(x)a′(x) + b′(x)(27d(x)a′(x)

+7a′′(x))
)
b(x) − 48a′(x)2b′(x)2

)
a(x)3 + b(x)

(
− 9e′(x)b(x)6 + 36e(x)b′(x)b(x)5

+12
(
a′(x)(2d(x)2 − 5d′(x)) − d(x)a′′(x) − a(3)(x)

)
b(x)4 + 24

(
58e(x)a′(x)2

+4b′′(x)a′(x) + b′(x)(7d(x)a′(x) + 5a′′(x))
)
b(x)3 − 504a′(x)b′(x)2b(x)2

+128a′(x)2(a′′(x) − 6d(x)a′(x))b(x) + 384a′(x)3b′(x)
)
a(x)2 − 3b(x)2a′(x)

·
(
9e(x)b(x)5 + 4(3d(x)a′(x) + 4a′′(x))b(x)3 − 60a′(x)b′(x)b(x)2 + 64a′(x)3

)
a(x)

−12b(x)5a′(x)3
)

must be zero for having a generalized Weierstrass inverse integrating factor. This completes
the proof of statement (b).

Subcase 2.2: (3b(x)4 − 64a(x)b(x)(a(x)d(x) + a′(x)) + 64a(x)2(4a(x)e(x) + b′(x))3/4 = 0,
that is,

e(x) =
−3b(x)4 + 64a(x)2d(x)b(x) + 64a(x)a′(x)b(x) − 64a(x)2b′(x)

256a(x)3
.

In this case, substituting c(x), e(x) and Vk(x) for k = 0, 1, 2, 3 into e1 and e0 we obtain two
expressions. In fact e0 = b(x)e1/(4a(x)), and e1 = 0 becomes

(9V4(x)a′(x) − 3a(x)V ′
4(x))b(x)3 − 9a(x)V4(x)b′(x)b(x)2 + 16a(x)2

(
− a′(x)V ′

4(x)

+3d(x)(a(x)V ′
4(x) − V4(x)a′(x)) + a(x)(3V4(x)d′(x) + V ′′

4 (x))
)

= 0.

Taking V4(x) satisfying this differential equation, the proof of statement (c) is done. �

Example 1. We provide an example of the existence of a generalized Weierstrass inverse
integrating factor of the differential system (2) satisfying the conditions of statement (b) of
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Theorem 2. Consider the differential system (2) with a(x) ̸≡ 0, b(x) = c(x) = 0, e(x) ̸≡ 0,
D = 4a(x)d(x)e(x) + a′(x)e(x) − a(x)e′(x) ̸= 0 and

d(x) =
1

D

(
7e′(x)2a(x)2 + 16e(x)2d′(x)a(x)2 − 4e(x)e′′(x)a(x)2

−2e(x)a′(x)e′(x)a(x) + 4e(x)2a′′(x)a(x) − 5e(x)2a′(x)2)
)
.

Then the generalized inverse integrating factor is of the form V (x, y) = V0(x)+ y +V4(x)y4

with

V4(x) =
4a(x)2e(x)

D
, and V0(x) =

4a(x)e(x)2

D
.

Example 2. Now we give an example of the existence of a generalized Weierstrass inverse
integrating factor of the differential system (2) satisfying the conditions of statement (c) of
Theorem 2. Consider the differential system (2) with a(x) ̸≡ 0 and b(x) = c(x) = e(x) = 0.
Then the generalized inverse integrating factor is of the form V (x, y) = y + V4(x)y4 with

V4(x) = e−3
∫

d(x) dxK + 3e−3
∫

d(x) dx

∫
e−

∫ x
0 −3d(s) dsa(x) dx.
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