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Abstract. We present the actual state of the study of the minimal sets of Lef-
schetz periods MPerL(f) for the Morse�Smale di�eomorphisms on some closed
manifolds, as the connected compact surfaces (orientable or not) without bound-
ary, the n�dimensional torus and some other manifolds. The results on MPerL(f)
are valid for C1 self�maps on the mentioned closed manifolds with �nitely many
periodic points all of them hyperbolic such that all the eigenvalues of the in-
duced maps on homology are roots of unity. This class of maps includes the
Morse�Smale di�eomorphisms.

1. Introduction

In the study of the discrete dynamical systems and, in particular in the study
of the orbits of self�maps de�ned on a given compact manifold, the periodic orbits
play an important role. These last forty years there was many results showing that
some simple assumptions force qualitative and quantitative properties (like the set
of periods) of a map. One of the �rst results in this direction was the famous paper
Period three implies chaos for the interval continuous self�maps, see [24].

One of the most used tool for studying the existence of �xed points and periodic
points, for continuous self maps on compact manifolds, and more generally topological
spaces which are retract of �nite simplicial complexes, is the Lefschetz �xed point
theorem and its improvements (cf. [1, 2, 7, 8, 9, 11, 18, 19, 25, 30]). The Lefschetz
zeta function ζf (t) simpli�es the study of the periodic points of f . It is a generating
function for the Lefschetz numbers of all iterates of f . All these notions are de�ned
in Section 3.

The Morse-Smale di�eormorphisms have simple dynamic behaviour, however they
are an important class of discrete dynamical systems. Our objective is to describe the
periodic structure of these systems, in particular their minimal sets of periods. The
results that we present here are valid for a class of maps that includes the Morse-
Smale di�eomorphisms, i.e. C1 maps having �nitely many periodic points all of
them hyperbolic and with the same action on the homology as the Morse�Smale
di�eomorphisms.

Many papers have been published analyzing the relationships between the dynamics
of the Morse�Smale di�eomorphisms and the topology of the manifold where they are
de�ned, see for instance [3, 4, 5, 11, 12, 13, 14, 15, 31, 33, 35, 36, 37]. The Morse�
Smale di�eomorphisms have a relatively simple orbit structure. In fact, their set of
periodic orbits is �nite, and their structure is preserved under small C1 perturbations.
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Let X be a topological space. Let f : X → X be a continuous map. A point
x ∈M is nonwandering of f if for any neighborhood U of x there exists some positive
integer m such that fm(U) ∩ U 6= ∅. The set of nonwandering points of f is denoted
by Ω(f).

We say that x is a periodic point of f of period p if fp(x) = x and f j(x) 6= x for all
0 ≤ j < p. The set {x, f(x), . . . , fp−1(x)} is called the periodic orbit of the periodic
point x. If X = M is a C1 manifold and f a C1 map, we say that x a periodic point
of period p, is hyperbolic if the eigenvalues of Dfp(x) have modulus di�erent from 1.

If x is a hyperbolic periodic point of f of period p, the stable manifold of x is

W s(x) = {y ∈M : d(x, fpm(y))→ 0 as m→∞}
and the unstable manifold of x is

Wu(x) = {y ∈M : d(x, fpm(y))→ 0 as m→ −∞},
where d is the distance on M induced by the supremum norm.

We say that M is a closed manifold if it is a connected compact manifold without
boundary. A di�eomorphism f : M →M is Morse�Smale if

(i) Ω(f) is �nite,
(ii) all periodic points are hyperbolic, and
(iii) for each x, y ∈ Ω(f), W s(x) and Wu(y) have transversal intersections.

The �rst condition implies that Ω(f) is the set of all periodic points of f .

Two di�eomorphisms f, g ∈ Di�(M) are C1 equivalent if and only if there exists
a C1 homeomorphism h : M → M such that h ◦ f = g ◦ h. A di�eomorphism f
is structurally stable provided that there exists a neighborhood U of f in Di�(M)
such that each g ∈ U is topologically equivalent to f . Since the class of Morse�
Smale di�eomorphisms is structurally stable inside the class of all di�eomorphisms
(see [33, 34, 32]), to understand the dynamics of this class is an interesting problem.

Let

Per(f) = {m ∈ N : f has a periodic orbit of period m},
i.e. Per(f) is the set of periods of f .

The Lefschetz zeta function ζf (t) for a C1 Morse�Smale di�eomorphism f on a
closed surfaceM is introduced in Section 3. Using this function we de�ne the minimal
set of Lefschetz periods MPerL(f) for a such di�eomorphism f in Section 4. As
we shall see the study of this set is important because any other C1 Morse�Smale
di�eomorphism g on a manifold M in the same homology class than f satis�es

MPerL(f) ⊆ Per(g).

The set MPerL(f) is computable from the Lefschetz zeta function of f , and it consists
of odd positive integers, see Proposition 7. In Section 5 we mention the results related
to the MPerL(f) for maps on orientable closed surfaces, in Section 6 on non-orientable
closed surfaces, and in Section 7 on the n-dimensional torus.

The results are of two di�erent types, some give an explicit description of the
MPerL(f) for all Morse-Smale di�eomorphisms on a given manifold, see Theorems 8,
13 and 15. Other results describe what type of subsets of odd positive integers can
be MPerL(f) for some Morse-Smale di�eomorphisms f , see Theorems 9, 10, 11, 12
14, 16 and 17.

2. Cyclotomic polynomials

In this section we describe some basic properties of the cyclotomic polynomials
which we shall use in our study of the Lefschetz zeta function.
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Let n denote an integer. The n�th cyclotomic polynomial is given by

(1) cn(t) =
1− tn∏

d|n
d<n

cd(t)
,

for n > 1 and c1(t) = 1− t. An alternative way to express cn(t) is

cn(t) =
∏

k

(wk − t),

for n 6= 2, where wk = e2πik/n and k runs over the relative primes to n and smaller
than n, for c2(t) = −(w2 − t). For more details about these polynomials see [23].

Let ϕ(n) be the degree of cn(t). Then n =
∑

d|n
ϕ(d). So ϕ(n) is the Euler function,

which satis�es

ϕ(n) = n
∏

p|n
p prime

(
1− 1

p

)
.

Therefore if the prime decomposition of n is pα1
1 · · · pαkk , then

ϕ(n) =

k∏

j=1

p
αj−1
j (pj − 1).

From the formula (1), we have

cn(t) =
∏

d|n
(1− td)µ(n/d)

where µ is the Möbius function, i.e.

µ(m) =





1 if m = 1,
0 if k2|m for some k ∈ N,
(−1)r if m = p1 · · · pr has distinct primes factors.

Lemma 1 (Gauss). Irreducible polynomials whose roots are roots of unity are precisely
the collection of cyclotomic polynomials.

Here are some elementary properties of the cyclotomic polynomials (cf. [23]).

(p1) If p > 1 is prime then cp(t) = (1− tp)/(1− t).
(p2) If p = 2r with r odd then c2r(t) = cr(−t).
(p3) If p = 2α with α a positive integer, then cp(t) = 1 + t2

α−1

.

(p4) If p = rα with r > 2 prime and α a positive integer� then cp(t) = cr(t
rα−1

) =

(1− trα)/(1− trα−1

).

(p5) If p = 2nr with r odd and n > 1, then cn(t) = c2r(t
2n−1

).
(p6) For all n we have that cn(0) = 1, and the leading term of cn(t) is 1 if n ≥ 2.
(p7) The degree of cn(t) is even for n > 2.

3. Lefschetz Zeta Function

Let X be a topological space which is a retract of a �nite simplicial complex [20].
The compact manifolds, the CW complexes are spaces of this type. Let n be the
topological dimension of X. If f : X → X is a continuous map on X, it induces
a homomorphism on the k�th rational homology group of X for 0 ≤ k ≤ n, i.e.
f∗k : Hk(X,Q)→ Hk(X,Q). The Hk(X,Q) is a �nite dimensional vector space over
Q and it is torsion free, because it is a vector space over Q. The map f∗k is linear
given by a matrix with integer entries, then the Lefschetz number of f de�ned as

L(f) =

n∑

k=0

(−1)ktrace(f∗k),
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Table 1. The �rst thirty cyclotomic polynomials.

c1(t) = 1− t c2(t) = 1 + t c3(t) =
1− t3
1− t

c4(t) = 1 + t2 c5(t) =
1− t5
1− t c6(t) =

1 + t3

1 + t

c7(t) =
1− t7
1− t c8(t) = 1 + t4 c9(t) =

1− t9
1− t3

c10(t) =
1 + t5

1 + t
c11(t) =

1− t11

1− t c12(t) =
1 + t6

1 + t2

c13(t) =
1− t13

1− t c14(t) =
1 + t7

1 + t
c15(t) =

(1− t15)(1− t)
(1− t3)(1− t5)

c16(t) = 1 + t8 c17(t) =
1− t17

1− t c18(t) =
1 + t9

1 + t3

c19(t) =
1− t19

1− t c20(t) =
1 + t10

1 + t2
c21(t) =

(1− t21)(1− t)
(1− t3)(1− t7)

c22(t) =
1 + t11

1 + t
c23(t) =

1− t23

1− t c24(t) =
1 + t12

1 + t4

c25(t) =
1− t25

1− t5 c26(t) =
1 + t13

1 + t
c27(t) =

1− t27

1− t9

c28(t) =
1 + t14

1 + t2
c29(t) =

1− t29

1− t c30(t) =
(1 + t15)(1 + t)

(1 + t3)(1 + t5)

is always an integer number.

The Lefschetz Fixed Point Theorem states that if L(f) 6= 0 then f has a �xed
point (cf. [7]). If we consider the Lefschetz number of fm, then in general is not true
that L(fm) 6= 0 implies that f has a periodic point of period m; it only implies the
existence of a periodic point with period a divisor of m.

The technique of using Lefschetz numbers to obtain information about the periods
of a map is also used in many other papers, see for instance the book of Jezierski
and Marzantowicz [22], the article of Gierzkiewicz and Wójcik [17] and the references
quoted in both.

The Lefschetz zeta function of f is de�ned as

ζf (t) = exp


∑

m≥1

L(fm)

m
tm


 .

This function keeps the information of the Lefschetz number for all the iterates of f ,
so this function gives information about the set of periods of f . There is an alternative
way to compute it:

(2) ζf (t) =

n∏

k=0

det(Id∗k − tf∗k)(−1)k+1

,
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where n = dimX, nk = dimHk(X,Q), Id := Id∗k is the identity map on Hk(X,Q),
and by convention det(Id∗k − tf∗k) = 1 if nk = 0 (cf. [11]).

A rational linear transformation is called quasi�unipotent if their eigenvalues are
roots of unity. We say that a continuous map f : X → X is quasi�unipotent if the
maps f∗k are quasi�unipotent for 0 ≤ k ≤ n.

Proposition 2 (Shub [35]). Let M be a compact manifold. If f : M → M is a
Morse�Smale di�eomorphism, then f is quasi�unipotent.

The following result shows that the class of C1 quasi-unipotent maps are more
general that the Morse-Smale di�eomorphisms.

Theorem 3 ([29]). Let M be a C1 closed manifold of dimension n and f : M →M
be a C1 map with �nitely many periodic points all of then hyperbolic. Then the
eigenvalues of f∗k are zero or roots of unity for 0 ≤ k ≤ n.

When X is a surface, i.e. a 2-dimensional manifold, we can compute the Lefschetz
zeta function of a quasi-unipotent self-map on X. If X = Mg is an orientable surface
of genus g without boundary then H0(X,Q) = Q, H2(X,Q) = Q and

H1(X,Q) = Q⊕ · · · ⊕Q︸ ︷︷ ︸
2g

.

And if X = Ng a non-orientable surface without boundary of genus g, i.e., X is a
connected sum of g real projective planes, then H0(X,Q) = Q, H2(X,Q) ≈ 0 and

H1(X,Q) = Q⊕ · · · ⊕Q︸ ︷︷ ︸
g−1

.

If the rational linear transformation f∗k is quasi-unipotent. Then its characteristic
polynomial is in Z[x] and its factors over Z are irreducible polynomials whose roots
are roots of unity. So these factors are cyclotomic polynomials.

The following result is used to compute the Lefschetz zeta functions of f .

Proposition 4 ([26]). If f∗1 is quasi�unipotent, then

det(Id∗1 − tf∗1) = (−1)1+det(f∗1) det(f∗1 − tId∗1).

Proposition 5. Let X be a closed surface and f : X → X be a continuous map such
that f∗1 is quasi-unipotent and p(t) its characteristic polynomial .

(1) If X = Ng is a non�orientable closed surface of genus g, then

(3) ζf (t) =
p(t)

1− t ,

being p(t) a product of cyclotomic polynomials of degree g − 1.
(2) If X = Mg is an orientable closed surface of genus g, then

(4) ζf (t) =





p(t)

(1− t)2
if f is orientation preserving,

p(t)

(1− t)(1 + t)
if f is orientation reversing

being p(t) a product of cyclotomic polynomials of degree 2g.

We say that a rational function ζf (t) is a possible zeta function, if ζf (t) satis�es
formula either (3), or (4) for a map f : X → X satisfying the hypothesis of Proposition
5.

Proposition 5 allows us to describe explicitly the possible Lefschetz zeta functions
for quasi-unipotent maps onMg andNg. By �nding all possible products of cyclotomic
polynomials of total degree 2g or g − 1, in the orientable or non-orientable cases
respectively. In the following paragraphs, we present the possible Lefschetz zeta
functions for small g, see [26, 28] for details.
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If X = M0 = S2, then ζf (t) = (1 − t)−2 when f is orientation preserving, and
ζf (t) = (1− t2)−1 when f is orientation reversing.

Let X = M1 = T2. If f preserves the orientation, then the possible characteristic
polynomials of f∗1 are:

c21(t), c22(t), c3(t), c4(t), c6(t).

So the possible zeta functions are:

1,
(1 + t)2

(1− t)2
,

1 + t2

(1− t)2
,

1− t3
(1− t)3

,
1 + t3

(1 + t)(1− t)2
.

If f reverses the orientation, then the only possible characteristic polynomial of f∗1
is c1(t)c2(t). Then ζf (t) = 1 is the only possible zeta function.

Let X = M2. If f preserves the orientation, then the possible ζf (t) are:

1− t5
(1− t)3

,
1 + t5

(1 + t)(1− t)2
,

1 + t4

(1− t)2
,

1 + t6

(1 + t2)(1− t)2
,

(1− t3)2

(1− t)4
,

(1− t3)(1 + t3)

(1− t)3(1 + t)
,

(1 + t2)(1− t3)

(1− t)3
,

(1 + t2)2

(1− t)2
,

(1 + t2)(1 + t3)

(1− t)2(1 + t)
,

(1 + t3)2

(1 + t)2(1− t)2
,

(1− t3)(1 + t)2

(1− t)3
,

(1 + t2)(1 + t)2

(1− t)2
,

(1 + t3)(1 + t)

(1− t)2
,

1− t3
1− t , 1 + t2,

1 + t3

1 + t
,

(1 + t)4

(1− t)2
, (1 + t)2, (1− t)2.

If f reverses the orientation, then the possible ζf (t) are:

1− t3
1− t , 1 + t2,

1 + t3

1 + t
, (1− t)2, (1 + t)2.

In Tables 2 and 3 are listed the possible Lefschetz zeta functions for quasi-unipotent
maps on M3.

Now we consider non�orientable surfaces. If X = N1, i.e. the real projective plane,
then the only possible zeta function is ζf (t) = (1 − t)−1. When X = N2 the Klein
bottle, the possible zeta functions are ζf (t) = 1 or ζf (t) = (1 + t)(1 − t)−1. When
X = N3 the possible Lefschetz zeta functions are

(5) 1− t, 1 + t,
(1 + t)2

1− t ,
1− t3

(1− t)2
,

1 + t3

(1− t)(1 + t)
,

1 + t2

1− t .

In Table 4 and 5 the possible Lezfchetz zeta functions on N4 and N5 are listed,
respectively. For higher g, see [28].

The case of X = Dn, the closed disc with n-holes, is similar to Nn+1; since they
have the same homology groups, see [16].

The case of X = Tn is studied in [14] and [6]. The homology spaces of Tn with
rational coe�cients are

Hk(Tn,Q) = Q⊕ · · · ⊕Q︸ ︷︷ ︸
nk

,

where nk =
(
n
k

)
. Since the homology spaces of Tn form an exterior algebra, then the

map f∗1 determines all the other f∗k, for 2 ≤ k ≤ n, in the following way (cf. [38]):
Let p1(t) be the characteristic polynomial of f∗1, then

p1(t) =

n∏

j=1

(t− λj),
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where the λj are the eigenvalues of f∗1. Then the other pk(t) are expressed as:

p2(t) =
∏

i<j

(t− λiλj),

p3(t) =
∏

i<j<l

(t− λiλjλl),

...

pn(t) = t− (λ1λ2 · · ·λn).

Using this information, Proposition 4 and formula (2), we can compute explicitly
some of the possible possible Lefschetz zeta functions for quasi-unipotent maps on
Tn (cf. [6]). In [14] all possible ζf (t) for quasi-unipotent maps on T3 and T4 are
listed.

4. The minimal set of Lefschetz periods MPerL(f)

In this section we assume that X is a C1 compact manifold. and let f : X → X be
a C1 map. Let x be a hyperbolic periodic point of period p of f and Eux its unstable
space, i.e. the subspace of the tangent space TxX generated by the eigenvectors of
Dfp(x) of modulus larger than 1. Let γ be the orbit of x, the index u of γ is the
dimension of Eux . We de�ne the orientation type ∆ of γ as +1 if Dfp(x) : Eux → Eux
preserves orientation and −1 if reverses the orientation. The collection of the triples
(p, u,∆) belonging to all periodic orbits of f is called the periodic data of f . The
same triple can appear more than once if it corresponds to di�erent periodic orbits.

Theorem 6 (Franks [10]). Let f be a C1 a map on a closed manifold having �nitely
many periodic points all of them hyperbolic, and let Σ be the periodic data of f . Then
the Lefschetz zeta function ζf (t) of f satis�es

(6) ζf (t) =
∏

(p,u,∆)∈Σ

(1−∆tp)(−1)u+1

.

Clearly the Morse�Smale di�eomorphisms on orientable and non�orientable closed
manifolds satisfy the hypotheses of this theorem.

We remark, this theorem is also true when X is a C1 compact manifold with
boundary and f : X → X a C1 map such that it does not have periodic points on
the boundary of X, see [10].

Theorem 6 allows to de�ne the minimal set of Lefschetz periods of a C1 map on a
compact manifold having �nitely many periodic points all of them hyperbolic. Such a
map has a Lefschetz zeta function of the form (6). Note that in general the expression
of one of these Lefschetz zeta functions is not unique as product of elements of the
form (1 ± tp)±1. For instance the following possible Lefschetz zeta function can be
written in four di�erent ways in the form given by (6):

ζf (t) =
(1− t3)(1 + t3)

(1− t)2(1 + t)
=

1− t6
(1− t)2(1 + t)

=
1− t6

(1− t)(1− t2)
=

(1− t3)(1 + t3)

(1− t)(1− t2)
.

According with Theorem 6, the �rst expression will provide the periods {1, 3} for f ,
the second the periods {1, 6}, the third the period {1, 2, 6}, and �nally the fourth the
periods {1, 2, 3}. Then for this Lefschetz zeta function ζf (t) we will de�ne its minimal
set of Lefschetz periods as

MPerL(f) = {1, 3} ∩ {1, 6} ∩ {1, 2, 6} ∩ {1, 2, 3} = {1}.
If ζf (t) 6= 1 then it can be written as

(7) ζf (t) =

Nζ∏

i=1

(1 + ∆it
ri)mi ,
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Table 2. Possible Lefschetz zeta functions for orientation preserving
quasi-unipotent maps on M3

1− t7

(1− t)3
1− t9

(1− t)2(1− t3)

1 + t7

(1− t)2(1 + t)

1 + t9

(1 + t3)(1− t)2

(1− t5)(1− t3)

(1− t)4
(1− t5)(1 + t2)

(1− t)3
(1− t5)(1 + t3)

(1− t)3(1 + t)

(1 + t5)(1− t3)

(1 + t)(1− t)3

(1 + t5)(1 + t2)

(1 + t)(1− t)2
(1 + t5)(1 + t3)

(1− t)2(1 + t)2
(1 + t4)(1− t3)

(1− t)3
(1 + t4)(1 + t2)

(1− t)2

(1 + t4)(1 + t3)

(1− t)2(1 + t)

(1 + t6)(1− t3)

(1 + t2)(1− t)3
1 + t6

(1− t)2
(1 + t6)(1 + t3)

(1 + t2)(1− t)2(1 + t)

(1− t3)3

(1− t)5
(1− t3)2(1 + t2)

(1− t)4
(1− t3)2(1 + t3)

(1− t)4(1 + t)

(1− t3)(1 + t3)(1 + t2)

(1− t)3(1 + t)

(1− t3)(1 + t3)2

(1− t)3(1 + t)2
(1 + t2)2(1− t3)

(1− t)3
(1 + t2)3

(1− t)2
(1 + t2)2(1 + t3)

(1− t)2(1 + t)

(1 + t2)(1 + t3)2

(1− t)2(1 + t)2
(1 + t3)3

(1 + t)3(1− t)2
(1− t3)2(1 + t)2

(1− t)4
(1− t3)(1 + t)2(1 + t2)

(1− t)3

(1− t3)(1 + t)(1 + t3)

(1− t)3
(1 + t2)2(1 + t)2

(1− t)2
(1 + t2)(1 + t)(1 + t3)

(1− t)2
(1 + t3)2

(1− t)2

(1− t3)2

(1− t)2
(1− t3)(1 + t2)

1− t

(1− t3)(1 + t3)

(1− t)(1 + t)
(1 + t2)2

(1 + t2)(1 + t3)

1 + t

(1 + t3)2

(1 + t)2
(1 + t)4(1− t3)

(1− t)3
(1 + t)4(1 + t2)

(1− t)2

(1 + t)3(1 + t3)

(1− t)2
(1− t3)(1 + t)2

1− t
(1 + t2)(1 + t)2 (1 + t3)(1 + t)

(1− t3)(1− t) (1 + t2)(1− t)2
(1 + t3)(1− t)2

1 + t

1− t5

1− t

(1− t5)(1 + t)2

(1− t)3
1 + t5

1 + t

(1 + t5)(1 + t)

(1− t)2
1 + t4

(1 + t4)(1 + t)2

(1− t)2
1 + t6

1 + t2
(1 + t6)(1 + t)2

(1 + t2)(1− t)2
(1− t3)2(1 + t)2

(1− t)4

(1 + t2)(1 + t)4

(1− t)2
(1 + t)4

(1 + t)6

(1− t)2
(1− t)2(1 + t)2

(1− t)4

where ∆i = ±1, the ri's are positive integers, mi's are nonzero integers and Nζ is a
positive integer depending on f .

If ζf (t) 6= 1 the minimal set of Lefschetz periods of f is de�ned as

MPerL(f) :=
⋂
{r1, . . . , rNζ},

where the intersection is considered over all the possible expressions (7) of ζf (t).
If ζf (t) = 1, then we de�ne MPerL(f) := ∅. Roughly speaking the minimal set of
Lefschetz periods of f is the intersection of all the sets of periods forced by the �nitely
many di�erent representations of ζf (t) as product and quotient of elements of the form
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Table 3. Possible Lefschetz zeta functions for orientation reversing
quasi-unipotent maps on M3.

(1− t3)2

(1− t)2
(1− t3)(1 + t2)

1− t

(1− t3)(1 + t3)

(1− t)(1 + t)
(1 + t2)2

(1 + t2)(1 + t3)

1 + t

(1 + t3)2

(1 + t)2
(1− t3)(1 + t)2

(1− t)
(1− t3)(1− t)

(1 + t2)(1 + t)2 (1 + t2)(1− t)2 (1 + t3)(1 + t)
(1 + t3)(1− t)2

1 + t

(1 + t)4 (1 + t)2(1− t)2 (1− t)4

Table 4. Possible Lefschetz zeta functions for quasi-unipotent maps
on N4.

(1− t)2, (1− t)(1 + t), (1 + t)2,
(1 + t)3

1− t ,
1− t3
1− t ,

1 + t3

1 + t
, 1 + t2,

(1 + t)(1− t3)

(1− t)2
,

(1 + t)(1 + t2)

1− t .
1 + t3

1− t

Table 5. Possible Lefschez zeta functions for quasi-unipotent maps
on N5.

1− t5
(1− t)2

,
1 + t5

(1− t)(1 + t)
,

1 + t4

1− t ,
(1− t3)2

(1− t)3
,

(1− t3)(1 + t3)

(1 + t)(1− t)2
,

(1− t3)(1 + t2)

(1− t)2
,

(1 + t3)2

(1 + t)2(1− t) ,
(1 + t3)(1 + t2)

(1 + t)(1− t) ,

(1 + t2)2

1− t ,
1 + t6

(1− t)(1 + t2)

(1− t3)(1 + t)

1− t ,
(1− t3)(1 + t)2

(1− t)2
,

(1 + t3)(1− t)
1 + t

, 1 + t3,
(1 + t3)(1 + t)

1− t , 1− t3,

(1 + t2)(1− t), (1 + t2)(1 + t),
(1 + t2)(1 + t)2

1− t , (1− t)3,

(1 + t)(1− t)2, (1 + t)2(1− t), (1 + t)3,
(1 + t)4

1− t .

(1± tp)±1. Clearly

MPerL(f) ⊆ Per(f).

If M is a closed C1 manifold we denote by F(M) the set of all C1 self-maps on
M having �nitely many periodic points all of them hyperbolic, and such that the
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induced maps on homology f∗k are quasi-unipotent. By Proposition 2 the Morse-
Smale di�eomorphisms on M belong to F(M). It can be checked that there are
elements in F(M), which are not Morse-Smale di�eormorphisms.

The results of this article apply to maps f in F(M). Moreover the techniques used
in the proofs of the main theorems of the present paper, can be used when the map
f satis�es the hypothesis of Theorem 3, i.e. f has �nitely many periodic points all
of them hyperbolic. Therefore it is possible to obtain similar results with this weaker
hypothesis.

Proposition 7 ([21, 27]). There are no even numbers in MPerL(f).

Proof. If the number 2d is in MPerL(f) then (1 ± t2d)m is a factor of the Lefschetz
zeta function ζf (t), for some m 6= 0. So if the factor is (1 − t2d)m it can be written
as (1− td)m(1 + td)m. Then due to the fact that the intersection of the exponents is
taken over all possible expressions (7) of ζf (t), the number 2d is not in MPerL(f).

If the factor is (1 + t2d)m, then it can be written as

(1 + t2d)m =
(1 + t2d)m(1− t2d)m

(1− t2d)m =
(1− t4d)m

(1− td)m(1 + td)m
.

Therefore, again 2d /∈ MPerL(f). �

5. MPerL(f) for maps in F(Mg)

In this section we summarize the results related to the minimal set of Lefschetz
periods for maps on orientable closed surfaces.

Theorem 8 ([26]). Let f ∈ F(Mg).

(a) If g = 0 then MPerL(f) = {1} if f preserves orientation, and MPerL(f) = ∅
if f reverses orientation.

(b) If g = 1 then MPerL(f) = ∅ if f reverses orientation, and

MPerL(f) =





∅ if ζf (t) = 1,

{1} if ζf (t) =
(1 + t)2

(1− t)2
, or ζf (t) =

1 + t2

(1− t)2
,

{1, 3} if ζf (t) =
1− t3

(1− t)3
, or

1 + t3

(1− t)(1− t2)
.

if f preserves orientation.
(c) If g = 2 and f is orientation reversing then

MPerL(f) =





∅ if ζf (t) = 1 + t2,
{1} if ζf (t) = (1− t)2, or ζf (t) = (1 + t)2,

{1, 3} if ζf (t) =
1− t3
(1− t) , or

1 + t3

(1 + t)
.
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(d) If g = 2 and f is orientation preserving then its MPerL(f) is one of the
following ones:

{1} if ζf (t) is
(1− t3)(1 + t3)

(1− t)3(1 + t)
,

(1 + t)4

(1− t)2
, (1 + t)2,

(1− t)2,
(1 + t2)(1 + t)2

(1− t)2
,

(1 + t2)2

(1− t)2
,

1 + t4

(1− t)2
or

1 + t6

(1 + t2)(1− t)2
;

{3} if ζf (t) is
(1 + t3)2

(1 + t)2(1− t)2
;

{1, 3} if ζf (t) is
(1− t3)2

(1− t)4
,

(1 + t3)(1 + t)

(1− t)2
,

1− t3
1− t ,

1 + t3

1 + t
,

(1− t3)(1 + t)2

(1− t)2
,

(1 + t2)(1− t3)

(1− t)3
or

(1 + t2)(1 + t3)

(1− t)2(1 + t)
;

{1, 5} if ζf (t) is
1− t5

(1− t)3
or

1 + t5

(1 + t)(1− t)2
;

∅ if ζf (t) is 1 + t2.

(e) If g = 3 and f is orientation reversing then MPerL(f) is ∅, {1}, or {1, 3}.
(f) If g = 3 and f is orientation preserving then MPerL(f) is ∅, {1}, {1, 3},
{1, 5}, {1, 7}, {3}, {3, 5}, {1, 3, 5} or {1, 3, 9}.

The proof of Theorem 8 follows from the calculation of all possible Lefschetz zeta
functions, as it was shown in Section 3, and after using the de�nition of the Lefschetz
periods.

From the properties of the cyclotomic polynomials we obtain Theorems 9, 10, 11
and 12.

Theorem 9 ([26]). The following statements hold.

(a) If 2g − 1 is an odd prime, then {1, 2g − 1} is a possible MPerL(f) for some
orientation preserving map f ∈ F(Mg).

(b) If g = pα−1(p − 1)/2 + 1 with p odd prime then pα and pα−1 are contained
in the MPerL(f) for some orientation preserving map f ∈ F(Mg). If p = 2
then MPerL(f) = ∅.

(c) If g is an odd prime number, then MPerL(f) = ∅ for some orientation pre-
serving map f ∈ F(Mg).

We would like to know what kind of subsets of the positive odd integers can be
realized as MPerL(f) for some maps f ∈ F(Mg), for some g. The following result
gives a partial answer to this question.

Theorem 10 ([21]). Let p1, . . . , pk be distinct odd primes and αi,j integers, such that
αi,j > αi,j+1 for 1 ≤ i ≤ k, 1 ≤ j ≤ li. Let S be one of the following sets

(1) S = {p1, . . . , pk},
(2) S =

{
p
αi,1
i , . . . , p

αi,li
i

}
, for 1 ≤ i ≤ k,

(3) S =
{
p
α1,1

1 , . . . , p
α1,l1
1 , . . . , p

αk,1
k , . . . , p

αk,lk
k

}
,

(4) S = {1, p1, . . . , pk},
(5) S =

{
1, p

αi,1
i , . . . , p

αi,li
i

}
, for 1 ≤ i ≤ k, or

(6) S =
{

1, p
α1,1

1 , . . . , p
α1,l1
1 , . . . , p

αk,1
k , . . . , p

αk,lk
k

}
.

Then there is a possible Lefschetz zeta function ζf (t), with f ∈ F(Mg) for some g,
such that MPerL(f) = S.
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Theorems 11 and 12 give a complete characterization when the number 1 belongs
to the minimal set of Lefschetz periods for a map f ∈ F(Mg). This characterization
is given in terms of the arithmetic properties of the cyclotomic polynomials which
are factors of the characteristic polynomial of the induced map on the �rst homology
space.

Theorem 11 ([21]). Let f ∈ F(Mg) an orientation reversing map. Let q(t) be the
characteristic polynomial of f∗1. Then q(t) can be written as

q(t) = (cn1
(t))γ1 · · · (cnk(t))γk(c2α1m1

(t))β1 · · · (c2αlml(t))βl(c1(t))2n+1(c2(t))2m+1,

where n1, . . . , nk,m1, . . . ,ml are positive odd integers, greater than 1, and αi ≥ 1,
βj ≥ 0, γi ≥ 0, n,m ≥ 0, such that

(
k∑

i=1

ϕ(ni)γi

)
+

(
l∑

i=1

ϕ(mi)2
αi−1βi

)
+ 2n+ 2m+ 2 = 2g,

with ϕ(m) the Euler function of m. Moreover 1 /∈ MPerL(f) if and only if

∑

{j :αj=1}
µ(mj)βj + 2m =

k∑

i=1

µ(ni)γi + 2n,

where µ(m) is the Möbius function of m

Theorem 12 ([21]). Let f ∈ F(Mg) an orientation reversing map. Let q(t) be the
characteristic polynomial of f∗1. Then q(t) can be written as Then

q(t) = (cn1(t))γ1 · · · (cnk(t))γk(c2α1m1(t))β1 · · · (c2αlml(t))βl(c1(t))2n(c2(t))2m,

where n1, . . . , nk,m1, . . . ,ml are positive odd integers greater than 1, and αi ≥ 1,
βj ≥ 0, γi ≥ 0, n,m ≥ 0, such that

(
k∑

i=1

ϕ(ni)γi

)
+

(
l∑

i=1

ϕ(mi)2
αi−1βi

)
+ 2n+ 2m = 2g,

with ϕ the Euler function. Furthermore 1 /∈ MPerL(f) if and only if

∑

{j :αj=1}
µ(mj)βj + 2m =

k∑

i=1

µ(ni)γi + 2(n− 1).

6. MPerL(f) for maps in F(Ng)

In this section we summarize the results related to the minimal set of Lefschetz
periods for maps on non-orientable closed surfaces.

Theorem 13 ([28]). Let f be a Morse�Smale di�eomorphism on Ng, or more gen-
erally a map belonging to F(Ng).

(a) If g = 1 then MPerL(f) is {1}.
(b) If g = 2 then MPerL(f) is ∅ or {1}.
(c) If g = 3 then MPerL(f) is {1}, {3} or {1, 3}.
(d) If g = 4 then MPerL(f) is ∅, {1} or {1, 3}.
(e) If g = 5 then MPerL(f) is {1}, {3}, {5}, {1, 3} or {1, 5}.
(f) If g = 6 then MPerL(f) is ∅, {1}, {3}, {1, 3} or {1, 5}.
(g) If g = 7 then MPerL(f) is {1}, {3}, {5}, {7}, {1, 3}, {1, 5} {1, 7}, {1, 3, 5}

or {1, 3, 9}.
(h) If g = 8 then MPerL(f) is ∅, {1}, {3}, {1, 3}, {1, 5}, {1, 7}, {3, 5}, {3, 9},
{1, 3, 5} or {1, 3, 9}.

(i) If g = 9 then MPerL(f) is {1}, {3}, {5}, {7},{9}, {1, 3}, {1, 5} {1, 7}, {1, 9},
{3, 9}, {1, 3, 5}, {1, 3, 7}, {1, 3, 9}, {3, 5, 15} or {1, 3, 5, 15}.

Theorem 14 ([28]). The following statement hold.
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(a) If g is an odd prime, then the sets {1, g} and {g} are possible MPerL(f) for
some f ∈ F(Ng).

(b) If g = pα−1(p−1)+1 with p an odd prime and α > 1, then the set {1, pα−1, pα}
is a possible MPerL(f) for some f ∈ F(Ng).

(c) If g is even, then the empty set is a possible MPerL(f) for some f ∈ F(Ng).
(d) If g is odd, then MPerL(f) 6= ∅ for all f ∈ F(Ng).
(e) For every positive integer g, {1} is a possible MPerL(f) for some f ∈ F(Ng).
(f) If g is odd and p is an odd prime such that 1 < p ≤ g, then {p} is a possible

MPerL(f) for some f ∈ F(Ng).
(g) Let p1, . . . , pk be di�erent odd primes larger than 1, and let α1, . . . , αk be

positive integers.
(g.1) Then the set {p1, . . . , pk} is a possible MPerL(f) for some f ∈ F(Ng),

where g =

(
k∑

i+1

pi

)
− (k − 1) if k is odd, and g =

(
k∑

i+1

pi

)
− (k − 2) if

k is even.
(g.2) Then the set {pα1

1 , . . . , pαkk } is a possible MPerL(f) for some f ∈ F(Ng)
and for some convenient genus g.

(g.3) Let p be an odd prime number. Then the set {pα1 , . . . , pαk} is a possible
MPerL(f) for some f ∈ F(Ng) and for some convenient genus g.

(g.4) Let αi,j positive integers such that αi,j > αi,j+1 for 1 ≤ i ≤ k and

1 ≤ j ≤ li. Then the set {pα1,1

1 , . . . , p
α1,l1
1 , . . . , p

αk,1
k , . . . , p

αk,lk
k } is a

possible MPerL(f) for some f ∈ F(Ng) and for some convenient genus
g.

Statement (d) of Theorem 14 shows an important di�erence in the periodic struc-
ture between the C1 Morse�Smale di�eomorphisms on orientable and non�orientable
compact surfaces without boundary. Statement (c) of Theorem 9 states that for all
orientable compact surfaces without boundary there are C1 Morse�Smale di�eomor-
phisms having their minimal set of Lefschetz periods empty, and statement (d) of
Theorem 14 shows that this is never the case for C1 Morse�Smale di�eomorphisms
on the non�orientable closed surfaces.

The results of statements (f) and (g) of Theorem 14 also for C1 Morse�Smale
di�eomorphisms on orientable closed surfaces, and their proof are similar to the proof
of Theorem 10.

The description of the MPerL(f) for Morse-Smale di�eomorphisms on Dg (and
maps in F(Dg)), which does not have periodic points on the boundary is the same
of the MPerL(f) of Morse-Smale di�eomorphisms on Ng+1 (maps in F(Ng+1)), since
the possible Lefschetz zeta functions are the same, see [16].

Open question. Can any �nite set of odd positive integers be the minimal set of
Lefschetz periods for a C1 Morse�Smale di�eomorphism on some orientable/non�
orientable compact surface without boundary with a convenient genus?

We think that the answer to this open question is positive. In [21] this open
question was stated as a conjecture for the C1 Morse�Smale di�eomorphisms on
orientable compact surface without boundary.

7. MPerL(f) for maps in F(Tn)

In this section we summarize the results related to the minimal set of Lefschetz
periods for maps on the n-dimensional torus.

Theorem 15 ([14]). Let f ∈ F(Tn).

(a) If n = 3 and f is orientation preserving then MPerL(f) = ∅ .
(b) If n = 3 and f is orientation reversing then MPerL(f) = ∅, {1}, or {1, 3}.
(c) If n = 4 and f is orientation reversing then MPerL(f) = ∅ .
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(d) If n = 4 and f is orientation preserving then MPerL(f) = ∅, {1},{1, 3} or
{1, 5}.

Theorem 16 ([14]). If n is even then MPerL(f) = ∅, for f ∈ F(Tn) and orientation
reversing. If n is odd then MPerL(f) = ∅, for f ∈ F(Tn) and orientation preserving.

Theorem 17 ([6]). Let f be an orientation preserving map in F(Tn), with n = p−1
and p and odd prime, such that the characteristic polynomial of f∗1 is cp(t), Then
MPerL(f) = {1, p}.
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