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LIOUVILLIAN FIRST INTEGRALS FOR GENERALIZED

LIÉNARD POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We study the Liouvillian first integrals for the generalized Liénard polyno-

mial differential systems of the form x′ = y, y′ = −g(x) − f(x)y, where g(x) and f(x)
are arbitrary polynomials such that 2 ≤ deg g ≤ deg f .

1. Introduction and statement of the main result

One of the more classical problems in the qualitative theory of planar differential systems
depending on parameters is to characterize the existence or not of first integrals. This is a
difficult problem because in general there are no tools for solving it.

We consider the system

(1) x′ = y, y′ = −g(x) − f(x)y,

called the generalized Liénard differential system, where x and y are complex variables
and the prime denotes derivative with respect to the time t, which can be either real or
complex. Such differential systems appear in several branches of the sciences, such as biology,
chemistry, mechanics, electronics, etc. For g(x) = x the Liénard differential systems (1) are
called the classical Liénard systems.

Let U ⊂ C2 be an open set. We say that the non–constant function H : C2 → C is a first
integral of the polynomial vector field X on U , if H(x(t), y(t)) = constant for all values of
t for which the solution (x(t), y(t)) of X is defined on U . Clearly H is a first integral of X
on U if and only if XH = 0 on U .

A Liouvillian first integral is a first integral H which is a Liouvillian function, that is,
roughly speaking which can be obtained “by quadratures” of elementary functions. For a
precise definition see [13]. The study of the Liouvillian first integrals is a classical problem
of the integrability theory of the differential equations which goes back to Liouville, see for
details again [13].

As far as we know there are few results providing all the Liouvillian first integral of
some multi–parameter family of planar polynomial differential systems. One of the few
families where the Liouvillian first integrals have been completely classified is the planar
Lotka–Volterra quadratic polynomial differential system, see [1, 5, 9, 10, 11, 12].

The main objective of this paper is to study the Liouvillian first integrals of system (1)
depending on the polynomial functions f(x) and g(x). We denote by m and n the degrees
of g and f , respectively. We assume that 2 ≤ m ≤ n. Note that when m = 1 the Liouvillian
first integrals of system (1) were studied in [7]. More precisely, after a change of variables
of the form (x, y) → (ax + b, y) system (1) with m = 1 can be written as

(2) x′ = y, y′ = −cx − f(x)y.

Their Liouvillian first integrals are characterized in [7] as follows.
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Theorem 1. The unique Liouvillian first integrals H = H(x, y) of the Liénard polynomial
differential system (2) are:

(a) H = cx2 + y2 if f(x) = 0;
(b) H = y +

∫
f(x) dx if c = 0;

(c) H = H =
(1

2
(1 −

√
1 + 4α)x + y

)−1+
√

1+4α(1

2
(1 +

√
1 + 4α)x + y

)1+
√

1+4α

with

α = −c/f(0)2 if f(x) = f(0) ̸= 0; and

(d) H = ef ′(0)2x2+2f ′(0)y(c + f ′(0)y)−2c if f(x) = f ′(0)x ̸= 0.

Our main result is the following one.

Theorem 2. The unique Liouvillian first integrals H = H(x, y) of the generalized Liénard
polynomial differential system (1) with deg g = m, deg f = n and 2 ≤ m ≤ n are H =
(a + y)e−(y+F (x))/a if g(x) = af(x) where a ∈ C \ {0} and dF (x)/dx = f(x).

The proof of Theorem 2 is given in section 2.

2. Proof of Theorem 2

If g(x) = af(x) with a ∈ C \ {0} it is easy to check that

H = H(x, y) = (a + y)e−(y+F (x))/a

is a Liouvillian first integral of system (1). From now on we will assume that g/f is not
constant.

Let h(x, y) ∈ C[x, y] \ C. As usual C[x, y] denotes the ring of all complex polynomials in
the variables x and y. We say that v = 0 is an invariant algebraic curve of the vector field
X associated to system (1) if it satisfies

y
∂h

∂x
− (g(x) + f(x)y)

∂h

∂y
= Kh,

the polynomial K = K(x, y) ∈ C[x, y] is called the cofactor of h = 0 and has degree at most
n. We also say that h is a Darboux polynomial of system (1). Note that a polynomial first
integral is a Darboux polynomial with zero cofactor.

The invariant algebraic curves are important because a sufficient number of them forces
the existence of a first integral. This result is the basis of the Darboux theory of integrability,
see for instance [4, 6].

An exponential factor E of system (1) is a function of the form E = eu/v ̸∈ C with
u, v ∈ C[x, y] satisfying that

y
∂E

∂x
− (g(x) + f(x)y)

∂E

∂y
= LE,

for some polynomial L = L(x, y) of degree at most n, called the cofactor of E.

The existence of exponential factors eu/v with v /∈ C is due to the fact that the multiplicity
of the invariant algebraic curve v = 0 is larger than 1, and the existence of exponential factors
of the form eu is due to the multiplicity of the invariant straight line at infinity, for more
details see [3].

In 1992 Singer [13] proved that a polynomial differential system has a Liouvillian first
integral, if and only if it has an inverse integrating factor of the form

(3) e

(∫
U1(x, y)dx +

∫
U2(x, y)dy

)
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where U1 and U2 are rational functions which verify ∂U1/∂y = ∂U2/∂x. In 1999 Christopher
[2] improved the results of Singer showing that the inverse integrating factor (3) can be
written in the form

(4) eu/v
k∏

i=1

hλi
i

where u, v and hi are polynomials and λi ∈ C.

From (4) and the Darboux theory of integrability (see [6]) we have the following result.

Theorem 3. The polynomial differential system (1) has a Liouvillian first integral if and
only if system (1) has an integrating factor of the form (4), or equivalently there exist p
invariant algebraic curves hi = 0 with cofactors Ki for i = 1, . . . , p, q exponential factors
Ej = euj/vj with cofactors Lj for j = 1, . . . , q and λj , µj ∈ C not all zero such that

p∑

i=1

λiKi +

q∑

j=1

µjLj = −divergence of (1) = f(x).

In short, for proving Theorem 2 we need to characterize the Darboux polynomials and
the exponential factors of system (1). We start with some preliminaries. Let n = deg f and
m = deg g. We write

(5) f(x) =
n∑

j=0

ajx
j and hence F (x) =

n∑

j=0

aj

j + 1
xj+1, n ≥ 2

and

g(x) =
m∑

j=0

bjx
j , 2 ≤ m ≤ n.

We will also assume that g/f is not constant.

Proposition 4. System (1) under the assumptions of Theorem 2 and with g/f not constant
has no Darboux polynomials.

Proof. See Odani in [8]. �

Since there are no Darboux polynomials of system (1) under the assumptions of Theorem
2, all the exponential factors are of the form eu with u ∈ C[x, y].

The first result that we will prove is the following.

Proposition 5. System (1) under the assumptions of Theorem 2 and with g/f not constant
has the following exponential factors.

(a) exk

for k = 1, . . . , n,
(b) ey+F (x),

(c) e(yxk−1+
∫

f(x)xk−1dx) for k = 2, . . . , n − m + 1.

Moreover, the exponential of any linear combination of the exponents of the exponentials
given in statemens (a), (b) and (c) is also an exponential factor.

Proof. Let E = eu be an exponential factor of system (1) and

L = L(x, y) =
n∑

k=0

k∑

l=0

βk−l,lx
k−lyl, βk−l,l ∈ C

be its cofactor. We have

(6) y
∂u

∂x
− (g(x) + f(x)y)

∂u

∂y
=

n∑

k=0

k∑

l=0

βk−l,lx
k−lyl.
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We write u as a polynomial in the variable y as u =
∑r

j=0 uj(x)yj . Without loss of generality

we can assume that ur(x) ̸= 0. We rewrite (6) as
r∑

j=0

u′
j(x)yj+1 − g(x)

r∑

j=1

juj(x)yj−1 − f(x)
r∑

j=0

juj(x)yj =

n∑

k=0

k∑

l=0

βk−l,lx
k−lyl =

n∑

l=0

n∑

k=l

βk−l,lx
k−lyl =

n∑

k=0

βk,0x
k + y

n∑

k=1

βk−1,1x
k−1 +

n∑

l=2

yl
n∑

k=l

βk−l,lx
k−l.

(7)

Assume that r ≥ n. Then computing in (7) the coefficient of yr+1 we get that u′
r(x) = 0,

that is, ur(x) = γr ∈ C \ {0}. Now we will show that if we write

u = γry
r +

r∑

j=1

ur−j(x)yr−j ,

then

(8) ur−j(x) = γr
aj

n

j!(n + 1)j
xj(n+1)

j−1∏

i=0

(r − i) + l.o.t., for j = 1, . . . , r,

where l.o.t means lower order terms in x.

For j = 1 computing the coefficient of yr in (7), we get that

u′
r−1(x) − f(x)rur(x) = 0, if r > n,

and
u′

r−1(x) − f(x)rur(x) = β0,r, if r = n.

Integrating it we obtain

ur−1(x) = γrrF (x) + constant = γr
an

n + 1
rxn+1 + l.o.t., if r > n,

and
ur−1(x) = γrrF (x) + β0,rx + constant = γr

an

n + 1
rxn+1 + l.o.t., if r = n.

These last two expressions coincide with (8) for j = 1.

Now we assume that (8) is true for j = 0, . . . , J with J < r and we will prove it for
j = J + 1. Computing the coefficient of yr−J in (7) we get

u′
r−J−1(x) = g(x)(r − J + 1)ur−J+1(x) + f(x)(r − J)ur−J (x) + l.o.t.

Now using the induction hypothesis and since x(J−1)(n+1)+m belongs to the lower terms in
comparison with xJ(n+1)+n, we obtain that

u′
r−J−1(x) = f(x)(r − J)

γra
J
n

J !(n + 1)J
xJ(n+1)

J−1∏

i=0

(r − i) + l.o.t.

=
γra

J+1
n

J !(n + 1)J
xJ(n+1)+n

J∏

i=0

(r − i) + l.o.t.

Now integrating the previous equation we obtain

ur−J−1(x) =
γra

J+1
n

J !(n + 1)J (J + 1)(n + 1)
x(J+1)(n+1)

J∏

i=0

(r − i) + l.o.t.

=
γra

J+1
n

(J + 1)!(n + 1)J+1
x(J+1)(n+1)

J∏

i=0

(r − i) + l.o.t.,
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which is equation (8) with j = J + 1. This completes the proof of (8).

From (8) with j = r − 1 we obtain

u1(x) =
γra

r−1
n

(r − 1)!(n + 1)r−1
x(r−1)(n+1)

r−2∏

i=0

(r − i) + l.o.t.

Then computing the coefficient of y0 in (7) we get

−g(x)u1(x) =

n∑

k=0

βk,0x
k,

or equivalently

(9) −g(x)u1(x) = − bmγra
r−1
n

(r − 1)!(n + 1)r−1

r−2∏

i=0

(r − i)x(r−1)(n+1)+m + l.o.t. =
n∑

k=0

βk,0x
k.

Since n ≥ 2 and r > n − 1 ≥ 1 we have that (r − 1)(n + 1) > n, from (9) we have a
contradiction. Hence r ≤ n − 1.

We first assume that r ≥ 2 and again we will reach a contradiction. We claim that (7)
becomes

r∑

j=0

u′
j(x)yj+1 − g(x)

r∑

j=1

juj(x)yj−1 − f(x)
r∑

j=0

juj(x)yj =

n∑

k=0

βk,0x
k + y

n∑

k=1

βk−1,1x
k−1 +

r+1∑

l=2

yl
n∑

k=l

βk−l,lx
k−l.

(10)

Indeed, since all the coefficients with yl for l = r + 2, . . . , n in (7) only appears in the
right-hand we have that

n∑

l=r+2

yl
n∑

k=l

βk−l,lx
k−l = 0.

This implies that (10) holds, and consequently the claim is proved.

Computing the coefficient of yr+1 in (10) we get that

u′
r(x) =

n∑

k=r+1

βk−r−1,r+1x
k−r−1, that is ur(x) = cr+

n∑

k=r+1

βk−r−1,r+1

k − r
xk−r =

n∑

k=r

β̃kxk−r,

where β̃r = cr ∈ C and β̃k = βk−r−1,r+1/(k − r) for k = r + 1, . . . , n. Without loss of
generality and since ur(x) ̸= 0 we denote by k∗ the greatest integer of {r, . . . , n} such that

β̃k∗ ̸= 0. Then it is clear that

ur(x) = β̃k∗xk∗−r + l.o.t.

We claim that

(11) ur−j(x) =
β̃k∗aj

n∏j
i=1(i(n + 1) + k∗ − r)

xj(n+1)+k∗−r

j−1∏

i=0

(r − i) + l.o.t.,

for j = 1, . . . , r − 1.

Computing the coefficient of yr in (10) we get

u′
r−1(x) − f(x)rur(x) =

n∑

k=r

βk−r,rx
k−r.

Since k∗ ≥ r ≥ 2, the terms xn−r belongs to the lower terms in comparison with xn−r+k∗
.

Then we obtain that
u′

r−1(x) = anrβ̃k∗xn+k∗−r + l.o.t.
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Integrating this last expression we get

ur−1(x) =
β̃k∗an

n + 1 + k∗ − r
xn+1+k∗−rr + l.o.t.,

which coincides with (11) with j = 1.

Now we assume that (11) is true for j = 1, . . . , J with 1 ≤ J < r − 1 and we will prove it
for j = J + 1. Computing the coefficient of yr−J in (10) we get

u′
r−J−1(x) − g(x)(r − J + 1)ur−J+1(x) − f(x)(r − J)ur−J (x) =

n∑

k=r−J

βk−r+J,r−Jxk−r+J .

Now using the induction hypothesis and since x(J−1)(n+1)+m+k∗−r and xn−r+J belong to the
lower terms in comparison with xJ(n+1)+k∗−r+n (note that J ≥ 1), from the last equation
we obtain that

u′
r−J−1(x) = anxn(r − J)

β̃k∗aJ
n∏J

i=1(i(n + 1) + k∗ − r)
xJ(n+1)+k∗−r

J−1∏

i=0

(r − i) + l.o.t.

=
β̃k∗aJ+1

n∏J
i=1((i(n + 1) + k∗ − r)

xJ(n+1)+k∗−r+n
J∏

i=0

(r − i) + l.o.t.

Now integrating the previous equation we obtain

ur−J−1(x) =
β̃k∗aJ+1

n x(J+1)(n+1)+k∗−r

((J + 1)(n + 1) + k∗ − r)
∏J

i=1(i(n + 1) + k∗ − r)

J∏

i=0

(r − i) + l.o.t.

=
β̃k∗aJ+1

n∏J+1
i=1 (i(n + 1) + k∗ − r)

x(J+1)(n+1)+k∗−r
J∏

i=0

(r − i) + l.o.t.,

which is equation (11) with j = J + 1. This proves the claim done in (11).

From (11) with j = r − 1 we obtain

u1(x) =
β̃k∗ar−1

n∏r−1
i=1 (i(n + 1) + k∗ − r)

x(r−1)(n+1)+k∗−r
r−2∏

i=0

(r − i) + l.o.t.,

Then we have that the coefficient of y0 in (10) satisfies

−g(x)u1(x) =
n∑

k=0

βk,0x
k,

or equivalently

−g(x)u1(x) = − bmβ̃k∗ar−1
n∏r−1

i=1 (i(n + 1) + k∗ − r)

r−2∏

i=0

(r − i)x(r−1)(n+1)+k∗−r+m + l.o.t. =
m∑

k=0

βk,0x
k.

Since r ≥ 2 we have that (r−1)(n+1)+k∗−r = (r−1)n+k∗−1 ≥ n+k∗−1 ≥ n+r−1 ≥ n+1,
we have a contradiction. Hence r < 2, that is, r ≤ 1.

We write u(x, y) = u0(x) + yu1(x). From (10) we have
(12)

yu′
0(x)+ y2u′

1(x)− (g(x)+ f(x)y)u1(x) =
n∑

k=0

βk,0x
k + y

n∑

k=1

βk−1,1x
k−1 + y2

n∑

k=2

βk−2,2x
k−2.

Computing the coefficient of y2 in (12) we get

(13) u′
1(x) =

n∑

k=2

βk−2,2x
k−2, i.e. u1(x) = β∗ +

n∑

k=2

βk−2,2

k − 1
xk−1 with β∗ ∈ C.
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Furthermore the coefficient of y in (12) gives

u′
0(x) − f(x)u1(x) =

n∑

k=1

βk−1,1x
k−1.

Integrating we have

u0(x) =

∫
f(x)

(
β∗ +

n∑

k=2

βk−2,2

k − 1
xk−1

)
dx +

n∑

k=1

βk−1,1

k
xk

= β∗F (x) +
n∑

k=2

βk−2,2

k − 1

∫
f(x)xk−1 dx +

n∑

k=1

βk−1,1

k
xk.

(14)

Finally the coefficient of y0 in (12) gives

(15) −g(x)

(
β∗ +

n∑

k=2

βk−2,2

k − 1
xk−1

)
=

n∑

k=0

βk,0x
k.

Since g(x) =
∑m

j=0 bjx
j and bm ̸= 0 with m ≥ 2 we have that

(16) βk−2,2 = 0 for k ≥ n − m + 2.

Thus we can rewrite (15) as

− β∗
m∑

j=0

bjx
j −

m∑

j=0

bjx
j

n−m+1∑

k=2

βk−2,2

k − 1
xk−1

= −β∗
m∑

j=0

bjx
j −

m∑

j=0

n−m+1∑

k=2

bjβk−2,2

k − 1
xj+k−1

= −β∗
m∑

j=0

bjx
j −

n−m−1∑

l=0

m∑

j=0

bjβl,2

l + 1
xj+l+1

= −β∗
m∑

j=0

bjx
j −

n∑

k=1

xk
∑

j + l = k − 1
j ∈ {0, . . . , m}
l ∈ {0, . . . , n − m − 1}

bjβl,2

l + 1
=

n∑

k=0

βk,0x
k,

which yields

(17) β0,0 = −β∗b0, βk,0 = −β∗bkλk −
∑

j + l = k − 1
j ∈ {0, . . . , m}
l ∈ {0, . . . , n − m − 1}

bjβl,2

l + 1
,

for k = 1, . . . , n with λk = 0 for k ≥ m + 1.

From (13), (14) and (16) we have that

u(x, y) =

n−m+1∑

k=2

βk−2,2

k − 1

(∫
f(x)xk−1 dx + yxk−1

)
+ β∗(y + F (x)) +

n∑

k=1

βk−1,1

k
xk.(18)

In short, taking u(x, y) from (18) we have that eu(x,y) is an exponential factor. Note that
it depends on the constants βk−2,2, βk−1,1 and β∗. Now the proof of the proposition follows
taking each independent solution. For example, setting βk−2,2 = 0 for k = 2, . . . , n − m + 1,
β∗ = 0 and all the βk−1,1 = 0 except one we get all the solutions of statement (a). Moreover,
setting βk−1,1 = 0 for k = 1, . . . , n and βk−2,2 = 0 for k = 2, . . . , n − m + 1 we get the
solution of statement (b). Finally, setting βk−1,1 = 0 for k = 1, . . . , n, β∗ = 0 and all the
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βk−2,2 = 0 except one we get all the solutions of statement (c). This completes the proof of
the proposition. �

Note that from (12) we have that

L = L(x, y) =
n∑

k=0

βk,0x
k + y

n∑

k=1

βk−1,1x
k−1 + y2

n∑

k=2

βk−2,2x
k−2,

and using (16) and (17) we conclude that

L = −β∗g(x) −
n∑

k=1

xk
∑

j + l = k − 1

j ∈ {0, . . . , m}
l ∈ {0, . . . , n − m − 1}

bjβl,2

l + 1
+ y

n∑

k=1

βk−1,1x
k−1 + y2

n∑

k=2

βk−2,2x
k−2

= −β∗g(x) −
n∑

k=1

xk
∑

j + l = k − 1
j ∈ {0, . . . , m}
l ∈ {0, . . . , n − m − 1}

bjβl,2

l + 1
+ y

n−1∑

l=0

βl,1x
l + y2

n−m−1∑

l=0

βl,2x
l.

(19)

Proof of Theorem 2. The general form of the exponential factors is eu(x,y) with u(x, y) given
in (18) and the general form of the cofactor L(x, y) is given in (19).

In order that system (1) has a Liouvillian first integral, by Theorem 3, we must have

L(x, y) = f(x).

Hence, using (2) we get

(20) −β∗g(x) −
n∑

k=1

xk
∑

j + l = k − 1

j ∈ {0, . . . , m}
l ∈ {0, . . . , n − m − 1}

bjβl,2

l + 1
+ y

n−1∑

l=0

βl,1x
l + y2

n−m−1∑

l=0

βl,2x
l = f(x).

Since the right-hand side of (20) is independent of y, we get that βl,1 = 0 for j = 0, . . . , n−1
and βl,2 = 0 for l = 0, . . . , n − m − 1. Then (20) becomes −β∗g(x) = f(x), which is again
impossible since g(x)/f(x) is not constant. This ends the proof of Theorem 2. �
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