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Capitulo 1

Introduccion

En esta memoria tratamos aspectos relacionados bésicamente con la Teo-
ria de Integrabilidad de Darboux de los campos de vectores polinomiales. En
el capitulo 1 presentamos una introducciéon general sobre esta teoria de inte-
grabilidad e introducimos los cinco capitulos siguientes en las cinco secciones
de este primer capitulo. En los capitulos 2 y 3 trabajamos con campos vecto-
riales polinomiales de R™™! y en los restantes estudiamos campos vectoriales
polinomiales de R? y R2.

1.1. Integrales primeras racionales para cam-
pos de vectores polinomiales sobre hiper-
superficies regulares algebraicas de R""!

Sea R[x1,..., 2,41 el anillo de polinomios en las variables x1, ..., T,
con coeficientes reales y sea X el campo vectorial polinomial de grado m en
R™*! dado por

n+1
0

X = Pi(xy,...,00401)—,
; (xl $+1)ax

7

donde P; € Rlxy,...,2n41) para i = 1,...n + 1 tales que el méximo de
sus grados es m. Para describir el campo X también usamos la notacion
X =(P,...,Pu1).

Denotemos por Clzy,...,2,41] €l anillo de los polinomios complejos en
las variables 1,...,2,41. Sea f = f(x1,...,2541) € Clzy,...,2541] \ C.
Decimos que {f = 0} C R"*! es una hipersuperficie algebraica invariante del
campo vectorial X si existe algun polinomio K € Clzy, ..., x,.1] tal que

n+1
0

szzlaa—i ~KF, (1.1)



2 Introducciéon

el polinomio K = K(xy,...,2n41) € Clzy, ..., 2,41] se llama el cofactor de
f=0.

Sean h, g € Clzy,...,x,11] y asumamos que h 'y g son primos relativos en
el anillo C[zy,...,x,.1] 0 que h = 1. Un factor exponencial F(x1,...,2,11)
del campo vectorial polinomial X es una funcién exponencial de la for-
ma e9/" tal que para algin polinomio K € C,,_i[x1,...,T,41] satisface
XF = KF, donde C,, 1[x1,...,2,41] denota el conjunto de los polinomios
de Clzy,...,x,.1] de grado a lo mas m — 1. Al igual que antes, decimos que
K es el cofactor del factor exponencial F'.

Sea U C R™! un conjunto abierto y denso en R"*!. Decimos que una
funcion real H : U — R de clase C! localmente no constante, es una integral
primera del campo vectorial polinomial X sobre U si H(z1(t),...,z,41(t))
es constante para todos los valores de t para los cuales la solucion (z1(t), .. .,
Tpy1(t)) de X esté definida sobre U. Si ademés H es una funcién racional en
las variables x4, ..., x,,1 entonces H es llamada una integral primera racional
del campo vectorial X sobre U.

Una funcion I = I(xq, ..., 2p41,1) : U XR — R es un invariante Darboux
del campo vectorial polinomial X sobre U si I(zy(t),...,xn11(t),t) es cons-
tante para todos los valores de ¢ para los cuales la solucion (x4 (%), ..., z,11(%))
de X esta definida sobre U y si tiene la forma

A A 1258 Lq St
I— 1 "'fppF]. "'que 3

donde f; = 0,..., f, = 0 son hipersuperficies algebraicas invariantes de X,
Fy, ..., F, son factores exponenciales de X', Ay, ..., Ay, pt1,...,pu, € Cy s €
R\{0}.

El siguiente resultado proporciona los elementos basicos de la Teoria de
integrabilidad de Darboux en R"*! que usaremos en esta memoria.

Teorema 1.1. Supongamos que un campo vectorial polinomial X definido en
R™! de grado m admite p hipersuperficies algebraicas invariantes irreducibles
fi = 0 con cofactores K; parai = 1,...,p y q factores exponenciales I; =
exp(g;j/h;) con cofactores L; para j =1,...,q.

(a) Ezisten \;, p1; € C no todos cero tales que
p q
> MK+ piL; =0,
i=1 j=1

si y solo si la funcion (multi-valuada) fi ... [P FI" - FF es una in-
tegral primera de X .

n+m
n+1
q

P
que Z )\sz + Z /Lij =0.
1=1 Jj=1

(b) Sip+q> ( ) + 1, entonces ewisten \;, uj € C no todos cero tal
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P q
(¢) Existen \;, u; € C no todos cero tales que Z MK+ Z wiLl; = —s pa-
i=1 j=1
ra algin s € R\{0}, si y sdlo si la funcion f ... fa? Fi" .. Fiexp(st)
es un tnvariante Darboux del campo vectorial X .

(d) El campo vectorial X tiene una integral primera racional si, y sélo si

n—+m

> 1.
pP+q = (n+1) +n+

En consecuencia todas las trayectorias estdn contenidas en hipersuper-
ficies algebraicas invariantes.

Las afirmaciones (a), (b) y (¢) del Teorema 1.1 se deben a Darboux [8]
usando sblo hipersuperficies algebraicas invariantes. Incluyendo, ademas fac-
tores exponenciales fueron probadas por Christopher y Llibre [4].

En 1979 Jouanolou [14], haciendo uso de la Geometria Algebraica, propor-
cion6 una demostracion de la afirmacion (d). Christopher y Llibre [4] dieron
una demostracion corta y elemental de la afirmacion (d) en dimension dos.
Mas tarde Llibre y Zhang [27] usando tinicamente herramientas de Algebra
Lineal proporcionaron una demostraciéon mas corta y facil que la de Joua-
nolou en dimension arbitraria. En el capitulo 2 de esta memoria nosotros
estudiamos la integrabilidad racional de los campos vectoriales polinomiales
definidos sobre hipersuperficies regulares algebraicas de R"*!, esto es, quere-
mos hallar condiciones que determinen la existencia de una integral primera
racional para esta clase de campos vectoriales. Concretamente utilizando las
ideas desarrolladas en [27]| encontramos el nimero de hipersuperficies alge-
braicas invariantes necesarias para que un campo vectorial definido sobre una
hipersuperficie regular algebraica posea una integral primera racional.

Sea ) una hipersuperficie algebraica de grado d dada por
Q= {(.751, e "Tn‘f‘l) S Rn+1 : G(‘rla s 7xn+1) - 0}7

donde G : R™™ — R es un polinomio de R[xy,...,7,.;] de grado d. La
hipersuperficie €2 es reqular si el gradiente de G no se anula sobre 2. Decimos
que X define un campo vectorial polinomial sobre la hipersuperficie reqular
algebraica () si satisface que

XG = (P,,...,Pu1) VG =0,

sobre todos los puntos de (2.

Sea f(x1,...,2n41) € Clxy,...,2n41] \ C. Decimos que {f =0} NQ C
R™! es una hipersuperficie algebraica invariante del campo vectorial X so-
bre Q0 (o simplemente una hipersuperficie algebraica invariante sobre Q) si
satisface
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(i) Existe un polinomio K € C[zy,...,z,41] llamado cofactor de f = 0
sobre () tal que

n+1

0
Xf:ZPia—i = Kf sobre Q,
i=1

)

(ii) las dos hipersuperficies f = 0 y (2 se intersecan transversalmente; es
decir, VG A V[ # 0 sobre la hipersuperficie {f = 0} N €2, donde A
denota el producto vectorial de dos vectores de R™*!,

Un factor exponencial del campo vectorial polinomial X sobre la hiper-
superficie € es una funcion exponencial de la forma F(z1,..., z41) = /"
con h,g € Clzy,...,2,41] primos relativos en Clxy,..., 2,41 0 b = 1, tal
que para algun polinomio K € C,,,_1[x1,...,z,1] satisface Y F' = K F sobre
todos los puntos (x1, ..., z,1) de Q. Decimos que F' tiene cofactor K.

Sea D C 2 un abierto de medida de Lebesgue total en 2. Decimos que
una funciéon H : D — R de clase C* localmente no constante es una integral
primera del campo vectorial polinomial X sobre Q si H(x1(t),...,Tn41(t)) es
constante para todos los valores de ¢ para los cuales la solucion (z1(t), ...,
Tpy1(t)) de X esta definida sobre D. Cuando H es una funcion racional en
las variables 1, ..., x,.1 entonces H se llama integral primera racional del
campo vectorial X sobre ().

Una funcion I = I(xq,...,Tp41,t) : D xR — R es un invariante Darboux
del campo vectorial polinomial X" sobre Q si I(x(t),...,2,41(t),t) es cons-
tante para todos los valores de t para los cuales la solucion (z1(t), ..., z,41(t))
de X esta definida sobre D y si tiene la forma

o\ A 1 st
I= [ foEM . Flae,

donde f; =0,..., f, = 0 son hipersuperficies algebraicas invariantes de X’ so-
bre Q, Fy, ..., Iy son factores exponenciales de X sobre Q, A, ..., Ay, ft1, ...,
pg € Cy s e R\{0}.

El siguiente teorema proporciona algunos resultados de la teoria de inte-
grabilidad de Darboux aplicada a campos vectoriales polinomiales de R™*!

definidos sobre hipersuperficies algebraicas regulares, se debe a Llibre y Zhang
[25].

Teorema 1.2. Sea ) una hipersuperficie algebraica reqular de grado d en
R™*L. Supongamos que el campo vectorial polinomial X sobre Q0 de grado m
tiene p hipersuperficies algebraicas invariantes { f; = 0} N8 con cofactores K;
para i = 1,...,p y q factores exponenciales F; = exp(g;/h;) con cofactores
L; paraj=1,...,q.

p q
(a) Ezisten X, p1; € C no todos cero tales que Z)‘iKi + Z,uij =0 so-
i=1 j=1
bre todos los puntos de ), si y sdlo si la funcion Darbouziana (multi-
valuada) fl’\1 e f;\pF{“ -+« F}'" es una integral primera de X sobre ().
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(h) Siptq> (n+m) B (n+m—d

) + 1, entonces existen \;, pi; € C

n+1 n+1
p q
no todos cero tal que Z NI+ Z,uij = 0 sobre €.
i=1 j=1

P q
(¢) Emisten X\;, p1; € C no todos cero tales que Z)\iKi + Z,uij = —5
i=1 j=1
sobre Q para algin s € R\{0}, si y solo si f ... fa? FI" - Flest ) es
un tnvartante Darbouz del campo vectorial X sobre Q.

Aunque existen resultados acerca de la integrabilidad de campos vectoria-
les definidos sobre hipersuperficies regulares algebraicas (ver Teorema 1.2), en
el caso de las integrales primeras racionales de campos vectoriales definidos
sobre hipersuperficies no se conocia ninguna condicién que permitiera deter-
minar su existencia, como se puede observar si comparamos los Teoremas
1.1 y 1.2. Solamente en el caso particular de campos vectoriales polinomiales
definidos sobre las cuadricas y el 2-toro Llibre y Rodriguez 24| proporciona-
ron un resultado que permite obtener para estos casos una integral primera
racional (ver Teorema 1.3).

En la Figura 1.1 se presentan las nueve cuadricas consideradas en el Teo-
rema 1.3 y sus formas candnicas que utilizaremos en este trabajo. El 2-toro
T? = R?/Z? y la expresion algebraica del mismo utilizada en el Teorema 1.3
se muestran en la Figura 1.2.

Teorema 1.3. Sea Q una de las nueve cuddricas de la Figura 1.1 o el 2—
toro de la Figura 1.2. Supongamos que el campo vectorial polinomial X sobre
Q) C R3 de grado m admite p curvas algebraicas invariantes { f; = 0} NQ con
cofactores K; parai =1,...,p y q factores exponenciales F; = exp(g;/h;) con
cofactores L; para j =1,...,q. S1Q es una de las nueve cuddricas, el campo
vectorial X sobre ) tiene una integral primera racional en las variables x, vy,
2 s, y s6lo sip+q >3 yp+q>m?+2.5iQ es el 2-toro, entonces el campo
vectorial X sobre Q) tiene una integral primera racional en las variables x, vy,
zyp=/r2+y?si,ysolosip+q>3yp+q>2m?—4m+6.

A continuacién presentamos el resultado principal del capitulo 2. Con él
extendemos los resultados estdndar de la teorfa de integrabilidad de Darboux
para campos vectoriales polinomiales en R"*! definidos sobre hipersuperficies
regulares algebraicas.

Teorema 1.4. Sea ) una hipersuperficie reqular algebraica de grado d en
R™L. El campo vectorial polinomial X sobre Q0 de grado m > 0 admite

—d
N(n,m,d)+n:<n+m)—(n+m >+n
n+1 n+1

hipersuperficies regulares algebraicas invariantes irreducibles en Clxy,. ..,
Tpi1] Si, y solo si X tiene una integral primera racional sobre §.
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Paraboloide eliptico: Paraboloide hiperbdlico:
22—z=0 2+ 22—x=0 y?—22—x=0

Hiperboloide de dos hojas:
24y =22 +1=0

Cilindro hiperbdlico: Hiperboloide de una hoja: Cilindro eliptico:
2?2 —22-1=0 24y =22 —-1=0 2 +22-1=0

Figura 1.1: Las cuédricas y sus formas candnicas.

Finalmente aplicamos el Teorema 1.4 a campos vectoriales polinomiales
definidos sobre algunas superficies regulares algebraicas. Para el caso de las
cuadricas reproducimos los resultados del Teorema 1.3 a partir del Teorema
1.4. En la Figura 1.3 se muestran otras superficies: la superficie de Fermat,
la superficie de Clebsh, la superficie de Goursat y la superficie Racor y pro-
porcionamos el valor de N(n, m,d)+n para cada una de estas superficies. El
capitulo 2 se organiza de la siguiente manera. En la seccién 2.1 proporciona-
mos algunas definiciones elementales. En la seccion 2.2 presentamos algunos
resultados auxiliares que necesitaremos después. En la secciéon 2.3 enunciamos
y demostramos la extension del resultado de Jouanolou a campos vectoria-
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224+ (Va2 +y? —a)? =1paraa > 1.

Figura 1.2: El 2—toro y una expresion algebraica del mismo.

Cubica de Fermat: Superficie de Clebsh:
23+ + 28 =1, B2+l - (e+y+2+1)3 =0,
d=3, (3m?—3m+2)/2. d=3, (3m?—3m+6)/2.

Superficie de Goursat: Superficie Racor:
st yt+ 2t — (@ + ) =1, 2y + a2 P =1,
d=4, 2m?—4m +6. d=4, 2m?—4m+6.

Figura 1.3: Algunas superficies algebraicas, su ecuacion, su grado y la expresion
de N(2,m,d) + 2 del Teorema 1.4 para cada superficie.

les polinomiales sobre hipersuperficies algebraicas regulares de R™"*!, esto es
se demuestra el Teorema 1.4. Por tltimo, aplicamos el resultado anterior a
campos vectoriales definidos sobre una cuadrica o un 2-toro (seccion 2.4) y
sobre las superficies algebraicas de la Figura 1.3 (seccion 2.5).
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1.2. Sobre el nimero de esferas n—dimensionales

invariantes en campos vectoriales polino-
miales de R""!

Sea X = (Py,...,P,;1) un campo vectorial polinomial de R™™! donde
cada P, € Rlxy,...,2p41] con @ = 1,...,n 4+ 1 es un polinomio de grado
m;. Sea m = (my, ..., my.1) el grado del campo polinomial, asumiremos sin

pérdida de generalidad que my > -+ > my,41.

Varios autores han estudiado el nimero maximo de rectas invariantes
que admiten los campos vectoriales polinomiales X en R? en funcién de
su grado. Sabemos que para campos vectoriales de grado (2,2) el nimero
maximo de rectas invariantes es 5, X. Zhang [35] y Sokulski [31] probaron
que el nimero maximo de rectas invariantes reales para campos vectoriales
polinomiales en R? de grados (3, 3) y (4,4) son 8 y 9 respectivamente. Después
Artés, Griinbaum y Llibre [1] demostraron el siguiente resultado para campos
vectoriales en R? de grado (m,m).

Teorema 1.5. Supongamos que un campo vectorial polinomial X en R? de
grado m = (m,m) tiene un nimero finito de rectas invariantes.

(a) El nimero de rectas invariantes de X es a lo mds 3m — 1.
(b) El nimero de rectas invariantes paralelas de X es a lo mds m.

(¢) El nimero de rectas invariantes diferentes de X que pasan por un mis-
mo punto es a lo mds m + 1.

Sea W un subespacio vectorial del espacio de los polinomios C[zy, . .., Z,41]
generado por los polinomios vy,...,v. Si vy,...,v; es una base de W defini-
mos la hipersuperficie algebraica extdctica de X asociada a W por

(@) = det | T ) S
lel(vl) /Ylil(l)g) lel<vl)

donde X7 (v;) = XI7HX (vy)).

La multiplicidad de un hiperplano invariante f = 0 es el mayor ente-
ro positivo k tal que f* divide al polinomio ey (X) con W generado por
1,x1,..., 2541 (ver [5] y [26]). Cuando estudiamos el ntumero méximo de hi-
perplanos invariantes que pasan a través de un punto de un campo vectorial
polinomial X, haciendo una traslaciéon de este punto podemos asumir, sin
pérdida de generalidad, que éste es el origen. Entonces la multiplicidad de
un hiperplano invariante a través del origen se define como el mayor ente-
ro positivo k tal que f* divide al polinomio ey (XX) con W generado por
Tiyeees Tyl
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Mas tarde Llibre y Medrado [19] en el siguiente teorema generalizaron los
resultados del Teorema 1.5 para campos vectoriales polinomiales en C***.

Teorema 1.6. Supongamos que un campo vectorial polinomial X en C*!
conn > 1 de grado m = (mq,...,mpyy1) con my > -+ > My, tiene un
numero finito de hiperplanos invariantes.

(a) El numero de hiperplanos invariantes de X teniendo en cuenta sus
multiplicidades es a lo mds

:zzmk 4 (”gl) (my — 1), (1.2)

(b) Elmnumero de hiperplanos invariantes paralelos de X teniendo en cuenta
sus multiplicidades es a lo mds my.

(¢) El ndmero de hiperplanos invariantes diferentes de X que pasan por un
mismo punto teniendo en cuenta sus multiplicidades es a lo mds

gmk + (g) (my — 1) + 1. (1.3)

En el capitulo 3 queremos extender los resultados sobre las cotas su-
periores para el ntimero de hipersuperficies algebraicas invariantes que un
campo vectorial polinomial en R"*! puede alcanzar, especificamente obtene-
mos las cotas superiores para el nimero méaximo de esferas n—dimensionales
invariantes, y para el niimero maximo de esferas n—dimensionales invariantes
concéntricas de X en funcion del grado de X.

Primero proporcionamos una cota superior para el niimero maximo de
circunferencias invariantes de campos vectoriales bidimensionales, y también
para el ntiimero maximo de circunferencias invariantes concéntricas. Poste-
riormente lo extendemos a esferas n—dimensionales y probamos que dichas
cotas no se pueden alcanzar.

Sea f = (z1—a1)?+- -+ (Tpi1—apr1)? —7* = 0 una esfera n—dimensional.
Con el fin de encontrar cotas superiores para este tipo de hipersuperficies
algebraicas invariantes usamos el concepto de hipersuperficie algebraica ex-
tactica.

La multiplicidad de una circunferencia invariante f = 0 es el mayor
entero positivo k tal que f* divide al polinomio ey (X) con W generado
por 1,z,y, 2% 2. Cuando estudiamos el ntimero méaximo de circunferencias
invariantes concéntricas de un campo vectorial polinomial X', haciendo una
traslacion del centro podemos asumir, sin pérdida de generalidad, que el
centro esté en el origen de coordenadas. Entonces la multiplicidad de una
circunferencia invariante con centro en el origen f = 2% +y*> — 1?2 = 0 es
el mayor entero positivo k tal que f* divide al polinomio ey (X) con W
generado por 1, 2%, 4%

Los dos resultados principales obtenidos en el capitulo 3 son los siguientes.
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Teorema 1.7. Supongamos que un campo vectorial polinomial X en R? de
grado m = (mq,my) con my > ms tiene un nimero finito de circunferencias
mvariantes.

(a) El numero de circunferencias invariantes de X teniendo en cuenta sus
multiplicidades es a lo mds 4my + mo — 2.

(b) El numero de circunferencias invariantes concéntricas de X teniendo
en cuenta sus multiplicidades es a lo mds mq + [(mg + 1)/2]. Aqui [x]
denota la funcion parte entera de x € R.

La multiplicidad de una esfera invariante f = 0 es el mayor entero positi-
vo k tal que f* divide el polinomio ey, (X) con W generado por los polinomios
1,24q,. ..,xn+1,x%,...,xi+1.

Teorema 1.8. Supongamos que un campo vectorial polinomial X en R
conn > 1 de grado m = (my,...,m,.1) tiene un nimero finito de esferas
mvariantes.

(a) El numero de esferas invariantes de X teniendo en cuenta sus multi-
plicidades es a lo mds

E ((; 2mk> + (2(n2+ 1)) (my — 1)+ (n+ 1)>

(b) El numero de esferas invariantes concéntricas de X teniendo en cuenta
sus multiplicidades es a lo mds

() (3o

Observemos que el resultado del Teorema 1.7 para el nimero maximo de
circunferencias invariantes es analogo al que proporciona el Teorema 1.5 para
el niimero maximo de rectas invariantes de un campo vectorial polinomial
X de R? en funcién de su grado, aunque el grado de los polinomios que
definen el campo no es igual. También el Teorema 1.8 se corresponde con el
Teorema 1.6 proporcionandonos una cota superior para el nimero maximo de
esferas invariantes e hiperplanos invariantes, respectivamente, que un campo
vectorial polinomial X de R™"! puede tener en funcién de su grado.

La organizacion del capitulo 3 es la siguiente. En las secciones 3.1 y 3.2
introducimos el concepto de hipersuperficie algebraica extactica, se prueban
algunas de sus propiedades que se utilizaran posteriormente y se enuncian
algunos resultados donde este concepto se usa. Finalmente en la seccion 3.3
proporcionamos el nimero méximo de circunferencias invariantes de campos
vectoriales bidimensionales y su extension a dimension n + 1.



1.3 Sobre el niimero de cénicas invariantes de campos vectoriales
polinomiales definidos en una cuadrica 11

1.3. Sobre el nimero de conicas invariantes de
campos vectoriales polinomiales definidos
en una cuadrica

En el capitulo 4 trabajamos con campos vectoriales polinomiales en R?,
concretamente estudiamos campos definidos sobre cuddricas. Sea X un cam-
po vectorial polinomial de R3 de grado (my,mo, m3) y supongamos que X
tiene una cuadrica invariante Q, entonces decimos que X es un campo vecto-
rial polinomial definido sobre la cuddrica Q. Esta definiciéon coincide con la
definiciéon de un campo definido sobre una superficie regular algebraica dada
en la seccion 1.2 para todas las cuadricas, con la excepcion del cono.

Un plano invariante de X" interseca Q en una coénica invariante. El objetivo
principal del capitulo 4 es estudiar el nimero méximo de conicas invariantes
de este tipo que puede tener el campo vectorial polinomial X en funcion de
los grados my, mo y m3. Si la conica es no degenerada entonces es una elipse,
una parébola o una hipérbola. Si es degenerada, entonces esta formada por
dos rectas que se cortan en un punto, por dos rectas paralelas, o por una
recta doble.

El estudio del niimero maximo de distintas clases de curvas algebraicas
invariantes en R?, de distintas clases de superficies algebraicas invariantes en
R3, y de distintas clases de hipersuperficies algebraicas en R"™! ha sido es-
tudiado recientemente por algunos autores. Asi el nimero maximo de rectas
invariantes que un campo vectorial polinomial en R? puede tener en funcién
de su grado ha sido estudiado en [1, 31, 35|. El ntimero méaximo de ciclos
limites algebraicos que un campo vectorial polinomial en R? puede tener ha
sido estudiado en [21, 22, 36]. El nimero maximo de meridianos y parale-
los invariantes para campos vectoriales polinomiales sobre un 2—toro ha sido
considerado en [20, 23|. El ntimero méaximo de hiperplanos (respectivamen-
te esferas S"!) invariantes que los campos vectoriales polinomiales pueden
tener en R™! ha sido obtenido en [19].

En el capitulo 4 trabajaremos con las nueve cuadricas reales presentadas
en la Figura 1.1 junto con sus formas candnicas.

Una caracteristica que poseen algunas de las cuédricas es la de ser su-
perficies regladas. Una superficie es reglada [11, 13] si por cada punto de la
misma, existe una recta contenida en ella. Las superficies regladas se generan
por el movimiento de una recta, denominada generatriz, manteniéndose en
contacto con otra u otras rectas, denominadas directrices, cumpliendo ade-
més en su desplazamiento ciertas condiciones particulares. Una superficie es
doblemente reglada si por cada uno de sus puntos pasan dos generatrices.
De las nueve cuéddricas reales seis de ellas son regladas, estas son: el cilindro
parabdlico, el cilindro eliptico, el cilindro hiperbdlico, el cono, el hiperboloide
de una hoja y el paraboloide hiperbélico. Ademas el hiperboloide de una hoja
y el paraboloide hiperbélico son superficies doblemente regladas.
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El capitulo 4 se organiza como sigue. Estudiamos en secciones separadas
los campos vectoriales definidos en cada una de las nueve cuadricas y mos-
tramos los resultados obtenidos sobre el nimero de conicas degeneradas y
no degeneradas invariantes que se obtienen para estos campos. Para las seis
cuadricas regladas encontramos una cota para el nimero maximo de rectas
invariantes. Finalmente probamos si estas cotas son alcanzables o no.

Los resultados principales del capitulo 4 se resumen en los siguientes teo-
remas. En el primero se muestran los resultados correspondientes al niimero
de conicas degeneradas y en el segundo, las cotas para el nimero maximo de
cOHnicas no degeneradas.

Teorema 1.9. Supongamos que un campo vectorial polinomial X en R3 de
grado m = (my, my, m3) definido sobre una de las nueve cuddricas tiene un
numero finito de conicas degeneradas invariantes, teniendo en cuenta sus
multiplicidades. En la Tabla 1.1 mostramos el nimero mdzimo de conicas
degeneradas invariantes, contenidas en planos invariantes, cuando X estd
definido en la cuddrica correspondiente. Ademds, para los seis primeros casos
estas cotas son alcanzables.

Teorema 1.10. Supongamos que un campo vectorial polinomial X en R3
de grado m = (my, my, m3) definido sobre una de las nueve cuddricas tiene
un numero finito de conicas no degeneradas invariantes, teniendo en cuenta
sus multiplicidades. En la Tabla 1.2 mostramos el nimero mdximo de conicas
no degeneradas invariantes, contenidas en planos invariantes, cuando X estd
definido en la cuddrica correspondiente. Ademds, para los tres primeros casos
estas cotas son alcanzables.

1.4. Integrales primeras Liouvillianas para sis-
temas cuadraticos con una silla integrable

En el capitulo 5 estudiamos los sistemas cuadraticos que poseen una silla
integrable. Un sistema diferencial polinomial cuadratico o simplemente un
sistema cuadrdtico es un sistema diferencial polinomial en R? de la forma

donde P,Q € R[z,y] y el maximo de los grados de Py @ es 2.

Un campo polinomial (1.4) es integrable si existe una integral primera
definida en un abierto denso de R2.

Los sistemas cuadraticos han sido ampliamente estudiados en los tltimos
cien anos y se han publicado méas de mil articulos sobre ellos (ver por ejemplo
29, 33, 34]). Aunque estos sistemas son considerados como una de las fami-
lias mas faciles entre los sistemas diferenciales polinomiales su estudio no es
trivial, asi por ejemplo todavia permanece abierto el problema de clasificar
todos los campos vectoriales integrables de dimension dos.
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Cuédrica ‘ Numero maximo de conicas

2ms rectas si ninguna recta invariante es doble,
ms rectas si todas las rectas invariantes son
Cilindro parabo- | (obles, v

lico entre ms y 2mg rectas si hay alguna recta invarian-

te doble.

2mg — 2 rectas si ninguna recta invariante es doble,
ms — 1 rectas si todas las rectas invariantes son
Cilindro eliptico | dobles, y

e hiperbélico entre mz — 1 y 2m3 — 2 rectas si hay alguna recta
invariante doble.

3my; rectas o puntos si mq > meo,

Cono .
3ms  rectas o puntos si my; < mas.

mq + 1  rectas si my > mo,

Hiperboloide de mg +1  rectas si my < mo,

una hoja

. 24+ m rectas si mo > m
Paraboloide 2 i m2 rectas si m2 2 mg’
hiperbodlico 3 2=

dmo +mg  puntos si mgy > mg,

P 1 . l/ _ .
araboloide elip mo + 5m3  puntos si my < mg.

tico

dmi + mo — 3  puntos si mq > meo,

Elipsoide e Hi- my +5ms — 3 puntos si my < mo.

perboloide de dos
hojas

Tabla 1.1: Nimero maximo de conicas degeneradas de un campo vectorial definido
sobre una cuadrica.

Una silla débil es una silla hiperboélica tal que la traza de su parte lineal
es cero. Méas concretamente, de los articulos |2, 6, 10, 15| tenemos que si un
sistema cuadratico posee una silla débil entonces via una transformacion afin
este sistema puede ser escrito en la forma

b =x4ar® +bry +cy’, Y= —y—ka® — lay — my?,

con una silla débil en el origen. Ademés, se dice que el origen es una silla
integrable si

Li=Im—ab=0,
Ly =kb(2m — b)(m + 2b) — cl(2a — [)(a + 21) = 0,
L3 = (ck — Ib)[acl(2a — 1) — bkm(2m — b)] = 0.

Teniendo en cuenta estas condiciones, los sistemas cuadraticos con una silla
integrable pueden ser reducidos a las siguientes cinco familias de sistemas
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Cuédrica ‘ Numero maximo de conicas

3msy 4+ 3ms — 2 parabolas si my > ms3 + 1,

Cilindro parabélico mo + dmg parabolas si mo < mg + 1.

3ms 4+ 3mg — 5 elipses/hipérbolas si my > mg,

Cilindro elfptico/ hi- mo + 5ms — 5 elipses/hipérbolas si my < ms.

perbolico

5mi + mo — 4  cobdnicas si m; > mo,

Cono L. .
my + dme — 4  conicas si my < ms.

omy +me —3  coénicas si m; > ma,

Hiperboloide de una . .
P my + dme — 3 coéHnicas si my < ms.

hoja

ms + bmg  conicas si my < mg,

Paraboloide  hiper- L. .
5my +mg  conicas si mo > ms.

bolico

2mo +mg  parabolas si my > msg,

mo + 2m3  pardbolas si ms < mg vy,

5mg + mg  parabolas o elipses si mgy > mg,
mo + Hmg3  parabolas o elipses si my < mg.

Paraboloide eliptico

omi +mg — 3  cOnicas si m; > ma,

El. -d H' b _ . .
tpsolde € LHperbo-1 -, L By, — 3 conicas si my < my.

loide de dos hojas

Tabla 1.2: Numero méaximo de cénicas no degeneradas de un campo vectorial
definido sobre una cuadrica

cuadraticos 2],

i =1 — 2ckz® + 2y + cy?, §=—y— ka® — ckxy + 2y, (1.5)
i =z +ma® + xy + cy’, §=—y—cx’ —zy — my, (1.6)
&=z + Ima® + 2y + ¢y, §=—y—cl®2® — lry — my?, (1.7)
i =z + az? + cy?, §=—y— ka* — my?, (1.8)
& =z + ax® + 2may + cy?, U =—1vy— kx? — 2axy — my°. (1.9)

Recientemente estos tipos de sillas han sido estudiadas por varios autores Cai
Sulin [6], Joyal y Rousseau [15], y Artés, Llibre y Vulpe [2]. Estos tltimos
autores caracterizaron los retratos de fase de todos los sistemas cuadraticos
con una silla integrable, pero no calcularon sus integrales primeras. En este
capitulo damos las expresiones explicitas para las integrales primeras de cada
familia de estos sistemas cuadréticos.

Sea W un subconjunto abierto de R? simplemente conexo. Una funcion
C! localmente no nula V : W — R es un factor integrante inverso del sistema
(1.4) sobre W si ésta es una solucion de la ecuacion diferencial parcial lineal
ov n
ox
donde div(P,Q) = OP/0x + 0Q/Jy es la divergencia del campo vectorial
X = (P, Q) asociado al sistema (1.4).

oV
P =L = div(P,Q)V,
Qay v(P,Q)



1.4 Integrales primeras Liouvillianas para sistemas cuadraticos
con una silla integrable 15

Recordemos que un sistema diferencial polinomial (1.4) con un factor
integrante inverso V' = V(x,y) : W — R posee una integral primera dada

por
P(z,y)
H%yz/ dy + g(x),
(z,y) V) (z)
H
donde ¢ se escoge de modo que 8_ = —Q.
ox Vv

Es conocido que todos los sistemas cuadraticos con una silla integrable
poseen una integral primera Liouvilliana, ver por ejemplo [2]. Una integral
primera Liouvilliana es una integral primera que se puede expresar por medio
de cuadraturas de funciones elementales. De hecho, la teoria de integrabilidad
de Darboux permite estudiar todas las integrales Liouvillianas, para mas de-
talles ver [30]. Nosotros encontramos las integrales primeras Liouvillianas de
cada una de las familias (1.5)—(1.9) encontrando un factor integrante inverso
polinomial para cada una de ellas. El teorema siguiente proporciona dichas
integrales primeras.

Teorema 1.11. Las siguientes afirmaciones se cumplen.
(a) Una integral primera del sistema (1.5) es

VS
ﬁ% si 1+ ck #0,
12
dex + 622 + (1 — 4y + 6y?)

si 142k =0.
Vi

(b) Una integral primera del sistema (1.6) es

Varm= e ™ sim#c, 1 —c, 3c—1, c#1/2,

(2c = 1)(x +y) —log|Vas| si m=c#1/2,

(2¢ — 1)(c(2¢ — 1)(2* + y?) + (—4c* + 6¢ — 2)ay + 2¢(z + y))+
2clog|Voy| sim=1—c#1/2,

é(z(zc — )20+ (1 — 20)%0)y + ¢(3 + 4(2¢ — 1)) + 2clog [Vay|
sim=3c—1%#1/2,

1
7 (4Vay — 84 (2m — 1)*(2® 4+ (2m + 1)zy + y?) — 8Vaz log [2Vas])
22

si c=1/2, m#1/2,

ademds si m = ¢ = 1/2, el sistema (1.6) coincide con el sistema (1.9) con
a=Fk=1/2.

(¢) Una integral primera del sistema (1.7) es
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Vm—cl
# sim#cl, 1 —cl,3cl — 1, 2cl # 1,
31

é (4e(2Vis — 8¢) + (2m — 1)2(2? + 2(2m + 1)ay + dcy?)—

16¢Vas log [2Vas]) s 2cl £ 1, m # 1/2,

(2cl — 1)(lz +y) —log |Vas| st m =cl, 2cl # 1,

(2cl — 1)((=2 + 2¢l(3 — 2¢l))xy + 2¢(lz + y) + c(2¢] — 1) (1222 + y2))+
2clog|Vs|  si m=1—cl, 2l # 1,

1
vz (=163 2% + 2x(lx — 1) + 821z (3lx — 1 + c(—121%2% + 8lz — 1))] +
31

2
V—(x +4cPx + (2 — 4lx))) + 2clog |Vay| st m = 3cl — 1, 2cl # 1,
31

ademds si m = 1/2, el sistema (1.7) coincide con el sistema (1.9) con a =
1/(4c) y k= 1/(8¢%).

(d) Una integral primera del sistema (1.8) es

23: (z + az® + cr?) log |y — 7y
— f(ri)

donde f(r) = 3c(am — ck)r?* + 2(ac+ m? — ckmz + am®x)r + a(am — ck)z* +
3(am — ck)x 4+ 2m y ry, vy y r3 son las tres raices del siguiente polinomio en
la variable r

(=2 + acm)r® + (ac + m?* — ckma + am®z)r? + (2m — 3ckx + 3amaz—
acka? + a*max®)r + (2ax + a*x? + kma? — ck*x® + akma® + 1).

(e) Una integral primera del sistema Hamiltoniano (1.9) es

kx® + 3ax®y + 3may® + cy® + 3xy.

El capitulo 5 se organiza de la siguiente manera. En la secciéon 5.1 intro-
ducimos el concepto de silla integrable, damos todos los sistemas cuadraticos
con una silla integrable e introducimos la nociéon de integral primera Liou-
villiana. En la secciéon 5.2 obtenemos los inversos de los factores integrantes
polinomiales para los sistemas cuadraticos con una silla integrable. Finalmen-
te proporcionamos las integrales primeras Liouvillianas de las cinco familias
de sistemas cuadraticos con una silla integrable (1.5)—(1.9).
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1.5. Retratos de fase de los sistemas cuadrati-
cos Lotka—Volterra con un invariante Dar-
boux en el disco de Poincaré

En el capitulo 6 estudiamos los sistemas diferenciales polinomiales cua-
dréticos Lotka—Volterra que tienen un invariante Darboux y caracterizamos
para cada uno de ellos sus retratos de fase globales en el disco de Poincaré.

Un sistema cuadrdtico Lotka—Volterra tiene la forma
t=x(ax+by+c), y=y(Azr+ By+C), (1.10)

donde a,b,c, A, B,C son constantes. El sistema (1.10) y su generalizacion a
dimension n se llaman sistemas Lotka—Volterra porque Lotka y Volterra fue-
ron los primeros en estudiarlos [18, 32]. Mas tarde estos sistemas diferenciales
fueron estudiados por Kolmogorov [16], y después algunos autores les llama-
ron sistemas Kolmogorov. Existen muchos fenémenos naturales que pueden
ser modelados por estos sistemas diferenciales tales como el tiempo de evo-
lucion de especies en conflicto en biologia [12, 28|, las reacciones quimicas, la
fisica del plasma [17], la hidrodinamica [3], la dindmica [7], la economia etc.

Nosotros estudiamos los sistemas cuadraticos (1.10) que poseen un in-
variante Darboux. Conocer una integral primera de un sistema diferencial
en el plano tiene un interés especial porque permite calcular las expresiones
explicitas de las trayectorias del sistema. Sin embargo, cuando no podemos
calcular una integral primera es til determinar si el sistema tiene un inva-
riante Darboux. En términos generales, con una integral primera podemos
describir completamente el retrato de fase de un sistema diferencial plano,
mientras que con un invariante Darboux solamente podemos describir su
comportamiento asintético, esto es, los conjuntos w— y a-limite de sus tra-
yectorias en el disco de Poincaré, esto es en el plano R? afiadiendo su frontera
St del infinito, para méas detalles véase la seccion 6.2.

El primer resultado que presentamos es la caracterizacion de los sistemas
cuadraticos Lotka—Volterra (1.10) que tienen un invariante Darboux.

Teorema 1.12. Los sistemas cuadrdticos Lotka—Volterra (1.10) que tienen
un tnvariante Darbouz son

t=zx(ax+by+c), y=Cy con C#0, (1.11)

]

[ [
;t:x(—Al—Qx—Bl—Qy—i—c), y=y(Az+ By+C) con 11 #0. (1.12)
1 1

—Cll—Clg)t A

Sus invariantes Darboux son e~ Sty y el xhy’2 | respectivamente, don-

de ly y ls son constantes.
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Los dos teoremas siguientes caracterizan los retratos de fase globales en
el disco de Poincaré de todos los sistemas (1.11) y (1.12) respectivamente.
Para conseguir esta clasificacion hemos utilizado varios conceptos como la
compactificacion de Poincaré, las separatrices, las regiones canoénicas y la
clasificacion de sistemas cuadraticos homogéneos reales planos debida a Date
[9].

Teorema 1.13. El retrato de fase de cualquier sistema cuadrdtico Lotka—

Volterra (1.11) es topolégicamente equivalente a una de las 7 configuraciones
de la Figura 1.4.

SONDS
SPABINY

Figura 1.4: Retratos de fase del sistema (1.11).

Teorema 1.14. El retrato de fase de cualquier sistema cuadrdtico Lotka—

Volterra (1.12) es topoldgicamente equivalente a una de las 42 configuraciones
de las Figuras 1.4 y 1.5.

El capitulo 6 se organiza como sigue. Primero damos algunos conceptos
bésicos sobre los sistemas cuadraticos Lotka—Volterra que poseen un inva-
riante Darboux (seccion 6.1). En la seccion 6.2 obtenemos la caracterizacion
de los sistemas cuadraticos (1.10). Las dos secciones siguientes contienen las
nociones sobre la compactificacion de Poincaré (seccion 6.3), las separatrices
y las regiones canonicas (seccion 6.4) que necesitaremos mas adelante. En la
seccion 6.5 presentamos los resultados que usaremos de la clasificacion de los
sistemas diferenciales polinomiales homogéneos cuadraticos desarrollada por
Date [9]. Finalmente, en las secciones 6.6 y 6.7 caracterizamos los retratos
de fase globales de los sistemas Lotka-Volterra con un invariante Darboux
(1.11) y (1.12), ver los Teoremas 1.13 y 1.14 respectivamente.
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Figura 1.5: Retratos de fase del sistema (1.12).
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Capitulo 2

Integrales primeras racionales de
campos vectoriales polinomiales
sobre hipersuperficies regulares
algebraicas de R 1!

En muchas ramas de las ciencias aplicadas aparecen ecuaciones diferen-
ciales ordinarias no lineales. Para un sistema diferencial o un campo vectorial
definido en R? la existencia de una integral primera determina por completo
su retrato de fase. En R™ con n > 2 la existencia de una integral primera de
un campo vectorial reduce el estudio de su dindmica en una dimension, con
tiempo real o complejo, respectivamente. Asi que surge una pregunta natural:
Dado un campo vectorial sobre R", jcémo reconocer si este campo vectorial
tiene una integral primera? Hasta ahora, esta pregunta no tiene respuestas
satisfactorias. Muchos métodos se han utilizado para estudiar la existencia
de integrales primeras de campos vectoriales. Algunos de estos métodos estéan
basados en: las simetrias de Noether [4], la teoria de integrabilidad de Dar-
boux [5], las simetrias de Lie [13], el analisis de Painlevé [2], el uso de pares
de Lax [9], el método directo [6, 7], el método de analisis de compatibilidad
lineal [14], el procedimiento de insercién de Carleman [1, 3], el formalismo
quasimonomial [2], etc. En el caso de campos vectoriales polinomiales e in-
tegrales primeras racionales la mejor respuesta a esta pregunta fue dada por
Jouanolou [8] en 1979 dentro de la teoria de integrabilidad de Darboux. Es-
ta teoria de integrabilidad establece un vinculo entre la integrabilidad de
campos vectoriales polinomiales y el nimero de hipersuperficies algebraicas
invariantes que ellos poseen.

La Teoria de Integrabilidad de Darboux para campos vectoriales poli-
nomiales de R™ muestra que la existencia de un nimero apropiado de hi-
persuperficies algebraicas invariantes de un campo vectorial determina una
integral primera de tipo Darboux para dicho campo. Especificamente, Dar-
boux [5] en 1878 demostroé que si un campo vectorial polinomial en R™ de
grado m tiene por lo menos (m+:_1) + 1 hipersuperficies algebraicas inva-
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riantes entonces posee una integral primera, que se puede calcular usando
estas hipersuperficies algebraicas invariantes. En 1979 Jouanolou [8] mostro,
utilizando técnicas sofisticadas de la Geometria Algebraica, que si el nimero
de hipersuperficies algebraicas invariantes de un campo vectorial polinomial
en R" de grado m es por lo menos ("J”:_l) + n, entonces el campo vectorial
tiene una integral primera racional, que también se puede calcular utilizando
hipersuperficies algebraicas invariantes.

En [11] Llibre y Zhang extendieron la teoria de integrabilidad de Darboux
de R™! a campos vectoriales polinomiales regulares definidos sobre hipersu-
perficies algebraicas de R"™! (ver Teorema 1.2). Sin embargo, para el caso
de las integrales primeras racionales de campos vectoriales definidos sobre
hipersuperficies no conociamos ninguna condicién que permitiera determinar
su existencia, como se puede observar si comparamos los Teoremas 1.1 y 1.2.
Solamente para el caso particular de campos vectoriales polinomiales defini-
dos sobre las cuadricas y el 2-toro, Llibre y Rodriguez [10] obtuvieron un
resultado que permite obtener para estos casos una integral primera racional
(ver Teorema 1.3).

El objetivo de este capitulo es extender el resultado de Jouanolou sobre la
existencia de integrales primeras racionales de campos vectoriales polinomia-
les de R™*! a campos vectoriales polinomiales definidos sobre hipersuperficies
algebraicas regulares de R*1

En [12] Llibre y Zhang dieron una prueba més corta y mas facil del
resultado dado por Jouanolou usando solamente Algebra Lineal.

Nuestro trabajo en este capitulo consiste en utilizar las ideas de [12]
para ampliar el resultado de Jouanolou a los campos vectoriales polinomiales
definidos sobre hipersuperficies algebraicas regulares de R"*!. Asi nuestra
extension del resultado de Jouanolou completa los resultados estandar de la
teoria de integrabilidad de Darboux caracterizando la existencia de integrales
primeras racionales para dichos campos vectoriales.

En efecto todos los resultados presentados aqui pueden extenderse a cam-
pos vectoriales polinomiales en C"™! pero trabajando con integrales primeras
meromorficas. Nosotros presentaremos los resultados en R™H1.

Este capitulo fue publicado en el articulo:

Y. BOLANOS Y J. LLIBRE, Rational first integrals for polynomial vector

fields on algebraic hypersurfaces of R™!, International Journal of Bifurcation
and Chaos, Vol. 22, No. 11 (2012) 1250270 (11 paginas).

El capitulo se organiza de la siguiente manera. En la secciéon 2.1 damos
algunas definiciones elementales. En la seccion 2.2 presentamos algunos re-
sultados auxiliares que necesitaremos después. En la seccion 2.3 enunciamos
y demostramos la extension del resultado de Jouanolou a campos vectoriales
polinomiales sobre hipersuperficies algebraicas regulares de R"*!. Finalmen-
te aplicamos el resultado anterior a campos vectoriales definidos sobre una
cuadrica o un 2-toro (seccién 2.4) y a algunas otras superficies algebraicas
(seccion 2.5).



2.1 Conceptos basicos 27

2.1. Conceptos basicos
Sea ) una hipersuperficie algebraica de grado d dada por
Q={(z1,...,7011) ER"™ :G(21,...,2041) = 0},

donde G : R™™ — R es un polinomio de R[xy,...,7,,] de grado d. Sin
pérdida de generalidad, por el Teorema de la funcion implicita, podemos su-
poner que T, = g(x1,...,x,) para todo (r1,...,T,41) € ) excepto quizas
en un conjunto de medida de Lebesgue cero, con g : 7(2) — R de clase
C! siendo m : R*"™! — R la proyeccion a lo largo del eje x,.1, esto es
(21, Tp1) = (21,0, X)-

La hipersuperficie €2 es regular si el gradiente de G' no se anula sobre (2.
En todo el capitulo todas las hipersuperficies que aparezcan seran hipersu-
perficies regulares algebraicas.

Sea X = (Py,..., P,11) un campo vectorial polinomial de R"*! dado por

n+1
0

X: PZ gy din e
; (ZBl x'i‘l)ax‘

2

donde P, parat = 1,...,n+1, es un polinomio de grado a lo mas m. Diremos
que X define un campo vectorial polinomial sobre la hipersuperficie reqular

Q) si satisface que
XG=(P,...,P1) VG =0,

sobre todos los puntos de Q.

El campo vectorial X sobre (), excepto en un conjunto de medida de
Lebesgue cero, también se escribirda usando z,+1 = g(z1,...,x,) como X =
(Py,...,P,) tal que XG' = 0 . En general, la notacion f aplicada a una
funcion cualquiera f : A C R™™ — R representa la funciéon f restringida a
), es decir,

f=flxy,...,zn) = f(z1,. . 20, 9(21, ... 1)),

donde (z1,...,x,) € m(A).

Sea B un abierto de R™™! (o respectivamente €2). Denotaremos por pp la
medida de Lebesgue de R"™ (o respectivamente Q) restringida a B, asi jug(A)
es la medida de Lebesgue del conjunto A C B. Decimos que la medida de
Lebesgue de A es total en B o simplemente total si ug(B\ A) es cero.

Sean H; : R — R con i = 1,...,p funciones de clase C*! definidas en
R™*! excepto quizas en un conjunto de medida de Lebesgue cero. Decimos
que Hy,..., H, son k-funcionalmente independientes en () si el rango de la
matriz n x p formada por los gradientes VH;(z), ..., Vﬁp(x) es k para todo
r=(x1,...,2,) € 7() con la excepcion quizas de un conjunto de medida de
Lebesgue cero en 7(£2). Si Hy, ..., H, son p-funcionalmente independientes en
Q) diremos simplemente que son funcionalmente independientes en ). Claro
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estd diremos que Hy, ..., H, son funcionalmente dependientes en 2 si no son
funcionalmente independientes en €.

Sea D C () un abierto de medida de Lebesgue total en 2. Diremos que la
funcion H : D — R de clase C! es una integral primera del campo vectorial
polinomial X sobre Q si XH = 0 sobre D, o también XH = 0 sobre 7(D).
Si ademas H es una funcién racional en las variables xq, ..., 2, de R**L,
entonces decimos que H es una integral primera racional del campo vectorial

X sobre €.

2.2. Resultados preliminares

Antes de presentar la extension del resultado de Jouanolou a campos de
vectores polinomiales sobre hipersuperficies algebraicas, que mencionamos en
la introduccién, necesitamos probar el siguiente resultado auxiliar.

Teorema 2.1. Sean Hy, ..., H, integrales primeras de clase C* de un campo
vectorial polinomial X de R™! sobre la hipersuperficie @ C R"*1. Suponga-
mos que Hy, ..., Hy, definidas sobre un subconjunto D de €} de medida total en
Q, son k—funcionalmente independientes sobre Q). Sin pérdida de generalidad
podemos suponer que VHy,...,VH, son funcionalmente independientes.

(a) Para cada s € {k+1,...,p} existen funciones Cs(x),...,Csy(x) de
clase C' definidas sobre un subconjunto de medida de Lebesque total en
Q tal que

(b) Para cada s € {k+1,...,p} yje{l,....k} la funcion Cs;(z) (si no
es constante) es una integral primera de X sobre Q.

Demostracion. (a) Por hipotesis los vectores gradientes VH, (z), ..., V Hy(z)
son linealmente independientes para todo = € 7(D), y para cada s € {k +
1,...,p} el vector VH,(x) es linealmente dependiente de VH,(x), ...,V Hy(z)
para todo 2 en un conjunto D de medida de Lebesgue total en 7(D). Por lo
tanto existen funciones Cy;(z), ..., Cy(z) definidas en D tal que

VH,(z) = Coy(x)VH(z) + - - - + Cop(z) VH(2).

De donde se obtiene el sistema de tamano n x k

OH, () OHy(z) . OH(x)
83:1 o 8:)&1 CSl(x) 0.’131
: : : = : : (2.1)
OH, (x) 8ﬁk(x) C’Sk(x) 8178(3:)

ox,, o ox,, ox,,
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Como la dimension de €2 es n, el nimero maximo de integrales primeras
independientes del campo vectorial sobre 2 es alo masn—1, estoes k < n—1.
Asi del sistema (2.1) podemos extraer un subsistema cuya matriz asociada
As(x) de tamano k x k tiene determinante distinto de cero. Supondremos
que esta matriz Ag(z) esta formada por las filas i,. .., de la matriz de
(2.1). Podemos aplicar la Regla de Crammer y encontrar las soluciones del
subsistema con matriz Ag(x), esto es

-  det Al(z)
Coilw) = det Ay(z)’

donde A’(z) es la matriz que se obtiene reemplazando la i—ésima columna

OH,(x) aﬁs(x)>T

aﬂfil Y 8:1:%

de Ag(z) por el vector columna (

Dado que las funciones f{j con j = 1,...,p son integrales primeras de
clase C? v estan definidas en el conjunto D de medida de Lebesgue total en
Q, las funciones Cy (), ..., Cy (x) definidas sobre D son de clase C!, lo que
completa la prueba de la afirmacion (a).

(b) Sea x € D. Para todoi,j € {1,...,n}, de (2.1) tenemos

oH, - OH, . O, oH, - OH, . O,

=Cagm—+- -+ Culx =Cagm—+ -+ Cy(x)7—.
(%i ! c%cz k< ) c%cz y a.%‘j ! (9xj k< ) al‘j
Derivamos estas dos ecuaciones con respecto a x; y x; respectivamente y
obtenemos

0 0H, 0C,0H, ~ O*H 0Cy. 0H, — ~  0°H,
= Coamat+-- Cokz—r

or, 0, 0z, 0my | Vomom T om, 0m | 0w,00,

0 o, 0C,0H, - 0*M, 0Cy 0H, - 0*Hy,

8—xiaxj N c%cz (9xj +0518xi8xj Tt 8@ al‘j +08ka$za.%‘]

Restando estas dos ecuaciones resulta

00, 0y 9C. 0 | 9Cu M 0Cu0f
Bxl- 030]- 030]- 03&1 8151 83,"]- 8.27]' 8331 e ’

Puesto que £ < n — 1, consideramos dos casos. Primero supongamos que
k =mn— 1. De (2.2) obtenemos

3 0Co Ol _0Ca0Hy  OCyOH,  OCy, OHy
1<i<j<n 8@ c%cj c%cj c%cz al‘z al’j al‘j 81:2

(2.3)

Oxy, Ox .(9x
o(k1,k2,....kn—2) k1 k2 kn_2
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donde o es una permutacion de {1,...,n} \ {i,7}. El segundo sumando lo
hacemos sobre todas las permutaciones posibles y 7 evaluado sobre una per-

mutacion de {1,...,n} es el ntimero minimo de transposiciones que llevan la
permutacion a la identidad.

La igualdad (2.3) la podemos escribir como

0= Z <80sl OH, Cs1 8H1> Z (_1)7—(7,3 k1. kn_2) 0Hs N 6Hn—1+
o(k1

< Ten Ox; Oxj  Owj Oz | . T) Oxy, oxy, .,

Z (8ésk aﬁk . 8C~'sk aﬁk) Z (_1)7(1']' k1...kn_2) 81;[2 .. 8Hn_l
(k1

1<i<j<n 8%, 8:1:j 8:1:]- 8%, o) 8$k1 axkn72

Usando la regla de Laplace para el calculo de un determinante tenemos,

0Cy 0H, Cy 0H, ’ oHy,  0H,
. -1 T(ij k1 ... kn—2) .
Z ( 8:171 033]- 0:17]- 033, ) ok Z ( )

a.Tkl 8a:kn_2

1<i<j<n \ 00 T TREEE ) Gy kn—2)
86'31 86'31 aé'sl
o, o, . oz
0H, 0H, OH,
Oxy  dr, Oz,
— (9H2 (9H2 a]{2
8—1‘1 (9—x2 . o
OH, . OH, . OH, .
oy 0T o o,

yparal =2 ...k

oC, 0, 9Cy oH, it OH  OH,
_ — 1) k1 kn—2)
Z ( 6.’171 6.Tj 330]- 83&1 ) ok Z ( )

1<i<j<n Oy, Oxy,_,

1eskn—2)
dC 9Cy 9Cy
0x; 0xs o 0x;,
8Hl 8Hl aI'Il
or,  O0r, Oz,
—| OHy 0H, 0Hy | = 0.

T R

OH, , OH,_, OH,
0x, 0o o ox,,
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Por lo tanto la ecuacion (2.3) se puede escribir como

oCy  9Cy oC4

5 e

OH,  0H, OH,

dxy Oz, Oz, | =0. (2.4)
OH, 1 OH,_; OH,_,

oy 0o o ox,

De (2.4) tenemos que para cada x € D, el vector VCy; pertenece al espacio
vectorial (n — 1)-dimensional generado por VH;(z), ..., VH,_;(z) denotado
por P,_i(x) puesto que k = n — 1y VH,(z),..., VHi(z) son linealmente
independientes.

Por la definicion de integral primera en €, para cada 2 € D tenemos

OH,(x) 4 OH,(x) 7 .-
oz, P(x)+---+ Bz, P,(x)=0, paraj=1,...,n—1.

Asi, para cada 2 € D el vector X(x) es ortogonal al espacio P,_i(x) y en

consecuencia VCy es ortogonal a X (x), esto es

9Ca ]51(33) N 0Ca(x) pn(x) =0, paratodox € D.
(9x1 axn

Esto prueba que la funcion Cy (si no es constante) es una integral primera
del campo vectorial X definida sobre D, esto es, C,; es una integral primera
de X sobre ().

Se pueden usar argumentos similares para probar que las funciones ésj
(si no son constantes) son también integrales primeras de X sobre () para
j=2,...,k. Por lo tanto la afirmacion (b) esta probada para k =n — 1.

Ahora trabajando de forma similar al caso k = n — 1 supongamos k <

n— 1. Teniendo en cuenta que Hy, ..., H; son funcionalmente independientes
en D tenemos que

oCy 9Cqy OCy
T . T
OH, O0H, OH,

rango Ox,  Ozo o oxr, | =k,
OH, OH, OH,
or Tm | B

en lugar de (2.4). Esto significa que para todo T € D, v, pertenece al espa-
cio vectorial k-dimensional generado por {VH;(z),..., VH(x)}, denotado
por Py(x).
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Puesto que las funciones ﬁj (x) para j = 1,...,k son integrales primeras
del campo vectorial X, el vector X (z) es ortogonal a VCy(z) para cada
xr € D. Por lo tanto la funcién C’sl (si no es constante) es una integral
primera del campo X" sobre ().

Utilizando argumentos similares se puede mostrar que las funciones ésj
para 7 = 2,...,k, son también integrales primeras de X sobre (2. Esto com-
pleta la demostracion de la parte (b) del teorema. O

2.3. Extension del resultado de Jouanolou

Como hemos mencionado antes, Jouanolou [8] en 1979, usando herramien-
tas de la Geometria Algebraica, mostré que si el nimero de hipersuperficies
algebraicas invariantes de un campo vectorial polinomial en R™ de grado m
es por lo menos ("J”:_l) + n, entonces el campo vectorial tiene una integral
primera racional. En [12] Llibre y Zhang usando solamente el Algebra Lineal
dieron una demostraciéon més corta y facil que la de Jouanolou.

A continuacién ampliamos el resultado de Jouanolou a campos de vecto-
res polinomiales definidos sobre hipersuperficies regulares algebraicas, exten-
diendo la demostracion de [12] a estos campos. Esto es proporcionaremos las
condiciones necesarias para establecer la existencia de una integral primera
racional para campos vectoriales polinomiales de R"™! sobre hipersuperficies
regulares algebraicas.

Sea f(x1,...,%n11) € Clay,...,2,11] \ C. Decimos que {f =0} NQ C
R™* ! es una hipersuperficie algebraica invariante del campo vectorial X so-
bre (o simplemente una hipersuperficie algebraica invariante sobre €)) si
satisface

(i) Existe un polinomio K € Clzy,...,z,41] llamado el cofactor de f =0
sobre € tal que

n+1
of
Xf= Zpia_xi = Kf sobre Q;
=1

(ii) las dos hipersuperficies f = 0 y ) se intersecan transversalmente; es
decir, VG A V[ # 0 sobre la hipersuperficie {f = 0} N £, donde A
denota el producto vectorial de dos vectores de R™**.

Observamos que en la definicién de hipersuperficie algebraica invariante
f = 0 permitimos que ésta sea compleja, es decir f € Clzy, ..., 2,.1]\C. Esto
se debe a que algunas veces, para campos polinomiales reales, la existencia
de una integral primera puede ser forzada por la existencia de hipersuper-
ficies algebraicas invariantes complejas. Asi, algunas veces la integrabilidad
real se puede deber a la estructura compleja subyacente. Si el campo vec-
torial polinomial X es real y tiene una hipersuperficie algebraica invariante
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compleja, entonces sabemos que su conjugada debe ser también una hiper-
superficie algebraica invariante. Como la integral primera que proporciona
la Teoria de Darboux usa pares conjugados de dichas funciones la integral
primera obtenida es real.

Sean fy g dos polinomios de C,,,_1[z1, ..., x,11]. Decimos que fy g estdan
relacionados, f ~ g, si coinciden sobre (), esto es, si existe un polinomio h
de grado a lo mas m —d — 1 tal que f — g = hG. Esta relacion define el
espacio cociente C,,_1[z1,...,2,41]/ ~. Denotamos su dimension, llamada
la dimension de C,,_1[21, ..., xn11] sobre Q, por N = N(n,m,d).

Proposicion 2.2. La dimension de C,,_q[z1,...,2,11]/ ~ es

N = N(n.m.d) - (n+m) B (n—i—m—d)'

n+1 n+1

Demostracion. Sean fy g polinomios en C,,,_1[xy, ..., 2,41]. Entonces f ~ g
si f — g = hG para algin polinomio A de grado a lo mas m —d — 1. El
conjunto de polinomios h que satisface esta propiedad forma el subespacio
lineal C,,_g_1[21, ..., 2p1] de Cpqlxy, ..., 2pyq]. Asila relacion ~ determi-
na el espacio cociente C,,_1[x1,...,Zn11]/Chpg_1[x1, ..., Tns1] cuyas clases
de equivalencia vienen dadas por

9] ={f € Cooca[z1, ..., 2pq1] - f — g = hG}.

Asi,

dim Cm_l[.flfl, Ce ,a:n+1]/Cm_d_1[x1, Ce 73:71—1—1] =

dim Cm—l[xla .o ,l‘n+1] — dim (Cm—d—l[trla ceny In+1].

Ahora usando el resultado conocido que C,|xy,...,Z,41] es un espacio C-
n~|—1+7") B (n—l—l—i—r

n+1

lineal de dimension (
r

) terminamos la prueba de la

proposicion.

Decimos que una hipersuperficie algebraica invariante f = 0 es irreducible
en Clxy,...,T,41] si el polinomio f es irreducible en Clxzy,. .., z,1].

Ahora mostraremos el resultado principal de este capitulo para el que
hemos extendido las ideas de [12]. Este teorema proporciona las condiciones
que determinan si un campo vectorial polinomial definido sobre una hiper-
superficie algebraica invariante €2 admite o no una integral primera racional

sobre ().

Teorema 2.3. Sea ) una hipersuperficie algebraica reqular de grado d en
R, Un campo vectorial polinomial X sobre Q de grado m admite N(n,m,d)+
n hipersuperficies algebraicas invariantes irreducibles en Clxy, ..., Tpy1] si, y
solo si X tiene una integral primera racional sobre €.
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Demostracion. Primero supongamos que el campo vectorial polinomial X
tiene una integral primera racional H sobre ) dada por
g1\T1, - -y Tntl
H(Il,...,l’n_H): ( . n—i—)’ (]31,...,]3”4_1)69,
92($1a S ,[L’n+1)
con gy, go € Rlzy, ..., xp 1]y h1 = H(yy, ..., Ynt1) paraalgan (v, ..., Yn11) €
Q). Definamos

f(x]-?""xn'i‘l) :gl(xl""7xn+1) _hng(x].?""xn“Fl)'
Notamos que todos los puntos (zy, ..., z,.1) contenidos en la hipersuperficie
f = 0 satisfacen que H(zy,...,2,11) = hi. Dado que H es una integral

primera de X" sobre €, sobre las trayectorias del campo contenidas en €2, H se
mantiene constante. Asi, los puntos sobre f = 0 corresponden a trayectorias
del campo vectorial X sobre 2. Esto es, la hipersuperficie algebraica f = 0
esté formada por trayectorias de X', con lo cual obtenemos que f = 0 es una
hipersuperficie algebraica invariante de X sobre 2. Puesto que para cada
(Y15 -y Yns1) € Q podemos definir una hipersuperficie algebraica invariante
del campo vectorial X sobre €2, obtenemos la prueba de la parte “si” del
teorema.

Ahora probaremos la parte “solo si”. Sean f;j(x) =0 parai=1,...,N+n
hipersuperficies algebraicas invariantes del campo vectorial polinomial X
sobre € con cofactor K;(x). Entonces X f;(z) = K;(z)f;(x) sobre 2, esto
es X fi(x)lqg = Ki(z)|afi(x)|q. Por lo tanto podemos asumir que K;(z) €
Cp-1]z1, ..., xpy1]/ ~. Denotamos por ¢ la dimension del subespacio vecto-
rial de Cp,_1[21,...,2n11]/ ~ generado por {Ki(z),..., Kyin(z)}. Enton-
ces, por la Proposicion 2.2 tenemos que ¢ < N. Con el objetivo de simplificar
la prueba y la notacion asumiremos que ¢ = N y que Ki(z),..., Ky(x)
son linealmente independientes en C,,_1[z1,...,2,11]/ ~. Cuando ¢ < N la
prueba podria ser similar usando los mismos argumentos.

Para cada j € {1,...,n} existe un vector (c;y,...,0;n,1) € CV*1 tal que
O'lel(.%')+"'+UjNKN(.T)+KN+]'(.T) :0, (25)

sobre Q. De la definicion de hipersuperficie algebraica invariante {f; = 0}
tenemos que K; = X f;/f;. Entonces de (2.5) obtenemos

X)) o X)) | X(fne(e)
041 fl (x) + + OjN fN + fNJrj (.’L’) 0.
Como X (f]") = ij;j_lX(fj) tenemos X;{J]J) =0, X;f]) Luego
XUPY L XURY L XU
Ry vl

X(log f{7) + -+ X(log fi'™) + X(log fn+j) = 0,
X(log(fi™ .. f3" fves)) =0,
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paraj = 1,...,n sobre Q. Esto significa que H; = log(f{”"" ... f¥’~ fx+;) para
J = 1,...,n son integrales primeras del campo X sobre algiin subconjunto
conveniente D C €2 con medida de Lebesgue total en €.

Veamos que las n integrales primeras H;’s son funcionalmente dependien-
tes sobre cualquier subconjunto de €2 con medida de Lebesgue positiva. De
lo contrario existe un subconjunto medible de Lebesgue Dy C €2 con medida
positiva en €2 tal que las funciones H,’s son funcionalmente independientes
en D,. Entonces de la definicién de integral primera tenemos

3ﬁj(93) D _

by @

para j = 1,...,n y para todo x € w(D5y). Ademés, de la independencia
funcional este sistema lineal homogéneo de tamano n x n tiene soluciéon tinica
Pj (x) =0paraj =1,...,nsobre m(Dsy),y en consecuencia el campo vectorial
X =0 en . Esto contradice el hecho que X tiene grado m > 0.

Definimos r(z) = rango{VH,(z),...,VH,(z)} y k = méx{r(z) : z €
7m(D;)}. Entonces existe un subconjunto abierto O de w(D;) tal que k =
r(z) para todo x € O y k < n. Asi, las n integrales primeras H,’s son k-
funcionalmente independientes sobre 2. Sin pérdida de generalidad podemos
suponer que

OH, OH, OH,

e a T an
rango | Lo =k,
OH, OH, OH,
L

para todo z € O.

Por el Teorema 2.1 (a) para cada x € O C Dy existen Cg(x),. .., Cy(2)
tales que

VHy(z) = Cs(x)VHi(x) + - -+ Cy(x) VH(2), (2.6)

para cada s = k+1,...,n. Y por el Teorema 2.1 (b) tenemos que las funciones
Csj(x) (si no son constantes) para j € {1,...,k} son integrales primeras de
X sobre O C Q.

Como H; = log(f7™ ... fy™ fn+i) tenemos que VH; es un vector de fun-
ciones racionales. Ademas los vectores VH,(x), ..., VHy(z) son linealmente
independientes para cada x € O entonces resolviendo el sistema (2.6) obtene-
mos una unica solucion (Cy, . . ., Cy) sobre O para cada s = k+1,...,n. De
modo que cada funciéon Cs; para j =1,...,ky s =k +1,...,n es racional.
Como O es un subconjunto abierto de 2 y C; es racional, deberia satisfacer
la dltima ecuacion en €2 excepto quizas en un subconjunto de medida de Le-
besgue cero donde C; no esta definida. Y de aqui si alguna de las funciones
Cs;’s no es constante, ésta es una integral primera racional de X sobre (2.
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Ahora probaremos que alguna funcién Cy; no es constante. La ecuacion
(2.6) implica que si todas las funciones Cy, ..., Cy son constantes entonces

Hs(l’) = CslHl(l’) + o+ Cska(x) + log Cs,
para s = k+1,...,n. De modo que

log(f7*! . fRY fves) =Calog(f{™ . [N ) + -
+ Cylog(f7™ oo fiFN fnsk) + log Cs.

De esta ultima ecuacién obtenemos

osl OsN __ (fo11 01N Cs1 Okl OkN Cs
1 fN fN+s—(1 e JN fN+1) (f1 fN fN—f—k) kOsa
y por tanto
_ Cs1011++Csp 0,1 —0s1 Cs1o1N++Cspop1—0sy £Cs1 Osk
fN+s = Csfl fN fN+1"' Nk
para todo s € {k+ 1,...,n}. Esto contradice el hecho que los polinomios
fi,- -+, fnen son irreducibles distintos por pares. O

2.4. Cuando ) es una cuadrica o un 2-toro

Sabemos que las cuadricas pueden ser clasificadas en diecisiete tipos. Exis-
ten cinco tipos de cuddricas imaginarias, llamadas el elipsoide, cono y cilindro
imaginario, dos planos que se intersectan y dos planos paralelos. Dado que
estamos trabajando con campos vectoriales polinomiales reales sobre super-
ficies reales, omitiremos estas cinco cuadricas previas. De las doce cuadricas
reales existen tres que son formadas por planos, dos planos que se intersec-
tan, dos planos paralelos y un plano doble. Puesto que el estudio de la teoria
de integrabilidad de Darboux de los campos vectoriales polinomiales sobre
estas superficies se reduce al estudio clasico de la teoria de integrabilidad
de Darboux de campos vectoriales polinomiales planos, omitimos estos tres
tipos de cuadricas. En resumen solamente consideramos las nueve cuadricas
restantes. En la Figura 1.1 se presentan estas nueve cuadricas y sus formas
cano6nicas. Notemos que mediante cambios afines la ecuacién que define una
cuadrica se puede escribir en su forma canoénica. Por consiguiente, el estudio
de la teoria de integrabilidad de Darboux de campos vectoriales polinomiales
sobre estas nueve cuddricas se puede restringir a tomar para cada una de
estas cuadricas su forma canodnica.

En el Teorema 1.3 del capitulo 1 presentamos las extensiones de la Teoria
de integrabilidad de Darboux a campos vectoriales definidos sobre una cué-
drica o sobre un 2-toro dando asi las condiciones que garantizan la existencia
de una integral primera racional de un campo vectorial polinomial definido
sobre una de estas superficies. Ahora aplicaremos el Teorema 2.3 cuando €2
es una cuadrica (d = 2) o un 2-toro (d = 4) y verificaremos que estos dos
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resultados coinciden. Esto es, calcularemos el niimero de curvas algebraicas
invariantes necesarias para obtener una integral primera racional de un cam-
po vectorial polinomial X de grado m en R? cuando éste se define sobre una
cuadrica o sobre un 2-toro.

—d
Por la Proposicion 2.2, N(n,m,d) = (n + m) - (n tm

n+1 n—+1
cuadricas, n+1=3,d =2y m > 3, con lo cual

sama (37)-(3) -

En el caso del 2-toro,n+1=3,d =4, m > 5y asi

2 _9
N(2,m, 4) = ( ;m) _ <m3 ) — om? — dm + 4.

) . Para las

Del Teorema 2.3 resulta que el nimero de curvas algebraicas invariantes que
garantizan la existencia de una integral primera racional es N(2,m,2) +2 =
m?+2 para el caso de un campo vectorial polinomial de grado m > 3 definido
sobre una cuadrica. Si el campo vectorial polinomial de grado m > 5 se
define sobre un 2-toro el nimero minimo de curvas algebraicas invariantes
es N(2,m,4) + 2 = 2m? — 4m + 6. Estos resultados coinciden con los del
Teorema 1.3.

2.5. Algunas superficies algebraicas ()

Ahora mostramos algunos ejemplos de superficies algebraicas que nos
permiten aplicar el Teorema 2.3 a campos vectoriales en R? definidos sobre
estas superficies. En cada uno de los casos presentados queremos determi-
nar el niimero de curvas algebraicas invariantes necesarias para garantizar la
existencia de una integral primera racional.

2.5.1. Cubica de Fermat

Consideremos que 2 = {G = 0} es la superficie cubica de Fermat [15],
esto es 2 + 43 + 2% = 1. Es facil ver que esta superficie es regular en R? dado
que VG se anula s6lo en el origen pero este punto no esté sobre la superficie.
Esta superficie se representa en la Figura 1.3.

Usando la Proposicion 2.2 calculamos N(n,m,d). En este caso tenemos
quen=2m>4yd=3. Asi,

sma= () (%)
(m+2)(m+ Dm  (m = 1)(m —2)(m — 3)

6 6
1
= 5(3m2 —3m + 2). (2.7)
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Entonces de (2.7) y por el Teorema 2.3 podemos concluir que el nimero
de curvas algebraicas invariantes necesarias para que un campo vectorial
polinomial X de grado m > 4 definido sobre la superficie ciibica de Fermat
posea una integral primera racional es N(2,m,3) + 2 = 1(3m? — 3m + 6).

2.5.2. Superficie de Clebsch
Sea 2 = {G = 0} la superficie de Clebsch [16] dada por

Py Al (e ty+2z+1)2=0.
Su gradiente es

VG = (32 —3(14+ax+y+2)?% 3y —3(1+x+y+2)? 322 =31 +a+y+2)?),

-1 -1 -1 -1 —-11 -1 1 -1
el cual se anula en los puntos ({ —, —, — |, | —, —, = |, | —, =, — |,
272 2 27272 272 2

-1t LD 20 piest i de est tos ests

_—, — —,—,— |. Puesto que ninguno de estos puntos estan
4 Y 4 Y 4 y 27 2 ) 2 q g p

sobre la superficie obtenemos que G es regular. Esta superficie se presenta

en la Figura 1.3.

En este caso tenemos n =2, m >4y d = 3. Asi N(n,m,d) corresponde
al mismo valor obtenido para la superficie de Fermat en (2.7). Entonces
por el Teorema 2.3 podemos concluir que el nimero de curvas algebraicas
invariantes necesarias para que un campo vectorial polinomial X de grado
m > 4 definido sobre la superficie de Clebsh posea una integral primera
racional es N(2,m,3) + 2 = 1(3m* — 3m +6).

2.5.3. Superficie de Goursat
Sea 2 = {G = 0} la superficie de Goursat [17| dada por

ety 2t — (P42 =1
Su gradiente es el vector
VG = (=21 +42°, =2y + 49®, —2z + 42°),

el cual se anula en 27 puntos que no pertenecen a la superficie. Por lo tanto €2
es una superficie regular. Esta superficie esta representada en la Figura 1.3.
Aqui tenemos que n = 2, m > 5y d = 4, de modo que N(n, m,d) corresponde
al valor encontrado para el caso del 2-toro, es decir N (2,m, 4) = 2m*—4m+4.

Entonces el ntimero de curvas algebraicas invariantes necesarias para que
un campo vectorial polinomial X de grado m > 5 definido sobre la superficie
de Goursat  posea una integral primera racional es N(2,m,4) + 2 = 2m? —
4m + 6, de acuerdo al Teorema 2.3.
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2.5.4. Superficie Racor

Veamos que la superficie Racor G(z,y,2) = 2%y* + 2%2? + 3?22 = 1 es
regular en R3. Su gradiente es VG = (2z(y? + 22), 2y(2® + 2?), 22(2? + 3?)).
Puesto que VG no se anula en ningtin punto sobre la superficie obtenemos
que G es regular. Esta superficie esta representada en la Figura 1.3.

En este caso tenemos que n =2, m > 5y d = 4. Asi, el nimero de curvas
algebraicas invariantes necesarias para que un campo vectorial polinomial X
de grado m > 5 definido sobre la superficie algebraica G posea una integral
primera racional es el mismo que obtuvimos para la superficie de Goursat.
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Capitulo 3

Sobre el nimero de esferas
n—dimensionales invariantes en

campos vectoriales polinomiales
de R?’H—l

Sea X el campo vectorial polinomial definido por

n+1
0

X =) Pyry,... o, ;
; (21 93+1)axi

donde cada P; es un polinomio de grado m; en las variables xy, ..., x, 1 con
coeficientes en R. Sea m = (myq,...,m,.1) el grado del campo polinomial,
asumiremos sin pérdida de generalidad que my; > --- > m,,1. Recordamos

que el sistema diferencial polinomial en R**! de grado m asociado al campo
X es
d.TZ'
dt

Hemos visto en la seccién 1.1 (capitulo 1) que la existencia de un nimero
de hipersuperficies algebraicas invariantes suficientemente grande garantiza
la existencia de una integral primera para un campo vectorial polinomial
X que puede ser calculada explicitamente. Como es usual Clzy, ..., x,.1]
denota el anillo de polinomios en las variables x1,...,x, 1 con coeficientes
en C. Recordamos que una hipersuperficie algebraica invariante para X es una
hipersuperficie f = f(x1,...,2541) =0 con f € Clxy,...,x,41] tal que para
algin polinomio K € Clzy,...,x,.1] tenemos que Xf = Vf - X = Kf. El
polinomio K es el cofactor de la hipersuperficie algebraica invariante f = 0.
Notamos que si el campo vectorial tiene grado m entonces cualquier cofactor
tiene a lo mas grado m; — 1. Si el grado de f es 1 la hipersuperficie f = 0
es un hiperplano invariante. Aqui nosotros estudiaremos las hipersuperficies
algebraicas f = (z1 — a1)* + -+ + (Tpy1 — @ni1)® — 1% = 0 que sean esferas
n-dimensionales invariantes.

:Pi(xl,...,$n+1), z:l,,n—I—l
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En la seccion 3.1 introducimos el concepto de hipersuperficie algebraica
extactica. Luego presentamos algunos resultados actuales sobre el ntmero
méximo de hiperplanos invariantes que puede tener un campo vectorial en
R™* (seccion 3.2) y finalmente, en la seccién 3.3, proporcionamos el nimero
méximo de circunferencias invariantes de campos vectoriales bidimensionales
y su extension a dimension n + 1.

El trabajo desarrollado en este capitulo ha sido publicado en el articulo:

Y. BOLANOS Y J. LLIBRE, On the number of n—dimensional invariant
spheres in polynomial vector fields of C**1, J. Applied Analysis and Compu-
tation 1 (2011), 173-182.

3.1. Hipersuperficie algebraica extactica

Introducimos una de las mejores herramientas para buscar hipersuperfi-
cies algebraicas invariantes. Sea W un subespacio vectorial del espacio de los
polinomios Clzy, ..., x,11] generado por los polinomios vy, ..., v. La hiper-
superficie algebraica extdctica de X asociada a W es

e (X) = det X(f“) X(:“Q) X(f’l) —0, (3.1
Xl_l(’Ul) Xl_l(’Ug) Xl_l(’Ul)

donde {vy,...,v;} es una base de W, [ = dim(W) es la dimension de W
y X7 (v;) = X771 X(v;)). Por las propiedades de los determinantes y de la
derivacion sabemos que la definiciéon de hipersuperficie algebraica extactica
es independiente de la base de W escogida.

La nocion de hipersuperficie algebraica extactica ey (X') es importante
aqui por dos razones. Primero porque nos permite detectar cuando una hi-
persuperficie algebraica f = 0 con f € W es invariante por el campo vectorial
polinomial X (ver la proxima proposicion 3] para campos vectoriales poli-
nomiales en C?; la extension a R™*! es facil y es la que aqui presentamos).
Segundo porque nos permite definir y calcular facilmente la multiplicidad de
las hipersuperficies algebraicas invariantes.

Proposicién 3.1. Sea X un campo vectorial polinomial en R™* y sea W un
subespacio vectorial de Clzy, ..., x,11] finitamente generado con dim(W) >
1. Entonces cada hipersuperficie algebraica invariante f = 0 para el campo
vectorial X, con f € W, es un factor del polinomio ey (X).

Demostracion. Sea f = 0 una hipersuperficie algebraica invariante de X" tal
que f € W. Como hemos observado, la eleccion de la base de W no juega
ningtn papel en la definicién de la hipersuperficie extéctica, por consiguiente
podemos tomar v; = f en (3.1).
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Probamos por induccion que X*(f) = K, f donde K} es un polinomio
para k = 1,2,... En efecto, si k = 1 tenemos que X(f) = K f siendo K el
cofactor de la hipersuperficie algebraica invariante f = 0. Supongamos que
X*(f) = K. f donde K} es un polinomio, y veamos el caso k + 1. Tenemos

XM = X(XE(f) = X(Kif) = X(Ki)f + Ko X(f)
= (X(Ky) + KKy f = Kiya f.

Por consiguiente f aparece en todos los términos de la primera columna de
la matriz de (3.1) y por lo tanto f es un factor del polinomio ey (X). O

3.2. Hiperplanos invariantes

El niimero de rectas invariantes para campos vectoriales polinomiales en
R? ha sido estudiado por varios autores, ver [1]. Conocemos que para campos
vectoriales polinomiales de grado (2, 2) el nimero méaximo de rectas invarian-
tes es 5. Zhang Xiang 7] y Sokulski [6] probaron que el nimero méaximo de
rectas invariantes reales para campos vectoriales polinomiales en R? de grados
(3,3) v (4,4) son 8 y 9 respectivamente. Posteriormente, Llibre y Medrado
[4] generalizaron estos resultados para campos vectoriales polinomiales en
C™*!. Los dos teoremas siguientes muestran estos resultados, pero antes de
presentarlos daremos dos definiciones.

La multiplicidad de un hiperplano invariante f = 0 es el mayor ente-
ro positivo k tal que f* divide al polinomio ey (X) con W generado por
Lxy, ..., 2pe1 (ver [3] y [5]). Cuando estudiamos el nimero maximo de hi-
perplanos invariantes que pasan por un mismo punto de un campo vectorial
polinomial X, haciendo una traslacion de este punto podemos suponer, sin
pérdida de generalidad, que éste es el origen. Entonces la multiplicidad de
un hiperplano invariante que pasa por el origen se define como el mayor en-
tero positivo k tal que f* divide al polinomio ey (X) con W generado por
Liye ooy Tpt1-

Teorema 3.2. Supongamos que un campo vectorial polinomial X en C!
conn > 1 de grado m = (mq,...,mpyy1) con my > -+ > My tiene un
numero finito de hiperplanos invariantes.

(a) El nimero de hiperplanos invariantes de X teniendo en cuenta sus
multiplicidades es a lo mds

(:i mk> + <" ;L 1) (1 — 1). (3.2)

(b) Elnumero de hiperplanos invariantes paralelos de X teniendo en cuenta
sus multiplicidades es a lo mds my.



Sobre el niimero de esferas n—dimensionales invariantes en
46 campos vectoriales polinomiales de R"*!

(¢) El ndmero de hiperplanos invariantes diferentes de X que pasan por un
mismo punto teniendo en cuenta sus multiplicidades es a lo mds

(é mk> + <Z> (my — 1) +1. (3.3)

Teorema 3.3. Supongamos que un campo vectorial polinomial X en R™!
conn > 1 de grado m = (m,...,m) tiene un numero finito de hiperplanos
muariantes.

(a) El nimero de hiperplanos invariantes de X teniendo en cuenta sus
multiplicidades es a lo mds

et Dt ("5 ) om=),

y esta cota superior es alcanzada por algin X .

(b) Elmnumero de hiperplanos invariantes paralelos de X teniendo en cuenta
sus multiplicidades es a lo mds m, y esta cota superior es alcanzada por
algun X .

(¢) Elnuimero de hiperplanos invariantes diferentes de X que pasan por un
mismo punto teniendo en cuenta sus multiplicidades es a lo mds

nm + (Z)(m—l)—i—l,

y esta cota superior es alcanzada por algin X .

3.3. Esferas invariantes

En la seccion anterior presentamos los resultados conocidos sobre el ni-
mero maximo de hiperplanos invariantes que admite un campo vectorial po-
linomial, ahora estudiaremos el nimero maximo de esferas n—dimensionales
invariantes que un campo vectorial polinomial puede alcanzar.

3.3.1. Circunferencias invariantes

Queremos encontrar una cota superior para el nimero méximo de esferas
n-dimensionales invariantes que un campo vectorial polinomial en R™*! puede
tener. Comenzaremos este estudio analizando primero el caso R?. Es decir,

0 0
dado un campo vectorial polinomial X = Pa— + Qé?_ con Py () polinomios
z y

enreydegradom = (my,my), my > may f(z,y) = (x—a)*+(y—0b)>—r? =



3.3 Esferas invariantes 47

0 una circunferencia de centro (a, b) y radio r > 0, vamos a encontrar una cota
superior para el nimero de circunferencias invariantes f del campo vectorial
polinomial X y determinar si esta cota es alcanzable o no dentro de la clase
de todos los campos vectoriales polinomiales con grado (my,ms).

La multiplicidad de una circunferencia invariante f = 0 es el mayor
entero positivo k tal que f* divide al polinomio ey (X) con W generado
por 1,22, x,y? y. Cuando estudiamos el nimero maximo de circunferencias
invariantes concéntricas de un campo vectorial polinomial X', haciendo una
traslacion del centro podemos asumir, sin pérdida de generalidad, que el
centro es el origen. Entonces la multiplicidad de una circunferencia invariante
con centro en el origen f = x>+ y*> —r? = 0 es el mayor entero positivo k
tal que f* divide al polinomio ey (X) con W generado por 1,2, y2.

Teorema 3.4. Supongamos que un campo vectorial polinomial X en R? de
grado m = (mq,my) con my > my tiene un numero finito de circunferencias
mvariantes.

(a) El numero de circunferencias invariantes de X teniendo en cuenta sus
multiplicidades es a lo mds 4mq + mgy — 2.

(b) El nimero de circunferencias invariantes concéntricas de X teniendo
en cuenta sus multiplicidades es a lo mds my + [(me + 1)/2]. Aqui [z]
denota la funcion parte entera de v € R.

Demostracion. Para probar la afirmacion (a) definimos W = gen{1, 2%, z,y* y}
el subespacio C-vectorial del espacio vectorial C|x,y| de los polinomios con
coeficientes complejos en las variables x e y. Entonces si f = 0 es una cir-
cunferencia, f € W.

Por la Proposicion 3.1 si f = 0 es una circunferencia invariante de X,
entonces f es un factor del polinomio

1 T T Y Y
0 X(z%) X(z) X)) X(y)
ew(X)=det | 0 X?(mQ) X% (x) X*(y?) X*(y) | = det(ay;) (3.4)
0 A°%(x%) A°(x) X°(y%) A(y)
0 XHa?) Xix) XHy®) A%(y)

Notamos que el grado del polinomio a;; de la matriz anterior verifica
que grado(a;;) = grado(a;—1;) +my —1sii =2,3,4,5y j = 2,3,4,5. En
efecto cada vez que aplicamos el campo a un polinomio, el grado del nuevo
polinomio se determina por el primer término que multiplica Py (polinomio
de grado mayor) y disminuye en 1 por la derivada al aplicar el campo. Asi
por ejemplo como el grado de X (z) es my el grado de X?(x) es 2m; — 1.

Teniendo en cuenta que m; > my y la definicién de determinante tenemos
que el grado del polinomio ey (X)) es

(4m1 — 2) -+ (3m1 —2) -+ (m1 —|—m2) +mey = 8m1 —1—2m2 — 4.
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Notamos que el grado anterior corresponde al grado del polinomio X*4(z?)X3(z)
X%(y*)X(y), el cual es uno de los polinomios del desarrollo del determinan-
te (3.4), que corresponde a una permutacion de cuatro elementos de grado
maximo.

Como el polinomio ey (X) puede tener a lo mas la mitad de factores de
la forma f(z,y) = (x — a)? + (y — b)> — r? que su grado, por la Proposicion
3.1 obtenemos la afirmacion (a) del teorema.

Ahora consideramos un conjunto de circunferencias concéntricas. Hacien-
do un cambio de coordenadas apropiado podemos considerar que las ecua-
ciones de estas circunferencias tienen la forma 22 +y? — r? = 0. Luego todas
estas circunferencias pueden ser escritas en la forma f = 0 con f € W,
donde W es el C-subespacio vectorial de C[z,y] generado por 1,z% y?. Por
consiguiente por la Proposicién 3.1 si f = 0 es una de estas circunferencias,
entonces f es un factor de

1 .%'2 y2
ew(X)=det [0 X(z?) X(?) |. (3.5)
0 X%(2?) X*(y?)

De modo que el grado del polinomio ey (X) es 2my +mso + 1 y por tanto
se cumple la afirmacion (b) del teorema. O

Corolario 3.5. Supongamos que un campo vectorial polinomial X en R? de
grado m = (m,m) tiene un nimero finito de circunferencias invariantes.

(a) El numero de circunferencias invariantes de X teniendo en cuenta sus
multiplicidades es a lo mds bm — 2.

(b) El nimero de circunferencias invariantes concéntricas de X teniendo
en cuenta sus multiplicidades es a lo mds [(3m + 1)/2].

Demostracion. La demostracion se obtiene mediante un célculo sencillo apli-
cando el Teorema 3.4. U

A continuaciéon mostraremos que la cotas dadas por el teorema anterior
no son alcanzables. Para esto necesitaremos el siguiente lema [2|. Recordemos
que una curva algebraica f = f(x,y) = 0 es no singular si no existen puntos
en los cuales f y sus primeras derivadas f, y f, sean todas cero.

Lema 3.6. Supongamos que un sistema diferencial polinomial tiene una cur-
va algebraica invariante no singular f = 0. Si (f,, fy) = 1, entonces el siste-
ma diferencial polinomial puede ser escrito en la forma

t=Af+Cf, y=Bf-Cl, (3.6)
donde A, B y C son polinomios adecuados.

Proposicién 3.7. Las cotas dadas por el Teorema 3.4 no son alcanzables.
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Demostracion. Probaremos que ningin campo vectorial cuadratico alcanza
la cota 4m4 +mg — 2 para el nimero de circunferencias invariantes que posee.
También probaremos esto para la cota my + [(ma + 1)/2] correspondiente al
numero de circunferencias invariantes concéntricas.

Supongamos que un campo vectorial cuadratico X posee una circunfe-
rencia invariante, haciendo un cambio afin de coordenadas, si es necesario, la
circunferencia puede trasladarse al origen y tener la forma 2? + 2 — 1 = 0.
Por lo tanto el Lema 3.6 establece que el sistema diferencial cuadratico
asociado al campo X puede ser escrito en la forma (3.6) con A,B € Ry
C = (ax + by +¢)/2, esto es

i = A(* +y*—1)+y(az+by+c), 5= B(z*+y*—1)—x(ax+by+c), (3.7)

que tiene la circunferencia x? + % — 1 = 0 invariante.

Vamos a ver que sin pérdida de generalidad podemos suponer que B = 0.
Si B = 0 ya tenemos lo que queremos. Supongamos que B # 0. Entonces
cambiamos las variables (z,y) por las variables

X\ [cos® —sinf\ [z
Y ) \sinf cosf y)’
con cos = A/\A?2+ B? y sinf = —B/v/ A% 4+ B2. El sistema cuadratico

(3.7) en las nuevas variables se convierte en
X=AX>+Y?-1)4+Y@X +0Y +7), Y =-X(@X +bY +¢), (3.8
donde

- _ aA+bB - Ab—aB _
szA2+B2,a=\/ﬁ,b:\/ﬁ,czc.

Notamos que renombrando los coeficientes de este sistema cuadratico obte-
nemos el sistema cuadratico (3.7) con B = 0. De modo que podemos trabajar
con el sistema cuadratico

i=A(*+y* = 1) +ylar + by +¢), §=—x(ax+by+c). (3.9)

Consideramos la circunferencia de centro (p,q) y de radio r, esto es
f(z,y) = (x — p)* + (y — q)> — r% Si f es una circunferencia invariante
de X entonces se verifica Xf = Kf, donde K = K(z,y) = Dx + Fy+ F.
Por lo tanto obtenemos

[A(2® +y° = 1) + y(az + by + ¢)]2(x — p) — x(az + by + )2(y —q) =
(Dx+ Ey+ F)[(z — 10)2 +(y—q)° — 7"2]. (3.10)

Analizaremos los dos casos que nos interesan, las soluciones donde se obtienen
circunferencias invariantes concéntricas y, en el caso general las soluciones que
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dan lugar a todas las circunferencias invariantes que puede tener el campo
vectorial cuadratico X.

Para el caso de las circunferencias invariantes concéntricas tenemos p =
g = 0. Entonces de la ecuacion (3.10) resulta

2A2*+2Axy* —2Ax = Da*+ Day?— Drie+Ex*y+ Ey*— Erly+Fa®+Fy*— Fr?,

conlocual D =2A,2A=Dr?, E=0y F=0.Si A#0, D= Dr? de modo
que r = 1.

Si A = 0 entonces también D = 0 y el sistema resultante asociado al
campo vectorial X es & = y(c+ax+by), § = —x(c+ax+by) que tiene todas
las circunferencias f(x,y) = 2%+y?—r? con r > 0 arbitrario, invariantes . Por
consiguiente este campo vectorial tiene infinitas circunferencias invariantes y
estos campos no estan considerados en el Teorema 3.4.

En consecuencia, un campo vectorial cuadratico puede tener como maxi-
mo una circunferencia invariante concéntrica.

Las soluciones reales no triviales distintas de la circunferencia unidad que
obtenemos resolviendo la ecuacion (3.10) son

(2) a = Oab - —D,C - %D(TQ _2)7A - gaE - O,F - an =—1lLp= 07
esto es obtenemos la circunferencia invariante f(x,y) = 2%+ (y+1)%—r?
para el sistema

1 1
Po= oD@ +y"—1)+y (—Dy +5D0" - 2)) ;o (311)

y = —x (—Dy + %D(# — 2)) :

D

1
(it) a=0,b=—-D,c= §D(2—7"2),A:§,E:0,F:0,q: 1,p=0,esto

es obtenemos la circunferencia invariante f(z,y) = 2* + (y — 1)? — 2
para el sistema

1 1
io= ;D@ 4y = 1) +y (—Dy +5D(2 - 7“2)) o (312)

j o= —a (—Dy + %D(Z - r2)) .

D(1 2 _p? D

(iii) a = 0,b=—D,c = ( +2q ") oA 5B =0.F =0,p=0, esto
q

es obtenemos la circunferencia invariante f(z,y) = 2% + (y — ¢)* — r?

para el sistema

1 D(1+¢*—1?
i o= —D(x2+y2—1)—|—y( (L+g T)—Dy), (3.13)
2 2q
D(1 2 .2
y = —x(—Dy~|— (149 T))
2q
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Asi los sistemas (3.11), (3.12) y (3.13) poseen dos circunferencias in-
variantes. En consecuencia, hemos probado que el niimero maximo de
circunferencias invariantes para un campo vectorial cuadrético es dos.

0

Corolario 3.8. Supongamos que un campo vectorial polinomial X en R? de
grado (2,2) tiene un nimero finito de circunferencias invariantes.

(a) El numero de circunferencias invariantes de X teniendo en cuenta sus
multiplicidades es a lo mds 2.

(b) El nimero de circunferencias invariantes concéntricas de X teniendo
en cuenta sus multiplicidades es a lo mds 1.

Demostracion. La prueba se sigue inmediatamente de la prueba de la Pro-
posicion 3.7. O

3.3.2. Esferas invariantes

En esta seccion generalizamos los resultados de la seccion anterior a cam-
pos vectoriales polinomiales en R"*!,

La multiplicidad de una esfera invariante f = (x1 — a1)> + -+ + (Tpy1 —
ani1)? — 1% = 0 es el mayor entero positivo k tal que f* divide el polinomio
ew (X) con W generado por 1,23, 21, ..., 22, |, Tyt

Teorema 3.9. Supongamos que un campo vectorial polinomial X en Rt
conn > 1 de grado m = (my,...,m,41) tiene un nimero finito de esferas
muartantes.

(a) El nimero de esferas invariantes de X teniendo en cuenta sus multi-
plicidades es a lo mds

[%((Z;%%>+(%ijn)mh—n+%n+n>

(b) El numero de esferas invariantes concéntricas de X teniendo en cuenta
sus multiplicidades es a lo mds

(3.14)

1 ([ n+1
[5 ((ka> +< ) )(m1—1)+(n+1)> : (3.15)
k=1
Demostracion. Definamos W como el subespacio C-vectorial de Clzy, . .., ;1]
generado por 1,23, 1,23, 2, ..., 2%, |, 2yy1. Entonces si f = 0 es una esfera,

few.
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Por la Proposicion 3.1 si f = 0 es una esfera invariante de X, entonces f
es un factor del polinomio

1 93% T ce 95721.1_1 Tn+1
0 X(af) X(ry) - X(rpy) X (n11)
ew(X) =det |0 A%(a?) X (x1) o AXP(ahy) X2 (n11)

0 A2 (33) X200 () < XA (a2 ) X?(n*”“"(“) )
3.16

Notamos que para k = 1,...,n+1, el grado de los polinomios X (), X?(x}),
X3(z1), ..., XD (2,) son my, my+my—1, 2(my —1)+my, ..., (2 (n+l) 1)
(my — 1) 4+ my, respectivamente, y el grado de los polinomios X (x2), X?(z3)
X3(x2), ..., X2 (22) son my, 4+ 1, my + my, 2(my — 1) + my, + 1,

(2(n +1) —1)(my — 1) + my + 1. En general, tenemos que X%(z;) = (d —
D(my—1)+mpy X422) = (d—1)(my—1)+mp+1parad =1,...,2(n+1).

Y

Teniendo en cuenta que my > --- > m, 1 v la definiciéon de determinante
tenemos que el grado del polinomio ey (X) es el grado de uno de los polino-
mios del determinante (3.16) que corresponde a una permutacion de 2n + 2
de sus elementos con grado maximal, el cual esta dado por la expresion

Xg(n.:,_l)(x%)XQ(n-i-l)—l(Il)XQ(n+1)—2 (xg)XQ(n+1)—3(x2) ce
24 (2) X ()X (12 )X (1),

Notamos que el grado del polinomio anterior es

(2(n+1)=1)(my —1)+mi + 1]+ [2(n+1) —2)(my — 1) +my] +
(2(n+1)=3)(m1 —1)+ma+ 1]+ [2(n+1) —4)(m1 — 1) + mao] + - -
+B(my—1)+m, + 1]+ [2(m1 — 1) +my,] + [(m1 — 1) + mpr + 1] +

mn+1:<§2 k) ( ngl))(ml—l)—l—(n—i-l).

Como el polinomio ey (X) puede tener a lo mas la mitad de factores de
la forma f = (r1 —ay)? + (va —a2)? + -+ (Tny1 — anp1)? — r? que su grado,
por la Proposicion 3.1 obtenemos la afirmacion (a) del teorema.

Ahora consideremos un conjunto de esferas n—dimensionales invariantes
concéntricas. Haciendo un cambio de coordenadas apropiado podemos consi-
derar que las ecuaciones de estas esferas tienen la forma z 423+ - - +22, | —

2 = 0. Luego todas estas esferas se pueden escribir en la forma f = 0 con
f € W, donde W es el C-subespacio vectorial de Clzy, xg, - - , Z,41] generado
por 1,23, 23,...,22,,. De modo que por la Proposicion 3.1 si f = 0 es una
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de estas esferas, entonces f es un factor de

1 5”% 93% x?z+1
0  X(x) X(x3) - X(xpy)

ew(X)=det |0 X%(2])  A%(23) - AXP(angy) | (3.17)
0 X"(af) x™H(x3) - A"(al,,)

Teniendo en cuenta que my > --- > my, 1 v la definiciéon de determinante
obtenemos que el grado del polinomio ey (X) es el grado de uno de los poli-
nomios del determinante (3.17) que corresponde a una permutacion de n + 1
de sus elementos con grado maximal, el cual esta dado por la expresion

X (@) X" (@) X () - X2 () X (27, 1).-

Asi el grado del polinomio ey (X) es

(n(m1=1)+mi+1)+((n—1)(mi—1)+ma+1)+- - -+ (ma+mp)+(Mny1+1) =
n+1
n+1
(ka> + ( ) )(m1 — 1)+ (n+1),
k=1
y por tanto el numero de esferas invariantes concéntricas de X teniendo en

cuenta sus multiplicidades esta dado por la ecuacion (3.13). O

Corolario 3.10. Supongamos que un campo vectorial polinomial X en R™*!
de grado m = (m, ..., m) tiene un nimero finito de esferas invariantes.

(a) El nimero de esferas invariantes de X teniendo en cuenta sus multi-
plicidades es a lo mds

[%(n - 1)(3m + 2n(m 1))} |

(b) El nuimero de esferas invariantes concéntricas de X teniendo en cuenta
sus multiplicidades es a lo mds

53 (o220

Demostracion. La demostracion se obtiene mediante un célculo sencillo apli-
cando el Teorema 3.9. U
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Capitulo 4

Sobre el nimero de conicas
invariantes de campos vectoriales
polinomiales definidos en una
cuadrica

En este capitulo trabajamos con campos vectoriales polinomiales en R3?,

X = P(x,y,z)aa—x + Q(m,y,z)% + R(z,v, z)%,
donde P, ) y R son polinomios de grado my, msy y mgs respectivamente en las
variables x,y, z con coeficientes en R. Asi m = (my, ms, m3) es el grado del
campo vectorial polinomial. Suponemos que X tiene una cuadrica invariante.
En este caso decimos que X' es un campo vectorial polinomial definido sobre
esta cuddrica.

Un plano invariante de X interseca a la cuadrica invariante en una co-
nica invariante. El objetivo principal de este capitulo es estudiar el namero
maximo de conicas invariantes de este tipo que puede tener el campo vec-
torial polinomial X en funcién de los grados mq, mo v ms. Si la conica es
no degenerada entonces es una elipse, una parabola o una hipérbola. Si es
degenerada, entonces esta formada por dos rectas que se cortan en un punto,
por dos rectas paralelas, o por una recta doble.

El estudio del niimero méximo de clases de curvas invariantes en R?, de
clases de superficies invariantes en R3, y de clases de hipersuperficies in-
variantes en R" ha sido estudiado recientemente por varios autores. Asi el
nimero maximo de rectas invariantes que un campo vectorial polinomial en
R? en funcion de su grado puede tener, ha sido estudiado en [1, 9, 12|. El
nimero maximo de ciclos limites algebraicos que puede tener un campo vec-
torial en R? ha sido estudiado en [6, 7, 13]. El ntimero méximo de meridianos
y paralelos invariantes para campos vectoriales polinomiales sobre un toro 2—
dimensional ha sido considerado en [5, 8]. El nimero méximo de hiperplanos
invariantes de campos vectoriales polinomiales en R" ha sido determinado en
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[4]. En el capitulo anterior hemos ampliado estos resultados para el niime-
ro maximo de circunferencias invariantes de campos vectoriales polinomiales
en R? y también para el ntimero de esferas n—dimensionales invariantes en
el caso de campos vectoriales en R En este capitulo encontramos cotas
superiores para el nimero méximo de conicas invariantes que estan conte-
nidas en planos invariantes para los campos vectoriales polinomiales de R?
definidos sobre las cuadricas.

El capitulo 4 se organiza como sigue. Estudiamos en secciones separadas
los campos vectoriales definidos en cada una de las nueve cuadricas y mos-
tramos los resultados obtenidos respecto al nimero de conicas degeneradas y
no degeneradas invariantes que se obtienen para estos campos. Para las seis
cuadricas regladas encontramos una cota para el nimero maximo de rectas
invariantes. Finalmente probamos si estas cotas son alcanzables o no. Este
capitulo sera publicado en el articulo:

Y. BoLANOS, J. LLIBRE Y C. VALLS, On the number of invariant conics
for the polynomial vector fields defined on quadrics, Bull. Sci. math. (2013),
http://dx.doi.org/10.1016/j.bulsci.2013.04.003.

4.1. Conceptos preliminares

Sea Q una cuadrica dada por Q = {(z,y,2) € R*: G(z,y, 2) = 0}, donde
G : R?* — R es un polinomio de grado 2. Decimos que X define un campo
vectorial polinomial sobre la cuddrica Q si XG = (P,Q, R) - VG = 0 sobre
todos los puntos de Q. Aqui, como es usual VG denota el gradiente de la
funcion G.

Denotemos por R[z, y, z] el anillo de todos los polinomios en las variables
x,y,z con coeficientes en R. Sea f(x,y,z) € Rlz,y,z] \ R. Decimos que
{f =0} NQ CR?es una curva algebraica invariante del campo vectorial X
sobre Q (o simplemente una curva algebraica invariante de Q) si se satisface:

(i) Existe un polinomio K € R[z,y, 2] tal que

_pdl  p9f  RpOf
Xf_P8x+Q8y+R82_Kf sobre Q.

El polinomio K es el cofactor de f = 0 sobre Q; vy

(i) las dos superficies f = 0y Q tienen interseccion transversal; esto es
VG AV f # 0 sobre la curva {f =0} N Q, donde A denota el producto
interior de dos vectores de R3.

Notemos que si el campo vectorial X tiene grado m, entonces cualquier co-
factor tiene grado a lo méas max{my, ms, mg} — 1.

Al igual que en el capitulo 3 utilizaremos el concepto de superficie alge-
braica invariante que nos permitira estudiar el nimero maximo de superficies
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algebraicas invariantes que el campo vectorial X definido sobre Q admite (pa-
ra méas detalles ver seccion 3.1). En el capitulo anterior también usamos el
concepto de multiplicidad de un hiperplano o una esfera n—dimensional in-
variante, aqui ampliamos este concepto aplicado a una superficie invariante.
Decimos que la multiplicidad de una superficie algebraica invariante f = 0
con f € W es el mayor entero positivo k tal que f* divide al polinomio ex-
tactico ey (X) cuando ey (X)) # 0, en otro caso la multiplicidad es infinita.
Aqui W es un subespacio vectorial del espacio de los polinomios R[z, y, z].

En el capitulo 1 presentamos la Teoria de integrabilidad de Darboux de
campos vectoriales polinomiales definidos sobre las nueve cuadricas reales
dadas en la Figura 1.3: cilindro parabélico, cilindro eliptico, cilindro hiper-
bolico, cono, hiperboloide de una hoja, paraboloide hiperbélico, paraboloide
eliptico, elipsoide o esfera y hiperboloide de dos hojas. También presentamos
sus formas canoénicas y observamos que para este estudio no es restrictivo
utilizar la forma canoénica correspondiente a cada una de ellas. En todo el
resto de este capitulo también tratamos con estas nueve cuédricas reales y
usamos sus formas canénicas: 22 —x =0, 22+ 22 —-1=0,22 - 22 -1 =0,
2y -2 =022+ -2 -1=0,y -2 —2=0,92+22—2 =0,
2+t —1=0y2®2+y?—-224+1=0.

Una caracteristica que poseen algunas de las cuédricas es la de ser super-
ficies regladas, este concepto lo utilizaremos en las secciones siguientes. Una
superficie es reglada |2, 3| si por cada punto de la misma, existe una recta con-
tenida en ella. Las superficies regladas se generan por el movimiento de una
recta, denominada generatriz, manteniéndose en contacto con otra u otras
rectas, denominadas directrices, cumpliendo ademas en su desplazamiento
ciertas condiciones particulares. Una superficie es doblemente reglada si por
cada uno de sus puntos pasan dos generatrices. De las nueve cuadricas reales
seis de ellas son regladas, estas son: el cilindro parabélico, el cilindro eliptico,
el cilindro hiperbolico, el cono, el hiperboloide de una hoja y el paraboloide
hiperbolico. Ademas el hiperboloide de una hoja y el paraboloide hiperbélico
son superficies doblemente regladas.

Como nos interesa estudiar el nimero de coénicas invariantes que se ob-
tienen de la interseccion de planos invariantes con una cuadrica debemos
recordar (ver [10]) cuando una conica es degenerada o no degenerada y qué
tipo de conica es.

Proposicion 4.1. Sea Ax*+ Bry+Cy*+Dx+Ey+F = 0 con A2+ B*+C? #
0 la ecuacion de una conica y consideremos

A BJ/2 D)2
A B/2
D/2 E/2 F

La conica es no degenerada si dy # 0. En este caso la conica es una hipérbola
sty solo si do < 0, una pardbola si y solo si dy = 0 o una elipse si y solo
si dy > 0. Si la conica es degenerada (dy = 0), tenemos que es un par de
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rectas que se intersecan si y solo si dy < 0, un par de rectas paralelas si y
solo si ds = 0 o solamente un punto si y solo si dy > 0. En el caso de rectas
paralelas (dy = 0), éstas son distintas y reales si E* — 4CF > 0, dobles si
E? — 4CF =0, y distintas e imaginarias si E?> —4CF < 0.

4.2. Cilindro Parabdlico

Vamos a trabajar con la siguiente forma canénica 2?2 — x = 0 del cilindro
parabolico. Sea X un campo vectorial polinomial en R? definido sobre él.
Veremos que las conicas que se obtienen al intersecar un cilindro paraboélico
con un plano son rectas y parabolas.

En las subsecciones siguientes hallamos una cota superior del niimero de
rectas y parabolas invariantes obtenidas al intersecar un plano invariante
con el cilindro parabdlico para campos vectoriales polinomiales que estén
definidos sobre él en funcién del grado del campo vectorial.

4.2.1. Rectas invariantes

Hemos mencionado antes que el cilindro parabdlico es una superficie regla-
da. En efecto, si la interseccion del cilindro parabélico con un plano paralelo
al eje y no es vacia, ésta es una recta doble o dos rectas paralelas al eje y. A
continuaciéon proporcionamos algunos resultados preliminares.

Lema 4.2. Todas las rectas contenidas en el cilindro parabélico 2> — x = 0
son paralelas al eje y.

Demostracion. Probaremos que cualquier recta que no sea paralela al eje y
no puede estar contenida en el cilindro parabélico 22 —x = 0.

Sea (zo, Yo, 20) € R® un punto del cilindro parabdlico 2> — x = 0. Consi-
deremos una recta en R3 no paralela al eje y que pasa por (xg, %, 20). Sea
(a,b,c) con a? + ¢* # 0 su vector director. Su ecuacioén vectorial esta dada
por

(,y,2) = (%0, Y0, 20) + A(a,b,c), NeR. (4.1)

Probaremos que la recta (4.1) no esta contenida en el cilindro parabélico.
De la ecuacion (4.1), (x,y, z) = (2o + Aa, yo + Ab, zo + Ac) y si (z,y, 2) es un
punto del cilindro parabélico, entonces (29 + Ac)? — (zo + Aa) = 0 para todo
A. De modo que 22 + 2\czg + A2 — 29 — Aa = 0. Como 22 — g = 0 tenemos
que 2zp¢ + A2 —a = 0. Si ¢ # 0, esta tltima igualdad se verifica para un
a — 2zpc

2
a’ + c® # 0 y por tanto a # 0. En consecuencia hemos probado que todas
las rectas contenidas en el cilindro parabélico 22 — 2 = 0 son paralelas al eje
Y. 0

inico A = . Si ¢ = 0 llegamos a una contradiccion con el hecho que

Lema 4.3. Todo plano no paralelo al ejey corta al cilindro parabélico 2> —x =
0 en una pardbola.
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Demostracion. Sea ax + by + cz +d = 0 con b # 0 la ecuaciéon de un plano
no paralelo al eje y que interseca al cilindro parabdlico.

_ar+by+d 5

Si ¢ # 0, entonces z = . Reemplazando en 2 — 2 = 0

c
obtenemos la ecuacion de la conica interseccion que viene dada por
a’z? 4 2abxy + b*y? + (2ad — )z + 2bdy + d* = 0.

b2 4
Aplicando la Proposicion 4.1 obtenemos que d; = —TC # 0y dy=0. De

modo que, la conica es una pardbola.

by + d
Sea ahora ¢ = 0. Si a # 0, de la ecuacion del plano x = — v+ .
a

Reemplazando en 22 — 2 = 0 obtenemos la ecuacion de la conica interseccion
ab?
az’>+by+d = 0. En este caso d; = I # 0y dy = 0, de modo que la conica

. . d
es una parabola. Si ¢ = a = 0, la ecuacion del plano toma la forma y = ——.

La interseccion del cilindro parabdlico con este plano es una parabola. En
consecuencia, el lema esta probado. O

Proposiciéon 4.4. La conica interseccion de un cilindro parabdlico con un
plano es una pardbola, una recta doble, o un par de rectas paralelas.

Demostracion. Por el Lema 4.2, dado un plano paralelo al eje y que corta al
cilindro parabdlico, su interseccion es una recta doble o dos rectas paralelas.
Si el plano no es paralelo al eje y, sabemos por el Lema 4.3, que éste interseca
al cilindro parabdlico en una parabola. O

Denotamos por X = (P,Q, R) el campo vectorial polinomial definido
sobre el cilindro parabolico Q@ = {G = 2? — z = 0}. Tenemos que

X - VG = 0 sobre todos los puntos del cilindro parabélico G = 0.

De lo anterior obtenemos P = 2zR, asi X = (2zR,Q, R). Si m; = grado P,
mo = grado () y m3 = grado R, entonces m; = ms + 1.

Proposicion 4.5. Ezisten campos vectoriales polinomiales X definidos so-
bre el cilindro parabdlico que poseen infinitas rectas invariantes, teniendo en
cuenta sus multiplicidades.

Demostracion. Como nos interesa estudiar las rectas invariantes de un campo
vectorial polinomial X contenidas en el cilindro paraboélico 22—z = 0 s6lo nos
hace falta considerar los planos paralelos al eje y cuya ecuacion tiene la forma
ax + bz 4+ ¢ = 0. Si este plano es invariante por X sus rectas intersecciéon con
el cilindro parabdélico también seréan invariantes por X. En consecuencia por
la Proposicion 3.1 y el Lema 4.2 una condicién necesaria para que X posea
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infinitas de estas rectas invariantes es que ey (X) = 0 con W = (1,z, 2).
Sabemos que el polinomio extéctico ey (X') esta definido por

1 x z
ew(X) =10 X(z) X(2)]. (4.2)
0 X%x) X?(2)

Dado que X (x) = 2zR y X(z) = R obtenemos

X%(z) = X(22R) =2X(2)R +22X(R)
=2R* +42°R, R+ 22R,Q + 22R.R, y
X2(z) = X(R)=2:RR, + QR, + RR..

Asi,
ew (X) = X(2)X?(2) — X(2)X%(z) = 2R®. (4.3)

Por tanto ey (X) = 0 si y sélo si R = 0. Entonces podemos definir X
como el campo vectorial cuyo sistema diferencial asociado esta dado por

i=0, §=0Q, 2=0.

Como & = 0, los planos f = x+c¢ = 0 con ¢ € R son invariantes por X. Todos
los planos f = 0 son paralelos al eje y, de modo que intersecan al cilindro
parabolico 22 — 2 = 0 en un par de rectas paralelas o en una recta doble
(Proposicion 4.4). Por lo tanto el campo vectorial X' posee infinitas rectas
invariantes. O

Teorema 4.6. Supongamos que un campo vectorial polinomial X en R® de
grado m = (my, my, m3) definido sobre el cilindro parabolico z* —x = 0 tiene
un numero finito de rectas invariantes, teniendo en cuenta sus multiplicida-
des. Entonces el nimero mdximo de rectas invariantes de X contenidas en
planos invariantes diferentes paralelos al eje y es a lo mds

(a) 2mg si ninguna recta invariante es doble.
(b) mg si todas las rectas invariantes son dobles.
(¢) entre m3 y 2ms si hay alguna recta invariante doble.

Demostracion. El polinomio extéctico del campo vectorial X asociado a W =
(1,2, z) estda dado por la ecuacion (4.3) y de aqui, por la Proposicion 4.1,
cualquier plano invariante paralelo al eje y debe dividir a R?, luego también
a R. Como el grado de R es m3, R tiene como maximo ms factores lineales,
de modo que X puede tener a lo mas ms planos invariantes. Por lo tanto,
una cota superior para el ntiimero de rectas invariantes de X paralelas al eje
y contenidas en dichos planos invariantes es 2mg si no existen rectas dobles,
mg si todas las rectas son dobles y esté entre 2mg y mg si hay alguna recta
doble. O
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Proposicion 4.7. Las hipdtesis del Teorema 4.6 se verifican siempre que
mg > 1 y las cotas que proporciona son alcanzables.

Demostracion. Por la ecuacion (4.3), si X = (P,Q, R) con R =Fk, k € R, es
un campo vectorial definido sobre el cilindro parabdlico, entonces ey (X') =
2k% con W = (1, x,z). Puesto que cualquier plano invariante paralelo al eje
y, ar+bz+c = 0, debe satisfacer que ax+bz+ ¢ divide al polinomio extéctico

2k (ver Proposicién 4.1), no pueden existir tales planos invariantes. Luego
ms Z 1.

Ahora probamos que si m3 > 1 las cotas son alcanzables. Sea f; = aq;z +
bz + ¢ con a;, b, € R, I =1,...,mzy los planos f; = 0 distintos entre si.
Consideremos un campo vectorial polinomial X' con sistema asociado

m3

p=21[f v=0 2=][# (4.4)
=1

=1

donde ¢ € R. Vamos a probar que f; = 0 para todo ! =1,...,m3 es un plano
m3
invariante de X. En efecto, X' f; = K;f; con K; = (2a;z + b;) H (a;z +
j=1
J#1

bjz + ¢;). Por tanto el sistema diferencial (4.4) posee a lo mas 2msg rectas
paralelas invariantes contenidas en planos paralelos al eje y o m3 rectas dobles
invariantes de X’ contenidas en planos paralelos al eje y tal y como afirma el

Teorema 4.6.
m3

En particular si R = H(x—l) entonces la interseccion del cilindro parabo-
I=1

lico 22 —2 = 0 con cada uno de los planos z—! = 0 donde [ = 1, ..., ms son las
dos rectas invariantes de X' paralelas al eje y dadas por (z,y, 2) = (I, \, V1)
para todo A € Ry [ =1,...,m3. Por lo tanto obtenemos en total a lo mas

2ms rectas invariantes de X contenidas en los mg3 planos invariantes x—[ = 0.

Supongamos ahora que la recta {f; = 0} N {y = 0} es tangente a la
pardbola {z* —z = 0} N{y = 0} y que las rectas {f; = 0} N{y = 0} con [ # j
cortan a la pardbola {22 —z = 0}N{y = 0} en dos puntos. Entonces el sistema
diferencial (4.4) en el plano f; = 0 de R® tiene una recta invariante doble
sobre el cilindro parabélico 22 —x = 0 de R3, y 2m3 — 2 rectas invariantes
simples sobre el mismo cilindro. En total, tenemos 2ms — 1 rectas invariantes
sobre el cilindro parabodlico. Procediendo de esta manera podemos obtener
cualquier nimero de rectas invariantes comprendido entre mg y 2ms. Por lo
tanto las cotas dadas por el Teorema 4.6 son alcanzables. O

4.2.2. Parabolas invariantes

De acuerdo con la prueba de la Proposicion 4.4 si la interseccion del
cilindro paraboélico 22 — 2 = 0 con un plano no paralelo al eje y no es vacia
entonces es una parabola. Ahora estudiaremos el nimero de éstos planos que
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son invariantes por Xy esto nos permitira obtener una cota para el namero
maximo de parabolas invariantes que contienen.

Proposicion 4.8. Ezisten campos vectoriales polinomiales definidos sobre
el cilindro parabolico que poseen infinitas pardbolas invariantes, teniendo en
cuenta sus multiplicidades.

Demostracion. Sea X el campo vectorial polinomial definido sobre el cilindro
parabolico 22 — x = 0 cuyo sistema diferencial asociado estd dado por

b=22% g=—2(1+22), 2=z

Vamos a ver que los planos f = z+y+2z+d = 0 con d € R son invariantes
por X. Un calculo sencillo verifica que f = 0 es un plano invariante de X con
cofactor K = 0 para todo d € R. Ningun plano f = 0 es paralelo al eje y, de
modo que éstos planos intersecan al cilindro parabolico 22 — 2 = 0 en una
parabola (Proposicion 4.4). Por lo tanto el campo vectorial X’ posee infinitas
parabolas invariantes. O

Teorema 4.9. Supongamos que un campo vectorial polinomial X en R?® de
grado m = (my, ma, ms3) definido sobre un cilindro parabdlico tiene un ni-
mero finito de pardbolas invariantes, teniendo en cuenta sus multiplicidades.
Entonces el nimero mdximo de pardbolas invariantes de X contenidas en
planos invariantes, teniendo en cuenta sus multiplicidades, es a lo mds

3me +3ms —2  simo > ms+ 1,
mo + dmg stmo < mg+ 1.

Demostracion. Sea ax + by + cz + d = 0 un plano que interseca al cilindro
parabolico 2% —z = 0 y consideremos W = (1, z, ¥, 2). El polinomio extéactico
de X asociado a W esta dado por

1 T Y o
0 X(z) X(y) X(2)
ew(X) = 0 X?%(x) X2(yy) X?(2)|
0 X3x) X3(y) A3(2)

Teniendo en cuenta que X (x) = 2zR, X(y) = Q y X(z) = R, calculamos
el polinomio (4.5), con la ayuda de un manipulador algebraico, en este caso
el mathematica, y resulta

(4.5)

ew (X) =2R (—2R*Q.R. + 2QR*R.> + R'Q.. — QR*R..+ R*Q.Q,—
3QR*R.Q, + QR*Q,” — 3QR*Q.R, + 5Q*RR.R, — 4Q*RQ,R,+
3Q°R,? +2QR%Q,. — 2Q*R’R,, + Q*R*Q,, — Q*RR,, + 2R'Q.—
42R°R.Q, + 22R°QyQy — 62QR*RyQ, — 2QR*R, — 42R*°Q.R,+  (4.6)
82QR’R. R, — 62QR*Q R, + 10:Q*RR R, — 82> R*°Q, R+
82°QR’R,” + 42R* Q.. — 42QR*R,.. + 42QR*Qy — 42Q*R* R,y +
42°R*Quo — 42°QR*Ryy) -
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De la ecuacion (4.6) obtenemos que los grados de los monomios del polinomio
extactico son mg 4+ 5mg — 2, 2mgy + 4mgz — 2, 3mg + 3msz — 2, mg 4+ 5mg — 1,
2ms + 4ms — 1, mo + bmg. Asi,

grado(ew (X)) = max{3msy + 3ms — 2, 2ms + 4ms — 1, my + 5ms}.

Notemos que 3mg+3mz—2 > 2my+4msz — 1 si (3mg+3mz —2) — (2ma +
4dmsz — 1) > 0, o equivalentemente si ms > m3 + 1. También, si ms > m3 + 1,
2mo+4mg—1 > my+5mg. Por lo tanto, el grado de ey (X') es 3mg+ 3mg —2
si mg > m3+1, y de una manera similar se obtiene que el grado de ey (X') es
5ms3+ms si mo < mg+ 1. En consecuencia de acuerdo con la Proposicion 4.1,
el nimero méaximo de planos invariantes (contando sus multiplicidades) que
intersecan al cilindro parabolico 22 —z = 0 es 3may + 3ms — 2 si my > mg + 1
0 5ms3 + my si mo < mg+ 1. Esto es, obtenemos las cotas que proporciona el
teorema para el numero de pardbolas invariantes de X contenidas en planos
invariantes de X. O

Proposicién 4.10. La cota proporcionada por el Teorema 4.9 es alcanzable.

Demostracion. Consideremos un campo vectorial polinomial X definido so-
bre el cilindro parabolico 22 — x = 0 cuyo sistema diferencial asociado esté
dado por

r=2z y=@w+1", =1, conm > 1.

El polinomio extéactico (4.6) asociado a X es ey (X) = 2m(2m — 1)(y +
1)>m=2. Sea f = y + 1, es facil ver que f = 0 interseca al cilindro en una
pardbola y es un plano invariante de X con cofactor K = (y + 1)™™!, esto
es Xf = Kf. Ademés X definido sobre el cilindro parabdlico no puede tener
méas planos invariantes (ver Proposicion 4.1). Por lo tanto X tiene una tnica
parabola contenida en un plano invariante, que coincide con la cota dada por
el Teorema 4.9. O

4.3. Cilindro Eliptico

Vamos a trabajar con la siguiente forma canénica 22 + 22 —1 = 0 del
cilindro eliptico. Consideremos un campo vectorial polinomial X de R? defi-
nido sobre él. Veremos que los tipos de conicas que se obtienen al intersecar
el cilindro eliptico con un plano son rectas y elipses.

En las subsecciones siguientes hallamos una cota superior para el niimero
méaximo de estas rectas y elipses invariantes de X definido sobre el cilindro
eliptico, dependiendo de los grados my, ms y ms del campo vectorial X.

4.3.1. Rectas invariantes

El cilindro eliptico es una superficie reglada. Veamos qué tipos de rectas
contiene.
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Lema 4.11. Todas las rectas contenidas en el cilindro eliptico x*>+2>—1 =0
son paralelas al eje y.

Demostracion. Vamos a ver que cualquier recta que no sea paralela al eje y
no puede estar contenida en el cilindro eliptico 22 + 2% — 1 = 0.

Sea (zo,Y0,20) € R un punto del cilindro eliptico 22 + 2> — 1 = 0.
Consideremos una recta en R? no paralela al eje y que pasa por (g, %o, 20). Sea
(a,b,c) con a® + ¢® # 0 su vector director y (z,y, z) = (z9, Yo, 20) + Aa, b, ¢),
con \ € R su ecuacion vectorial, entonces (z,y, 2) = (xg+Aa, yo+ b, 2o+ Ac).
Probaremos que esta recta no esté contenida en el cilindro eliptico 2% + 2% —
1=0. Si (z,y, z) es un punto del cilindro, entonces

(w0 + Aa)® + (20 + Ac)? — 1 = 0, para todo . (4.7)
De (4.7) y puesto que 23 + 22 — 1 = 0 resulta
MA(a* + ) + 2(azg + cz)) = 0. (4.8)
—2(axy + czp)
a? + c?
por tanto la ecuacion (4.7) se cumple solo para un valor de A. En consecuencia,

esto prueba que todas las rectas contenidas en el cilindro eliptico 22 +22—1 =
0 son paralelas al eje y. O

Y

Sea A # 0. Entonces la igualdad (4.8) se verifica para A\ =

Proposiciéon 4.12. La conica interseccion de un cilindro eliptico con un
plano es una recta doble, un par de rectas paralelas, o una elipse.

Demostracion. Consideremos el cilindro eliptico de ecuacion 22 +2%2 —1 =0
y un plano que lo interseque. Si el plano es paralelo al eje y, éste interseca al
cilindro eliptico en una recta doble o dos rectas paralelas. Por el Lema 4.11
sabemos que el cilindro eliptico no contiene ninguna recta no paralela al eje
y, de modo que cualquier otro plano no paralelo al eje y podria intersecar al
cilindro eliptico en una elipse, en una parébola o en una hipérbola. Dado que
la interseccién es una curva cerrada, ésta no podria ser una parabola o una
hipérbola. Entonces un plano no paralelo al eje y s6lo puede cortar a este
cilindro en una elipse. En consecuencia la intersecciéon de un cilindro eliptico
y un plano, si no es vacia, es una recta doble, dos rectas paralelas al eje y, o
una elipse. O

Sea X = (P, @, R) un campo vectorial polinomial definido sobre el cilindro
eliptico @ = {G = 2* + 2> — 1 = 0}. Entonces P = —zR y m; = mg.

Proposicion 4.13. Existen campos vectoriales polinomiales X definidos so-
bre el cilindro eliptico que poseen infinitas rectas invariantes, teniendo en
cuenta sus multiplicidades.

Demostracion. Sea W = (1, z, z). El polinomio extéactico ey (X) esta dado
por la ecuacion (4.2). Vamos a determinar X tal que ey (X) = 0, dado
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que buscamos que X posea infinitas rectas invariantes. Como X (z) = Py
X(z) = R, entonces X?(z) = X(P)= PP, +QP,+ RP, y X*(z) = X(R) =
PR, + QR, + RR,. Ademas, teniendo en cuenta que xP = —zR resulta
2P, =—2R, — P, 2P, = —zR, y P, = —R — zR,. Asl,

ew(X) = X(2)X?(2) — X(2)X%(z) = (2° + 27) (E) . (4.9)

Xz

De modo que ey (X) = 0 si y solo si R = 0. En consecuencia podemos
definir X como el campo vectorial cuyo sistema diferencial asociado esta dado
por

=0, y=0Q, z2=0.

Como z = 0, los planos f = x 4+ ¢ = 0 con ¢ € R son invariantes por X.
Dado que todos los planos f = 0 son paralelos al eje y, ellos intersecan al
cilindro eliptico 2% + 22 — 1 = 0 en un par de rectas paralelas o en una recta
doble (Proposicion 4.12). Por lo tanto el campo vectorial X' posee infinitas
rectas invariantes. O

Teorema 4.14. Supongamos que un campo vectorial polinomial X en R3 de
grado m = (my, mg, m3) definido sobre el cilindro eliptico x> + 2> —1 = 0
tiene un numero finito de rectas invariantes, teniendo en cuenta sus multipli-
cidades. Entonces el nimero mdximo de rectas invariantes de X contenidas
en planos invariantes distintos paralelos al eje y es a lo mds

(a) 2mg3 — 2 si ninguna recta invariante es doble.
(b) mg — 1 si todas las rectas invariantes son dobles.
(¢) entre m3 — 1 y 2mg — 2 si hay alguna recta invariante doble.

Demostracion. Como vamos a estudiar las rectas invariantes s6lo nos hace
falta considerar los planos paralelos al eje y. Sea W = (1, z, z). El polinomio
extéactico de X asociado a W esté dado por la ecuacion (4.9). Como ey (X))
es un polinomio, R debe ser divisible por x, o sea que existe un polinomio
Ry de grado m3 — 1 tal que R = zR;, y por lo tanto el grado de ey (X))
es 3(mg — 1) + 2. Asi el nimero de planos invariantes distintos de X, es a
lo mas ms — 1. Mas concretamente el nimero maximo de rectas invariantes
contenidas en estos planos invariantes es ms — 1 si todas las rectas son dobles
y 2mg3 — 2 en caso que no haya ninguna recta doble. Esto es, obtenemos las
cotas que proporciona el teorema. U

Proposicion 4.15. Las cotas que proporciona el Teorema 4.14 son alcanza-

bles.

Demostracion. Sea f; = ax + bz + ¢ con a;, b, ¢, € R para todo | =
1,...,mg — 1 y los planos f; = 0 distintos entre si. Sea X un campo vec-
torial polinomial definido sobre el cilindro eliptico 22 + 22 — 1 = 0 cuyo



Sobre el niimero de cénicas invariantes de campos vectoriales
68 polinomiales definidos en una cuadrica

sistema diferencial asociado es

maz—1 maz—1

i=—z [ f v=q¢ z=z]] (4.10)
=1 =1

con g € R. No es dificil comprobar que todos los planos f; = 0 son invariantes
m3—1

por X, esto es X f; = K, f; donde K; = —(a;z + byx) H (a;x 4+ bjz + ¢j).
j=1
i#1
De modo que el sistema posee a lo mas 2mg — 2 rectas paralelas invariantes
o mg — 1 rectas dobles invariantes contenidas en los planos paralelos al eje
y fi=0conl=1,...,mg— 1, lo cual coincide con las cotas dadas por el
Teorema 4.14.
m3—1
En particular si R = H (x — 1/1) entonces la interseccion del cilindro
=1
eliptico 22 + 22 — 1 = 0 con cada uno de los planos # — 1/l = 0 donde

[=1,...,m3— 1 son las dos rectas invariantes de X paralelas al eje y dadas
1 ViIE—-1
por (z,y,2) = ( =, \,t———— | paratodo A € Ryl =1,...,mg—1. Porlo

l l
tanto obtenemos en total a lo més 2ms — 2 rectas invariantes de X contenidas

en los mg planos invariantes x — 1/1 = 0.

Supongamos que larecta { f; = 0}N{y = 0} es tangente a la circunferencia
{22+ 2% = 1}N{y = 0} y que las rectas {f; = 0}N{y = 0} con [ # j cortan a
la circunferencia {z? + 2% = 1} N {y = 0} en dos puntos. Entonces el sistema
diferencial (4.10) en el plano f; = 0 de R? tiene una recta invariante doble
sobre el cilindro eliptico 22422 = 1 de R?, y 2m3—2 rectas invariantes simples
sobre el mismo cilindro. En total tenemos 2ms — 1 rectas invariantes sobre
el cilindro eliptico. Procediendo de esta manera podemos obtener un niimero
de rectas invariantes comprendido entre ms — 1 y 2mg — 2. En consecuencia
las cotas dadas por el Teorema 4.14 son alcanzables. O

4.3.2. Elipses invariantes

De acuerdo con la prueba de la Proposicién 4.12 si la interseccion del
cilindro eliptico 22 + 22 — 1 = 0 con un plano no paralelo al eje y no es vacia
entonces es una elipse.

Proposicion 4.16. Existen campos vectoriales polinomiales X definidos so-
bre el cilindro eliptico que poseen infinitas elipses invariantes, teniendo en
cuenta sus multiplicidades.

Demostracion. Sea X el campo vectorial polinomial sobre el cilindro eliptico
2% + 22 — 1 = 0 cuyo sistema diferencial asociado es

r=—z Y=z—x, Z=2x.
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Es facil verificar que los planos f = v+ y+2+d = 0 con d € R son
invariantes por X con cofactor K = 0 para todo d € R. Ningtn plano f =0
es paralelo al eje i, de modo que intersecan al cilindro eliptico 22 +2%2 —1 =0
en una elipse. Por lo tanto X posee infinitas elipses invariantes. O

Teorema 4.17. Supongamos que un campo vectorial polinomial X en R3
de grado m = (my, mg, m3) definido sobre un cilindro eliptico tiene un ni-
mero finito de elipses invariantes, teniendo en cuenta sus multiplicidades.
Entonces el nimero mdximo de elipses invariantes de X contenidas en pla-
nos invariantes, teniendo en cuenta sus multiplicidades, es a lo mds

3mg +3mg —5 81 mo > Mg,
Mo + dmg — 5 st Mo < ma.

Demostracion. Sea W = (1, x,y, z). El polinomio extactico de X asociado a
W esta dado por la ecuacion (4.5).

Como zP = —zR se sigue que 2P, = —zR, — P, 2P, = —2R, y «P, =
—R — zR,. Ademés, X(z) = P, X(y) = Q y X(z) = R, teniendo en cuenta
esto y con ayuda del mathematica realizamos los calculos correspondientes y
obtenemos el polinomio extactico

ew(X) =

—~ % (2® + 2°) R (—322R*Q. + 322QR*R. — 22°R*Q.R.+

203QR*R.” + 2 R*Q.. — 1*QR*R,. — 322QR*Q, + 2’ R*Q.Q,—

3°QR’R.Qy + 2°QR*Q} + 322Q°R*R, — 33°QR*Q. Ry +

52°Q*RR. Ry, — 42°Q*RQy R, + 32°Q° R + 22°QR*Q,. — 20°Q*R*R,.+
PQ?R2Qyy — 2°Q*RRyy — 1*R'Qy + 222 R'Qy + 2022 R°R. Qo (4.11)
22 2R3Q,Q. + 327 2QR?R,Q, + v*QR*R, — 22°QR*R,, + 22?2 R*Q. R, —
42°2QR*R, R, + 377 2QR*Qy R, — 52°2Q’RRy R, — 222° R*Q, R+

202°QR*R,% — 22°2R*Q, + 22°2QR R, — 2x22QR3wa+

20°2Q° R* Ry + 22° R*Que — 22°QR°Ryy) -

De esta expresion obtenemos que los grados de los monomios del polinomio
ew (X) son mg + bmgz — 3, 2mgy + 4mg — 3 y 3mg + 3ms — 3. Asi,

grado(ew (X)) = max{msy + bmg — 3, 2my + 4ms — 3, 3my + 3mz — 3}.
Podemos ver que si my > mg se cumplen las desigualdades siguientes
3m2+3m3—322m2+4m3+1 2m2+5m3+1.

Por lo tanto el grado de ey (X') es 3ma+3ms—3 si my > mg, y de una manera
similar se obtiene que el grado de ey (X') es my + 5mg — 3 si my < m3. En
consecuencia de acuerdo con la Proposicion 4.1, el nimero méaximo de planos
invariantes reales (contando sus multiplicidades) que intersecan al cilindro
eliptico 22 + 22 — 1 = 0 es 3my + 3mg — 5 si my > ms, 6 Mg + dmg — 5 si
ms < mg, y de aqui el teorema se sigue. O
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Proposicion 4.18. La cota proporcionada por el Teorema 4.17 es alcanzable.

Demostracion. Consideremos un campo vectorial polinomial X sobre el ci-
lindro eliptico 22 + 22 — 1 = 0 cuyo sistema diferencial asociado es

i=—z2y+1)"" g=w+1" i=ay+1)"N

La cota dada por el Teorema 4.17 para el nimero méaximo de elipses inva-
riantes de X’ contenidas en sus planos invariantes es 6m — 5. El polinomio
extéactico (4.11) asociado a X es

ew (X) = —2(z* + 22)(y + 1), (4.12)

Sea f = y + 1, entonces f = 0 interseca al cilindro en una elipse y es un
plano invariante de X con cofactor K = (y+1)™"!. Como X sobre el cilindro
eliptico no puede tener méas planos invariantes reales (ver Proposicion 4.1) y
la multiplicidad de f = 0 es 6m — 5, obtenemos que la cota del Teorema 4.17
se alcanza. O

4.4. Cilindro Hiperbdlico

Vamos a trabajar con la siguiente forma canénica 22 — 22 — 1 = 0 del
cilindro hiperbélico. Sea X un campo vectorial polinomial de R? definido
sobre él. Veremos que los tipos de conicas que se obtienen al intersecar el
cilindro hiperbélico con un plano son rectas e hipérbolas.

En las subsecciones siguientes hallamos una cota superior para el ntimero
maximo de rectas e hipérbolas invariantes que viven en planos invariantes de
X definido sobre un cilindro hiperbdlico, dependiendo de los grados my, ms
y mg del campo vectorial X.

4.4.1. Rectas invariantes

Como hemos mencionado antes el cilindro hiperboélico es una superficie
reglada. Veremos que las rectas que éste contiene son paralelas al eje y como
sucede con las dos cuadricas que hemos estudiado antes.

Lema 4.19. Todas las rectas contenidas en el cilindro hiperbolico x> —z*>—1 =
0 son paralelas al eje y.

Demostracion. Sea (xg, Yo, 20) un punto del cilindro hiperbélico 22 — 22 —1 =
0. Mostraremos que la recta no paralela al eje y que pasa por (xo, Yo, 20)
de ecuacion (z,vy,2) = (o, Yo, 20) + A(a,b,c), donde A € Ry a® + ¢* # 0,
no pertenece al cilindro hiperbdlico 22 — 2?2 — 1 = 0. Entonces (z,y,2) =
(xo + Aa,yo + Ab, 2z + Ac). Si (z,y,2) es un punto del cilindro hiperboélico

2?2 — 22 — 1 = 0 se debe cumplir que

(w0 + Xa)® — (20 + Ac)> — 1 = 0 para todo A € R. (4.13)
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De (4.13) y dado que 22 — z2 — 1 = 0 resulta
MA@ — ) + 2(azg — c20)) = 0. (4.14)

Supongamos A # 0. Entonces si a # =+¢, la igualdad (4.14) se verifica

2(czg — axg)

para A = . Por lo tanto la ecuacion (4.13) se cumple soélo para

a2 _ 2
un valor de \. Si a = +c de la ecuacion (4.14) obtenemos 2a\(zx, & 2z9) = 0,
lo cual implica a = 0 0 xg = £2. El caso a = 0 no puede ser pues hemos
supuesto 0 # a®? + ¢ = 2a®. Asi que 7y = Fz pero entonces el punto
(20, Yo, 20) No pertenece al cilindro hiperbolico 22—2?—1 = 0. En consecuencia
todas las rectas no paralelas al eje y no pertenecen al cilindro hiperbélico
22 —22—-1=0. O

Lema 4.20. Todo plano no paralelo al eje y corta al cilindro hiperbolico
2

2?2 — 22 — 1 =0 en una hipérbola.
Demostracion. Sea ax + by + cz +d = 0 con b # 0 la ecuaciéon de un plano

no paralelo al eje .

ar + by +d

Si ¢ # 0, entonces z = — . Reemplazando en 22 — 22 —1 =0

c
obtenemos la ecuacion de la conica interseccion
(¢ — a®)x? — 2abxy — b*y* — 2adx — 2bdy — ¢* — d* = 0.

Aplicando la Proposicién 4.1 obtenemos d; = b*c* # 0y dy = —b*c* < 0. De
modo que la conica obtenida es una hipérbola.

by + d
Sea ahora ¢ = 0. Si a # 0 tenemos * = — vt . Reemplazando en
a

22 — 22 — 1 = 0 obtenemos la ecuacién de la conica interseccion que viene
dada por b*y? — a?2% + 2bdy + d*> — a®> = 0. En este caso d; = b%a® # 0y
dy = —b? < 0. Asf la conica es una hipérbola. Si ¢ = a = 0, la ecuacién

del plano toma la forma y = ——, por lo que la interseccion de este plano y

el cilindro también es una hipérbola. Asi, la cénica intersecciéon del cilindro
hiperbélico 22 —2?—1 = 0y un plano no paralelo al eje y es una hipérbola. [J

Proposicion 4.21. La conica interseccion de un cilindro hiperbolico con un
plano es una recta doble, un par de rectas paralelas, o una hipérbola.

Demostracion. Por el Lema 4.19 si el plano es paralelo al eje y, éste interseca
al cilindro hiperbolico en una recta doble o dos rectas paralelas; y, por el
Lema 4.20 sabemos que cualquier otro plano no paralelo al eje y interseca al
cilindro hiperbdlico en una hipérbola. U

Si X = (P, Q, R) esta definido sobre el cilindro hiperbélico z? — 2% —1 =0
se debe cumplir que P = zR y m; = mg.

Proposicion 4.22. Ezxisten campos vectoriales polinomiales X definidos so-
bre el cilindro hiperbolico que poseen infinitas rectas invariantes, teniendo en
cuenta sus multiplicidades.
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Demostracion. Sea W = (1, z, z). El polinomio extactico de X" asociado a W
esta dado por la ecuacion (4.2). Para que X' posea infinitas rectas invariantes
contenidas en el cilindro hiperbélico 2% — 22 —1 = 0, ey (X') = 0. Teniendo en
cuenta que xP = 2R obtenemos P, = zR, — P, 2P, = zR, y 2P, = R+zR_;
por tanto
R\?
ew (X) = — (2 — 2%) (;) . (4.15)

Luego, ey (X) = 0 si y s6lo si R = 0. En consecuencia podemos definir X
como el campo vectorial con sistema diferencial asociado

i=0, §=0Q, 2=0.

Los planos f =+ ¢ = 0 con ¢ € R son invariantes por X. Como todos ellos
son paralelos al eje y intersecan al cilindro hiperbélico 22 — 22 — 1 = 0 en un
par de rectas paralelas o en una recta doble (Proposicion 4.21). Por lo tanto
X posee infinitas rectas invariantes. ]

Teorema 4.23. Supongamos que un campo vectorial polinomial X en R? de
grado m = (my, my, m3) definido sobre el cilindro hiperbélico z* — 2> —1 =0
tiene un numero finito de rectas invariantes, teniendo en cuenta sus multi-
plicidades “esenciales” (ver demostracion). Entonces el nimero mdximo de
rectas invariantes de X contenidas en planos invariantes distintos paralelos
al eje y es a lo mas

(a) 2mg — 2 si ninguna recta invariante es doble.
(b) mg — 1 si todas las rectas invariantes son dobles.
(¢) entre mz — 1 y 2mg — 2 si hay alguna recta invariante doble.

Demostracion. Como vamos a estudiar las rectas invariantes sélo nos hace
falta considerar los planos paralelos al eje y. Sea W = (1, z, z). El polinomio
extéactico de X asociado a W esta dado por la ecuacion (4.15). Como ey (X))
es un polinomio entonces R debe ser divisible por x, o sea que R = xR, para
algin polinomio R; con grado(R;) = mz—1,y por lo tanto el grado de ey (X)
es 3(msz—1)+2. Puesto que los planos  — 2z = 0 y £+ 2z = 0 no intersecan al
cilindro hiperbélico obtenemos que el niimero maximo de planos invariantes
reales de X es a lo mas mgz — 1, sin contar las multiplicidades debidas al
exponente 3 que aparece en (4.15). Mas concretamente el nimero méaximo de
rectas invariantes contenidas en estos planos invariantes es ms — 1 si todas
las rectas son dobles y 2ms — 2 en caso que no haya ninguna recta doble. Asi,
obtenemos las cotas que proporciona el teorema. O

Proposicion 4.24. Las cotas que proporciona el Teorema 4.23 son alcanza-
bles.
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Demostracion. Consideremos X = (P, (), R) un campo vectorial polinomial
definido sobre el cilindro hiperbélico 22 — 22 — 1 = 0 cuyo sistema diferencial

asociado es
m3—1 ms—1

i=z [ f v=q¢ i=z]] (4.16)
=1 =1

donde f; = qyx + bz + ¢; con a;, b, ¢, € R, I =1,...,mg— 1y los planos

a;x+bz+c¢; = 0 son distintos entre si. No es dificil comprobar que f; = 0 es un
ms3—1

plano invariante de X, esto es X f; = K f; donde K; = (a;z+bx) H (a;x+
j=1
e
bjz + ¢;). De modo que el sistema posee a lo mas 2m; — 2 rectas paralelas
invariantes contenidas en planos paralelos al eje ¥ o m3 — 1 rectas dobles
invariantes de X contenidas en planos paralelos al eje y, lo cual coincide con
las cotas dadas por el Teorema 4.23.
maz—1
En particular si R = H (r — ) entonces la interseccion del cilindro
I=1
hiperbolico 22 — 22 — 1 = 0 con cada uno de los planos x — [ = 0 donde
[=1,...,m3— 1 son las dos rectas invariantes de X paralelas al eje y dadas
por (z,y,z) = (l,\,£vI?> —1) para todo A € Ryl =1,...,m3 — 1. Por
lo tanto obtenemos en total como méaximo 2ms — 2 rectas invariantes de X
contenidas en los ms planos invariantes x — [ = 0.

2

Supongamos que la recta {f; = 0} N {y = 0} es tangente a la hipérbola
{22 =22 =1} Nn{y = 0} y que las rectas {f; = 0} N{y = 0} con | # j
cortan a la hipérbola en dos puntos. Entonces el sistema diferencial (4.16)
en el plano f; = 0 de R? tiene una recta invariante doble sobre el cilindro
hiperbolico 22 4 22 = 1 de R3, y 2ms — 2 rectas invariantes simples sobre el
mismo cilindro. En total tenemos 2ms; — 1 rectas invariantes sobre el cilindro
hiperbolico. Procediendo de esta manera podemos obtener un nimero de
rectas invariantes comprendido entre ms — 1 y 2mg — 2. En consecuencia las
cotas dadas por el Teorema 4.23 son alcanzables. 0

4.4.2. Hipérbolas invariantes

De acuerdo con la prueba de la Proposicién 4.21 si la interseccion del
cilindro hiperboélico 22 — 22 — 1 = 0 con un plano no paralelo al eje y no es
vacia entonces es una hipérbola.

Proposicion 4.25. Existen campos vectoriales polinomiales definidos sobre
el cilindro hiperbélico x®> — 22> — 1 = 0 que poseen infinitas hipérbolas inva-
riantes, teniendo en cuenta sus multiplicidades.

Demostracion. Sea X el campo vectorial polinomial definido sobre el cilindro
hiperbolico 22 — 22 — 1 = 0 cuyo sistema diferencial asociado estd dado por

rT=z yY=x+z Z=u1.



Sobre el niimero de cénicas invariantes de campos vectoriales
74 polinomiales definidos en una cuadrica

Un calculo sencillo verifica que los planos f = —z 4+ y — 2+ d = 0 son
invariantes por X con cofactor K = 0 para todo d € R. Como estos planos
no son paralelos al eje y intersecan al cilindro hiperbolico 22 — 22 —1 =0 en
una hipérbola (Proposicion 4.21). Por lo tanto el campo vectorial X' posee
infinitas hipérbolas invariantes. O

Teorema 4.26. Supongamos que un campo vectorial polinomial X en R3
de grado m = (mqy,ms, m3) definido sobre un cilindro hiperbdlico tiene un
numero finito de hipérbolas invariantes, teniendo en cuenta sus multiplicida-
des. Entonces el nimero mdzrimo de hipérbolas invariantes de X contenidas
en planos invaritantes, teniendo en cuenta sus multiplicidades, es a lo mds

3mg +3mg —5 81 my > Mg,
Mo + dmg — 5 $1 Mo < ma.

Demostracion. Sea W = (1,z,y, z). El polinomio extactico de X asociado
a W esta dado por la ecuacion (4.5). Como zP = zR se sigue que xP, =
2R, — P, 2P, = zR, y *P, = R + zR,. Teniendo en cuenta ademéas que
X(x) =P, X(y) =Qy X(z) = R obtenemos el polinomio extéctico

EW(X) =

1
—(z—z)(z + 2)R (322R*Q. — 332QR’R, — 22°R*Q.R. + 22°QR*R2+

26
*RYQ.. — *QR3R,, + 322QR*Q, + 2° R*Q.Q, — 37°QR’R.Q,+
P QR*Q} — 322Q°R*R, — 31°QR*Q. R, + 5z°Q*RR.R, — 42’ Q*RQy R+
3°Q° R, + 22°QR*Qy. — 20°Q°R°Ry. + 2°Q°R°Qyy — 2’ Q°RRyy+ (4.17)
T’ RYQ, + 22°R*Q, — 20°2RPR.Q, + 172 R%Q, Q. — 37 2QR*RyQ,—
P?QR*R, — 22°QR*R, — 22”2 R*Q. R, + 42°2QR*R. R, — 32°2QR*Qy R, +
5222Q*RRy R, — 202°R3Q. R, + 202°QR?R? + 20%2R* Q.. — 20 2QR*R,..+
2022QR%Quy — 20°2Q*R*Ryyy + 22 R*Qu0 — 22°QR*Ryy) -

De acuerdo con (4.17) los grados de los monomios del polinomio ey (X) son

mo 4+ bmg — 3, 2mo +4ms — 3 y 3mey + 3ms — 3. Podemos ver que si my > ms3
se cumplen las desigualdades siguientes

3m2+3m3—322m2+4m3+12m2+5m3—|—1.

Por lo tanto el grado de ey (X') es 3ma+3ms—3 si my > mg, y de una manera
similar se obtiene que el grado de ey (X) es mo + 5ms — 3 si my < mg. Asi el
nimero maximo de planos invariantes reales (contando sus multiplicidades)
que intersecan al cilindro hiperboélico es el grado del polinomio extactico , de
modo que el teorema queda demostrado. O

Proposicion 4.27. La cota que proporciona el Teorema 4.26 es alcanzable.

Demostracion. Consideremos el campo vectorial polinomial X cuyo sistema
diferencial asociado estd dado por

=22y + 1" =R+ 1™, i=xy+1)"
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El polinomio extactico (4.17) asociado a este campo vectorial esta dado
por ew (X) = 3(x—2)(z+2)(2y+1)°">. Sea f = 2y+1. Tenemos que f =0
es un plano invariante de X con cofactor K = 2(2y + 1)™~! e interseca al
cilindro en una hipérbola. Ademéas X no puede tener mas planos invariantes,
por lo tanto, teniendo en cuenta la multiplicidad de f = 0, X alcanza la cota
6m — 5, dada por el Teorema 4.26. O

4.5. Cono

Trabajaremos con la siguiente forma canénica z? + y? — 22 = 0 de un
cono. Sea X un campo vectorial polinomial en R? definido sobre este cono.
Es conocido que la interseccion de un plano y el cono es una conica que puede
ser degenerada: un punto, dos rectas que se cruzan o una recta doble, o no
degenerada: una parébola, una elipse o una hipérbola.

En las subsecciones siguientes hallamos una cota superior para el niimero
maximo de conicas degeneradas y no degeneradas invariantes de X’ en funcion
de los grados my, my y ms del campo vectorial X.

4.5.1. Cobnicas degeneradas invariantes

Sabemos que el cono es una superficie reglada, si la interseccion del cono
con un plano que pasa por su vértice no es s6lo un punto, ésta es una recta
doble o un par de rectas que se cruzan.

Si X = (P,Q, R) esta definido sobre el cono x? + y? — 22 = 0 se cumple
que zR = xP 4 y@Q y por lo tanto X = (P, Q, (xP + yQ)/z).

Proposicion 4.28. Existen campos vectoriales polinomiales X definidos so-
bre el cono que poseen infinitas conicas degeneradas invariantes, teniendo en
cuenta sus multiplicidades.

Demostracion. Sea X el campo vectorial polinomial definido sobre el cono
2% 4+ y? — 22 = 0 cuyo sistema asociado es

=z, U=rzy, 2=a°+y>

Sea f = ax+by, con a*+b* # 0. Los planos f = 0 son invariantes por X con
cofactor K = z para todo a,b € R. Ademés ellos contienen al eje z, de modo
que intersecan al cono x? + 3% — 2% = 0 en dos rectas que se cruzan en su
vértice. Por lo tanto el campo vectorial X' posee infinitas conicas degeneradas
invariantes. 0

Teorema 4.29. Supongamos que un campo vectorial polinomial X en R3
de grado m = (my, mg, m3) definido sobre un cono tiene un nimero finito
de conicas degeneradas invariantes, teniendo en cuenta sus multiplicidades.
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Entonces el nimero mdzimo de conicas degeneradas invariantes de X conte-
nidas en planos invariantes es a lo mds

3mi st myq > Mo,
3ma st my < ma.

Demostracion. Como vamos a estudiar las conicas degeneradas invariantes
so6lo nos hace falta considerar los planos que pasan por el vértice del cono
2% +y?— 2% = 0, esto es por el origen; en caso contrario obtendriamos cénicas
no degeneradas. Sea W = (z,y, z). El polinomio extactico de X asociado a
W esta dado por

T Y z
ew(X) = | X(z) X(y) X(2)].
X%(z) X(y) X*(2)

Dado que X(z) = P, X(y) = Q y X(z) = (xP + yQ)/z tenemos

ew(X) =

1

g (a:QyP3 —y2?P? — 23 P?Q + 20y P?Q + 122 P?Q — 222y PQ? + y* PQ*—
Y22 PQ? — 2y*Q3 + 22°Q® + 2®2PQP, + 2y?2PQP, — 223 PQP,+
2?y2Q°P, + y*2Q* P, — y2*Q*P, — 2°2P%Q, — 1y*2P*Q. + 22° P*Q.— (4 18)
?yzPQQ. — y*2PQQ. + yz°PQQ. + 2*2*Q°P, + y*2*Q*P, — 2*Q°P,—
a:QZQPQQy — yQZQPQQy + z4PQQy +2222PQP, + y?2°>PQP, — 2*PQP,—
2222P%Q, — 222 P2Q, + z4P2Qm) .

De (4.18) obtenemos que los grados de los monomios de ey (X') son 3my,
2my +ma, my+2my y 3my. El grado de ey (X)) es el maximo de estos valores.
Podemos ver que si my > msy se cumple que 3my > 2mq +mo > myq + 2my >
3my. Por lo tanto el grado de ey (X) es 3my si my > mg, y de una manera
similar se obtiene que el grado de ey (X') es 3my si my < ms. En consecuencia
el nimero maximo de planos invariantes que pasan por el origen e intersecan
al cono 22 + y? — 22 = 0 es 3my si my > ma, 6 3ms si my < my. De modo
que el teorema esta demostrado. O

Proposicion 4.30. La cota proporcionada por el Teorema 4.29 es alcanzable.

Demostracion. Sea X el campo vectorial polinomial definido sobre el cono
2% + y? — 22 = 0 cuyo su sistema diferencial asociado esté dado por

m . m 1

T=z" y=2", Z=(x+4y):z""

De acuerdo con el Teorema 4.29 el nimero méximo de conicas degeneradas
invariantes que posee X es a lo méas 3m. Verifiquemos que esta cota se alcanza.
El polinomio extéctico (4.18) asociado a X’ es

ew(X) = (y — )" V(@ +y — V22)(z +y +V22).
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El plano y—x = 0 es invariante por X con cofactor K = 0. Ademaés, z = 0
es un plano invariante con cofactor K = (z + y)2™ 2 y su multiplicidad es
3(m—1). Finalmente, 4y =+ /22 = 0 son planos invariantes con K = 4+/2.
Estos planos pasan por el origen, de modo que su intersecciéon con el cono
22 + 1% — 2% = 0 son conicas degeneradas. Por lo tanto obtenemos 3m conicas
degeneradas invariantes. O

4.5.2. Cobnicas no degeneradas invariantes

La interseccion del cono con un plano que no pasa por su vértice es una
cOHnica no degenerada.

Proposicion 4.31. Existen campos vectoriales polinomiales definidos sobre
un cono que poseen infinitas conicas no degeneradas invariantes, teniendo en
cuenta sus multiplicidades.

Demostracion. Sea X el campo vectorial polinomial definido sobre el cono
2% + y? — 22 = 0 con sistema diferencial asociado

De y = 0, obtenemos que los planos f = ay +b = 0 con ab # 0 son
invariantes por X'. Como estos planos no pasan por el origen intersecan al
cono en una coénica no degenerada, de modo que obtenemos infinitas conicas
no degeneradas invariantes de X'. O

Teorema 4.32. Supongamos que un campo vectorial polinomial X en R? de
grado m = (my, mo, ms3) definido sobre un cono tiene un niumero finito de
conicas no degeneradas invariantes, teniendo en cuenta sus multiplicidades.
Entonces el numero mdximo de conicas no degeneradas invariantes de X
contenidas en planos invariantes, teniendo en cuenta sus multiplicidades, es
a lo mds

omy +moe —4 st myp > my,

mi+dme —4  simy < mo.

Demostracion. Sea W = (1,x,y, z). El polinomio extactico de X asociado a
W esta dado por la ecuacion (4.5). Usando que zR = 2P + y@Q, X(x) = P,
X(y) =Qy X(z) = R desarrollamos el polinomio extéctico y obtenemos

ew(X) =
— ziﬁ (22*P'QP, — 2*2*P'QP. — 2*P'QP. + 82°yP*Q*P.—
20yz2P3Q% P, + 122%y*P?Q3 P, — 2°2°P?Q3P, — 4?22 P?Q3 P, —
2:4P2QP P, + 8y PQP. — 20y2>PQ P, + 2y*Q° P, — y?22Q° P.— (4.19)
2Q°P, — 22*2P3QP? + 22223 P3QP.? — 623y2P?Q?P.> +
5xyz> P2Q%P.? — 62%y%2PQ3P,? — 2222 PQ*P,* + 3y%2° PQ3 P> —
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2201°2Q P2 — xyz3Q* P2 — 22 P°Q. + 2?22 P°Q. + 2*P°Q.—

8%y P'QQ- + 22yz’P'QQ. — 122°y* P°Q*Q. + 2*2* P Q*Q.+

Y27 PPQ7Q. + 22" PPQ%Q. — 8y’ PPQ%Q. + 20y2° PP Q°Q.—

2y'PQ'Q. + y*2*PQ'Q. + ' PQ'Q. + 22" 2P'P.Q. — 22°2°P'P.Q.+
42y2P*QP.Q. — 6xy"P*QP.Q. + 42°2*P*Q*P.Q. — 4y°* P*Q*P.Q.—
4zy®2PQ*P.Q. + 62y2°*PQ*P.Q. — 2y*2Q*P.Q. + 2y*2*Q*P.Q.+

22%y2P*Q.% + zyz* PAQ.% + 62222 P3QQ.% — 32223 P3QQ.*+

Y2 PPQQ." + 61y’ 2PQ% Q.7 — 5ayz* P*Q°Q.% + 2y 2 PQQ.% -

20223 PQ3Q.% + ' 2PQP.. — 2223 PQP.. + 423yzP3Q?P,.—

20y23 P3Q% P, + 62%y*2P?Q3P,, — 2?23 P2Q3P,. — y?2°P2QP,.+

42y’ 2PQ*P.. — 20yz° PQ*P.. + y*2Q°P.. — y*2°Q°P.. — x*2P° Q..+

2223P°%Q., — 453y2P*QQ.. + 2xyz°* P*QQ.. — 62%y%2P3Q%Q..+

P PQ*Q.: + Y2 PPQQ. — 4y’ 2 P?Q° Qe + 20y2° P2Q7 Q.. —

v 2PQQ.. + 1*2°PQ*Q.. + 32°2P>Q*P, — 322 P*Q*P,+

922yzP*Q*P, — 3yz*P?Q3P, + 92y*2 PQ*P, — 322°PQ*P, + 3y*2Q°P,—
3yz°Q° P, — 52°22 P2Q*P, P, + 522* P?Q*P, P, — 102%yz*PQ* P, P+
6yz*PQ*P, P, — 5xy*2*Q*P, P, — x2*Q*P,P, + 32°2* P*QQ.P,—

3xz4P3QQZPy + 4x2y22P2Q2Q2Py — 4yz4P2Q2QZPy — xyzzzPQ?’QzPy—i—

322 PQ3Q. P, — 2y°2*°Q*Q. P, + 2y2*Q*Q. P, — 32°2°PQ*P,*+

32°PQ3P,* — 3xyz*Q*P,* — 32°2P*QQ, + 322°P*QQ,, — 92%y2P*Q*Q,+
3yz°P2Q*Q, — 92y*2 P?Q*Q, + 322° P?Q*Q, — 3y* 2 PQ*Q,+

3y PQ*Q, + 32322 P3QP.Q, — 322" PPQP.Q, + 42°y2* P*Q*P.Q, —
4yz*P*Q*P.Q, — vy*2’PQ*P.Q, + 322*PQ*P,Q, — 2y*2*Q*P.Q,+
2yz4Q4PzQy — x3z2P4QzQy + a:z4P4QZQy + 2x2yz2P3QQzQy+

2yz* P*QQ.Qy + Try*2* P?Q*Q.Qy — 522" P*Q*Q.Qy + 4y° 2> PQ’Q.Qy—
4yz4PQ3QzQy + 4x223P2Q2PyQy — 425P2Q2PyQy + 2xyz3PQ3PyQy—
2y223Q4PyQy + 2Z5Q4PyQy _ x2z3P3QQy2 + Z5P3QQy2 + xyngQQQQyQ—F
20°2°PQ3Q,% — 22°PQ3Q,% + 22322 P3Q* P, — 222" P3Q*P,, + 62%y2*P*Q* P, —
2yz4P2Q3Pyz + 6a:y2z2PQ4Pyz — 2xz4PQ4PyZ + 2y3z2Q5Pyz — 2yz4Q5PyZ—
2x322P4QQyz + 2xz4P4QQyZ — 6x2y22P3Q2Qyz + 2yz4P3Q2Qyz—
6xy222P2Q3Qyz + 2xz4P2Q3QyZ — 2y3z2PQ4Qyz + 2yz4PQ4Qyz + x223P2Q3Pyy—
z5P2Q3Pyy + 2xyz3PQ4Pyy + y2z3Q5Pyy _ z5Q5Pyy _ J;2z3P3Q2ny+

P P3Q%Qy, — 2xy23P2Q3ny — y223PQ4ny + z5PQ4ny + 3232P*QP, —

3223 PYQP, + 922y2P3Q? P, — 3yz3P3Q?P, + 92y*2P?Q*P, — 3223 P?Q3 P, +
3y°2PQ*P, — 3y2*PQ*P, — 423 2*P3*QP, P, + 422*P?*QP, P, — T2*y2>P*Q*P, P, +
5yz*P?Q*P, P, — 2xy*2*PQ3P, P, — 2:2*PQ*P, P, + 1°2°Q* P, P, — y2*Q*P.P,+
20°2°P1Q. P, — 202" P*Q. P, + 2°yz" P°QQ. P, — 3yz* P’QQ. P, —

42222 P2Q%Q. P, + 422* P2Q%Q. P, — 3122 PQ3*Q. P, + 3yz*PQ3Q.P,—

50228 P2Q*P, P, + 52° P2Q*P, P, — 4xy2* PQ*P, P, + y*2*Q* P, P, — 2°Q*P, P, +
32222 P3QQ, Py — 32°P2QQ, Py — 3y*2°PQ3Q, P, + 32°PQ*Q, P —
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20722 PPQP,” 4+ 22" PPQP,” — ay2* P°Q*P,” + y*2° PQ*P,* — 2°PQ P, —
3232P%Q, + 3223 P°Q, — 92%y2P'QQ. + 3yz> PQQ, — 9xy? 2 P3Q° Q.+
322°P2Q%Q, — 3y P2Q%Q, + 3yz°P?Q%Q, + 22322 P*P.Q, — 222*P*P.Q,+
2*y2? PPQP.Qq — 3yz" P’ QP.Q, — 4ay*2* P’ Q* P.Qq + 422" P*Q* P.Qu—
3y°2*PQ*P.Qu + 3y2* PQ* P.Qy + 522" P*Q. Q0 + y2* P*Q.Qu+
1029?22 P°QQ.Q, — 622" P°QQ.Q, + 5y°2* P*Q°Q.Q. — 5y2"P*Q°Q.Qu+
30°2° PP QP)Q. — 32°P*QPyQ. — 3y°2° PQ’ P, Q. + 32° PQ° P, Q. —

2?22 P*QyQ. + 2" P*Qy Q. + 42yz° PP QQy Q. + 5y°2° P?Q*QyQu—
5z5P2Q2QyQ$ +22°2° PP,Q, — 22° P PoQ, — 20y’ PPQP, Q. —
4?2 PPQ*PoQu + 42° PPQ*PoQu + 3uyz" P1Q.” + 3y°2° PPQQ." ~
3:°PPQQ.% + 20°2° PYQP,. — 202 PYQP,. + 62%yz" PPQ° P, — 292  PPQ* Prat
62y 2" P?Q° P, — 202  P2Q* Py + 2y°2* PQ* Py — 2y2* PQ* Py — 22°2° P Q.+
222" P°Qyu. — 62%yz" P1QQu: + 2y2"' P'QQu — 62y°2° P*Q*Qus + 202" P?Q* Qe —
2y° 22 P*Q° Q- + 22" P?QQuz + 20°2° P Q* Py — 2:°PQ° Py +
4zyz° P2Q* Poy + 2y°2° PQ*' Poy — 22° PQ* Py — 20°2° PQQuy + 22° P*QQuy—
4zyz" PPQ*Quy — 2y°2° P?Q*Quy + 22° P*Q°Quy + °2° P*QPoy — 2°P*QPrat
20y2° PPQ Poy + y?2° P?Q° Poy — 2°P?Q° Poy — *2° PP Qs + 2° PP Qua—
20y2° P QQu0 — y*2° P Q*Qua + 2°P°Q* Qua) -

De la ecuacion (4.19) obtenemos que los grados de los monomios del
polinomio ey (X') son 5my+mo—3, 4my+2mo—3, 3my+3me—3, 2m+4mo—3
v my + bms — 3. Podemos ver que si m; > msy se cumplen las desigualdades
siguientes

Smi+me—3 > dmi+2mo—3 > 3mi+3mae—3 > 2mi+4me—3 > mq+5my—3.

Por lo tanto el grado de ey (X) es 5my +msy —3 si my > may, y de una manera
similar se obtiene que el grado de ey (X) es my + bmg — 3 si my < mo.

Ahora para obtener la cota que nos proporciona el teorema vamos a ver
que el polinomio extéactico (4.19) se anula en el origen. Los polinomios P y
(@ se pueden escribir como polinomios en la variable z de la forma siguiente

P(z,y,2 ZPwy Q(x,y, 2 ZQ;I@/

donde P; y @); son polinomios en las variables z,y para todoi =1,...,m; y
j=1,...,mo. Entonces P y () pueden reescribirse como

P(ac,y,z) = Po(l‘,y) + zhl(ac,y,z),
Q(-T,y, Z) = QO(xay) + Zh?(x7y7 Z),

siendo h; y hy polinomios en las variables z, v, z. Puesto que zR = 2 P+yQ y
de (4.20) obtenemos zR = xPy(z,y)+xzhi(x,y, 2) +yQo(z,y) +yzha(z,y, 2).
Por lo tanto se debe cumplir que xFPy(x,y) + yQo(x,y) = 0, esto es z Py =
—y(Qo. Esta tltima ecuaciéon implica la existencia de polinomios Py v Qo tales

(4.20)
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que Po(z,y) = yPo(z,y) y Qo(z,y) = 2Qo(z,y), de modo que By = —Qq. De
esta forma, si hy(z,y) = Po(x,y) = —Qo(x,y), el sistema diferencial asociado
al campo vectorial X puede ser escrito como

T thg(x,y) + Zh’l(xay7 Z)a
y - - Ihg(l’, y) + Zhg(l’, Y, Z)a
z :xhl(xayaz) + yh?(xaya Z)

Teniendo en cuenta que X (z) = yhs+zhy, X(y) = —xhs+zho y X(2) = zhi+
yhs, la segunda fila del polinomio extéactico (4.5) es cero, por consiguiente
éste se anula en el origen. Por lo tanto la factorizacion de ey (X') en factores
lineales implica la existencia de al menos un factor sin término independiente
y en consecuencia, el plano asociado a este factor interseca el cono en una
conica degenerada, lo cual implica que X podria tener al menos una conica
degenerada invariante. Por lo tanto la cota maxima de conicas no degeneradas
contenidas en planos invariantes es al menos un grado menor que el grado
del polinomio extéactico. Asi el teorema queda demostrado. O

Proposicion 4.33. La cota que proporciona el Teorema 4.32 disminuida en
6 es alcanzable.

Demostracion. Sea X el campo vectorial polinomial definido sobre el cono
22 +y? — 22 = 0 tal que su sistema diferencial asociado esta dado por

t=(@+Dy+1D)" 2z, g=2y+1)"2 = (y+ D" x4+ +y2).

De acuerdo con el Teorema 4.32 el nimero maximo de conicas no degeneradas
invariantes que posee X es a lo méas 6m — 4. El polinomio extéctico (4.19)
para X es

ew (X) =(z + 1)2(y + 1) '2(22* + 62° + 62° + 227 + 62°yz + 122'yz + 62°y2—
2222 — 82327 — 13x%22 — 62522 + 62%y% 2% 4 623y% 2% — 3ayz® — 1622y —
1323y 2% + 20932% — 2% + 2a2* + 112224 4 823 2% — 29224 — Tay? 24+
6y2° + 10xy2® — 42° — 5225).

El plano x + 1 = 0 es invariante por X con cofactor K = z(y + 1)™ 2

y su multiplicidad es 2. También, y + 1 = 0 es un plano invariante con
K = z*(1 4+ y)™? y tiene multiplicidad 6m — 12. Ademaés, la interseccion
de estos planos con el cono produce conicas no degeneradas. Por lo tanto
contando sus multiplicidades obtenemos 6m — 10 cénicas no degeneradas
invariantes, esto es la cota proporcionada por el Teorema 4.32 menos 6. [

4.6. Hiperboloide de una hoja

Vamos a trabajar con la siguiente forma canénica % +y? — 22 = 1 de un
hiperboloide de una hoja. Sea X un campo vectorial polinomial en R? definido
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sobre él. Veremos que la intersecciéon de un plano con el hiperboloide de una
hoja, cuando ésta es una conica degenerada, esta formada por un par de rectas
que se cruzan, o un par de rectas paralelas; y cuando es no degenerada, por
una parabola, una elipse, o una hipérbola.

En las subsecciones siguientes hallamos una cota superior para el ntimero
méximo de éstas conicas degeneradas y no degeneradas invariantes de X
dependiendo de los grados my, ms y ms.

4.6.1. Rectas invariantes

Sabemos que el hiperboloide de una hoja es una superficie doblemente
reglada. Esto es por cada uno de sus puntos pasan exactamente dos rectas
que estan completamente contenidas en él (ver [3]). Ademés no existe nin-
guna otra recta que esté totalmente contenida en él, pues la tnica superficie
cuadratica que contiene tres rectas distintas que pasan a través de cada uno
de sus puntos es el plano (para més detalles ver [2, 11]).

Proposicion 4.34. Si la interseccion de un hiperboloide de una hoja con un
plano es una conica degenerada, entonces ésta puede ser un par de rectas que
se cruzan, o un par de rectas paralelas.

Demostracion. Consideremos el hiperboloide de una hoja 22 +3% — 22 =1y
un plano ax + by +cz+d =0 con a, b, c,d € R que interseca al hiperboloide
en una conica degenerada.

ar + by +d

Primero, supongamos ¢ # 0 entonces z = — . Reemplazando

c
en 22 + y? — 22 = 1 obtenemos la ecuacion de la conica interseccion
(¢ — a*)a® — 2abxy + (¢ — b*)y* — 2adr — 2bdy — ¢ — d* = 0.

Aplicando la Proposicién 4.1 obtenemos d; = c*(a?> + > — 2 —d*) =0y
dy = *(® —a? —1?). Notemos que d; = 0 por ser la conica degenerada, luego
> =a>+0—c2>0.Sid*>0,c*<a®+b*ypor tanto dy < 0, esto es, la
conica es un par de rectas que se intersecan. Si d = 0, resulta ¢ = a®+b% y de
aqui do = 0; en este caso la conica degenerada es un par de rectas paralelas.

Ahora consideremos ¢ = 0. Entonces la ecuacién del plano que interseca
—by —
al hiperboloide es ax +by +d =0. Sia # 0, z = i y reemplazando
a

en 22 + y? — 22 = 1 obtenemos la ecuacion de la conica interseccion (b? +
a®)y* — a*z* + 2bdy + d* — a* = 0. Nuevamente por la Proposicion 4.1,
di = a*(a®> + 0> —d*) = 0y dy = —a?*(a* + b*) < 0, de modo que la conica
degenerada es un par de rectas que se cruzan. Si ¢ = a = 0, tenemos el plano
by +d=0conb# 0. Entonces d; = 0> —d*> =0y dy = —1 < 0. En este
caso, la conica degenerada es un par de rectas que se intersecan. O

Como dijimos, es bien conocido que por cada punto de un hiperboloide
de una hoja pasen dos rectas. Proporcionamos una demostracion de este
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hecho y la expresion explicita de las dos rectas dado que las necesitaremos
mas adelante. Notamos que de la ecuacion del hiperboloide 2% + 4% — 2% =1
podemos también escribir z2—2% = 1—y2, o0 lo que es lo mismo (z—2z)(z+2) =
(1=y)(L+y)

Proposicion 4.35. Por cada punto p = (xo, Yo, 20) del hiperboloide de una
hoja 2 + y? — 22 = 1 pasan dos rectas.

Demostracion. Sean A\, u € R tal que p(zg — 20) = M1 — yo). Si p # 0,
de la ecuacion del hiperboloide (z — z)(z + z) = (1 — y)(1 + y), se obtiene
Mzo + 20) = p(1 + o) siempre que 1 — yg # 0. Si 1 — yo = 0, obtenemos
29— 20 =00 29+ 20 =0. Si p =0 tendriamos 1 — yy = 0 que coincide con
el caso anterior.

Ahora tomemos p, A € R tal que pu(zg — z0) = A1+ yo). Si p # 0, de
la ecuacion del hiperboloide obtenemos A(xg + z9) = (1 — yo) siempre que
14yg #0.Si 14y =0 entonces xg— 29 = 0 0 xg+ 2o = 0. Si x = 0 entonces
1 4+ yo = 0 que corresponde al caso anterior.

En resumen, si 1 —yg # 0y 1+ yo # 0, el punto p = (xg, Yo, 20) esta
contenido en las rectas u(x —2) = A(1—y) =0, u(1+y) — Az + z) = 0 con
A= (o —20)/(L=yo), y plz —2) = A1 +y) =0, p(l —y) = Az +2) =0
con A = p(xg — 20)/(1 + yo). También tenemos que p esta sobre las rectas
l—y=0,2—2=0y1—y=0,x+2 =0 cuando 1 —yg = 0; y finalmente si
14+ yo = 0, p se encuentra sobre las rectas 1 +y =0,z —2=0y 1 +y =0,
x4+ z=0. U

Observacion 4.36. De la prueba de la Proposicion 4.35 obtenemos que el
hiperboloide de una hoja x + y?> — 2> — 1 = 0 contiene las dos familias de
rectas

plr —z) — A
p(l+y)— A

(1-y) =0, ple —z) = A =0,
(x +2) =0, Yy p(l—y)—Ax+2)=0, (4.21)
(a (b)

para todo X\, p € R. Observamos que las rectas 1 —y = 0, .+ 2z = 0 y
14y =0, x—2z =0 pertenecen a la familia (4.21)(a), y las rectas 1 —y = 0,
r—z=0yl+y=0, 2+ 2z =0 pertenecen a la familia (4.21)(b), y son
obtenidas haciendo cero alguno de los parametros \ o .

Para el estudio de las rectas invariantes, de la prueba de la Proposicion
4.35 necesitamos solamente considerar la ecuacion del plano p(x —z) —A(1 —
y) =00 p(z—2)—A(1+y) = 0. La familia de planos u(x —z) —A(1—y) =0
para cada u, A € R interseca al hiperboloide de una hoja en la familia de
rectas (4.21)(a) y en la recta 1 —y = 0, z — z = 0 que pertenece a la familia
(4.21)(b). De manera similar, la interseccion del plano pu(x—z) —A(14+y) =0
y el hiperboloide de una hoja 2% + y* — 2% = 1 para cada y, A € R es un par
de rectas paralelas o intersecantes de la familia (4.21)(b) y la recta 1 +y = 0,
r—2z=0.
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Si X = (P,Q, R) es un campo vectorial definido sobre el hiperboloide de
una hoja 2% 4+ 9% — 22 — 1 = 0, se satisface que zR = 2P + y(Q, y por lo tanto

X =(P,Q,(xP +yQ)/2).

Proposicion 4.37. Existen campos vectoriales polinomiales X definidos so-
bre el hiperboloide de una hoja que poseen infinitas rectas invariantes, te-
niendo en cuenta sus multiplicidades.

Demostracion. Vamos a determinar X definido sobre el hiperboloide de una
hoja 2% + y? — 2% = 1 tal que todas las rectas de la familia (4.21)(a) sean
invariantes por X. Sea W = (x — 2,1 — y). El polinomio extactico de X
asociado a W esta dado por

xr—z 1—
W)= v x(1-y

Como nos interesa que X posea infinitas rectas invariantes necesitamos
que e (X) = 0. Entonces de (4.22) deben existir polinomios P, y (); tales
que P = (y—y?—x2+22)P y, Q = (y—1)(x—2)Q;. Por lo tanto obtenemos
que e (X) = (P — Q1) (y — 1)(z — 2)(y — y*> — vz + 2%) = 0. De modo que
podemos tomar P; = (1 = 1 y conseguimos el campo vectorial X' con

= (1-y)(z—2) P+(y—y*—z2+2")Q. (4.22)

P=y—y’—az+2% Q=@w-1(r—2), R=-24+y—y’+rz. (4.23)

Ahora verificamos que las rectas de la familia (4.21)(a) son invariantes
por X para todo pu, A € R. Sea f = p(z — z) + M(1 — y) = 0, entonces
Xf=(x—2z)(lr—2)+A1—1y)), por tanto f = 0 es un plano invariante
con cofactor K = x — z para todo pu, A € R. En consecuencia el campo
vectorial (4.23) posee infinitas rectas invariantes de ecuacion (4.21)(a). O

Teorema 4.38. Supongamos que el campo vectorial polinomial X en R? de
grado m = (my, ma, m3) definido sobre el hiperboloide de una hoja x* + y* —
22 =1 tiene un nimero finito de rectas invariantes, teniendo en cuenta sus
multiplicidades. Entonces el nimero mdximo de rectas invariantes contenidas
en planos invariantes de X de cada una de las familias de la ecuacion (4.21)

es a lo mds
my+ 1 st mqy > mo,

mo + 1 s1mq < mo,

Demostracion. Sean Wy = (x—z,1—y) y Wy = (x— 2, 1+y). Los polinomios
algebraicos extacticos de X asociados a W; y a W5 estan dados por

T —z 1—y T —z 1+y
X(x—2z) X(1-y) Xx—2) X(1+y)|

Teniendo en cuenta que zR = xP+yQ, X(r—z) = P—=Ry X(1+y) = +Q
resulta

€W1(X) - =

6W1(‘/Y) -

) €W2(X) =

% (P(—z+zy+z—y2) +Q(—y+y* +az—2%), (4.24)

ewa(X) = = (P(z+ay — 2 —y2) + Qly +y° + 22— 27)).

IS
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De estas expresiones se obtiene que los grados de los monomios de los
polinomios ey, (X) y ew, (X) son my, my+1, mg y my+1. Por lo tanto ambos
polinomios tienen el mismo grado mq + 1 si my > mo, 0 Mo + 1 si my < my.
Sabemos por la Proposicion 4.1 que el grado del polinomio extéactico ey,
proporciona una cota superior para el nimero de planos invariantes f = 0 de
X con f € W;. Como hemos mencionado antes, de la prueba de la Proposicion
4.35, la interseccion de los planos p(x — z) + A(1 — y) = 0 y el hiperboloide
de una hoja x? + y? — 22 = 1 es la familia de rectas (4.21)(a) y la recta
11—y =0, z—2 = 0. Dado que esta ultima es una recta de la familia
(4.21)(b) obtenemos que el nimero maximo de rectas invariantes de la forma
(4.21)(a) corresponde al grado del polinomio ey, (X). De manera similar se
prueba que el niimero méaximo de rectas invariantes de la forma (4.21)(b) es el
grado del polinomio ey, (X). Por lo tanto el teorema queda demostrado. O

Proposicién 4.39. La cota proporcionada por el Teorema 4.38 para las co-
nicas degeneradas invariantes de la familia (4.21)(a) es alcanzable.

Demostracion. Sea X el campo vectorial polinomial definido sobre el hiper-
boloide de una hoja 22 + y? — 22 = 1 cuyo sistema diferencial asociado es

m—1 m—1

i=z[[(mue—2)-XN(1—y), §=0, z=a][@@-2-N1-y),

i=1 i=1

con m € N. De acuerdo con el Teorema 4.38 el nimero maximo de conicas
degeneradas invariantes que posee este campo vectorial X es a lo més m + 1
para cada una de las familias de rectas de la ecuacion (4.21). Verifiquemos que
X alcanza la cota para la familia de rectas (4.21(a)). El polinomio extactico
(4.24) para X asociado a W es

m—1

ew,(X) = (L—y)(@ — 2) [ [ (maz — 2) = Ni(1 = p)).

=1

Los planos 1 + y = 0 son invariantes por X puesto que la funcién y es una
m—1
integral primera de X', x —z = 0 es invariante con cofactor K = — H (pi(z—
i=1
z) — Ni(1 —y)) y los planos p(x —2) = N(1 —y) =0coni=1,...,m —
m—1

1 son invariantes con cofactores K = p;(z — x) H (j(z — 2) — \(1 —

j=1
J#F

y)) respectivamente. Asi sumando el namero de planos invariantes de X

obtenemos m + 1 rectas invariantes de la familia de rectas (4.21(a)). O

De forma similar podemos obtener un campo vectorial polinomial que
alcanza la cota proporcionada por el Teorema 4.38 para la familia (4.21(b)).
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4.6.2. Cobnicas no degeneradas invariantes

En esta subseccion trabajamos con las conicas no degeneradas que resul-
tan de la interseccion de un plano con el hiperboloide de una hoja.

Proposicion 4.40. Si la interseccion de un hiperboloide de una hoja con un
plano es una conica no degenerada, entonces ésta es una parabola, una elipse
o una hipérbola.

Demostracion. Consideremos el hiperboloide de una hoja cuya ecuacion es
22 +y? — 22 = 1 y supongamos que ax + by + cz +d = 0 es un plano que
ar + by +d

interseca al hiperboloide de una hoja. Si ¢ # 0, entonces z =
c

Reemplazando en 22 + 32 — 22 = 1 obtenemos la ecuacion de la conica inter-
seccion

(* — a*)a® — 2abay + (¢ — b))y? — 2adx — 2bdy — * — d* = 0.

Por la Proposicion 4.1 tenemos que d; = c*(a?> + 0> — ® — d?) y dy =
c*(c® — a® — b%). Notemos que d; # 0 puesto que la conica interseccién es no
degenerada, luego a? +b* # 2 4+ d?. Ademas, si ¢? = a® 4 b?, entonces dy = 0,
y, por lo tanto, la conica es una parabola; si ¢ > a? + b%, dy > 0 y la conica
obtenida es una elipse; si ¢ < a? + b?, tenemos dy < 0, y la conica es una
hipérbola.

Ahora consideremos ¢ = 0, entonces el plano interseccion es ax + by +d =
by +d

0. Sea a # 0, luego z = . Reemplazando en 22+y?— 22 = 1 obtenemos
que la ecuacion de la conica interseccion es (a®+b%)y? —a?2? +2bdy +d*>—a® =
0. Luego di = a*(a® + b* — d?) # 0y dy = —a*(a® + b*) < 0, y por lo tanto,
siempre que d? # a? + b%, la conica es una hipérbola.

Sic = a = 0, laecuacion del plano interseccion es by—+d = 0. Considerando
b # 0 tenemos que y = —d/b. Reemplazando en 22 + y? — 22 = 1 obtenemos
Va? — 0222 +d? —1? = 0. Aqui, d; = 0*(V* —d?) # 0y dy = —b* < 0.
Por lo tanto en este caso, siempre que b?> # d? la conica interseccion es
también una hipérbola. En consecuencia hemos probado que la interseccion
del hiperboloide de una hoja y un plano, en caso que la conica obtenida sea
no degenerada, puede ser una elipse, una parabola o una hipérbola. O

Proposicion 4.41. Ezxisten campos vectoriales polinomiales X definidos so-
bre el hiperboloide de una hoja que poseen infinitas conicas no degeneradas
muartantes.

Demostracion. Sea X el campo vectorial polinomial definido sobre el hiper-
boloide de una hoja 2% + y? — 2?2 = 1 con sistema diferencial asociado

r=0, y=—2 2= —y.

Como & = 0, los planos f = z+a = 0 con a € Ry a # +1 son invariantes por
X. Estos planos intersecan al hiperboloide de una hoja z? +y? — 2> = 1 en
hipérbolas (ver Proposicion 4.40). Por lo tanto, el campo vectorial X posee
infinitas conicas no degeneradas invariantes. ]
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La prueba del siguiente teorema es esencialmente la misma que la del
Teorema 4.32 para campos definidos sobre el cono, pero en este caso no
podemos restar uno al grado del polinomio extéctico, como lo haciamos alli,
pues aunque éste se anula en el origen, cualquier plano que pase por este
punto no determina una coénica degenerada, de modo que aqui no podemos
excluir estos planos cuando establecemos la cota para conicas no degeneradas.

Teorema 4.42. Supongamos que el campo vectorial polinomial X en R3 de
grado m = (my, ma, m3) definido sobre el hiperboloide de una hoja x* + y* —
22 = 1 tiene un nimero finito de conicas invariantes. Entonces el nimero
mazximo de conicas no degeneradas invariantes de X contenidas en planos
invariantes, teniendo en cuenta sus multiplicidades, es a lo mads

dmi +me —3 st my > Mo,
mi+5dme —3  simy < ma.

Proposicion 4.43. La cota del Teorema 4.42 disminuida en uno es alcan-
zable.

Demostracion. Sea X el campo vectorial polinomial definido sobre el hiper-
boloide de una hoja 22 + y? — 22 = 1 cuyo sistema diferencial asociado es
b=z —y?) a7, g=—zy (@ =yt f= (Pt
con m € N, m > 4. De acuerdo con el Teorema 4.42 el ntimero maximo
de conicas no degeneradas invariantes que posee X es a lo mas 6m — 3.

Verifiquemos que este campo vectorial alcanza esta cota disminuida en uno.
El polinomio extactico ey (X) dado en la ecuacion (4.5) para X es

ew (X) = 62" Pyz(z—y) (z+y) (x—y—2)(z+y—2)(z—y+2)(z+y+2).

Los planos = 0 y y = 0 son invariantes por X’ con cofactor K = £a™ 4
(xr—y)(x+y)z respectivamente. También x4y = 0 son planos invariantes con
cofactor K = 2™ *(x F y)?z respectivamente. Los planos x —y + z = 0 son
invariantes con K = +a2™ *(z — y)(x + y)? respectivamente, y z +y £z = 0
son invariantes con cofactor K = 2™ *(x —y)?(z + y) respectivamente. Por
ultimo, z = 0 no es un plano invariante de X. En consecuencia obtenemos
6m — 4 planos invariantes. Dado que ninguno de estos planos tienen la forma
de las ecuaciones de (4.21) se obtiene que ellos intersecan al hiperboloide de
una hoja en coénicas no degeneradas. De lo cual la proposiciéon se sigue. [

4.7. Paraboloide hiperbdlico

En esta seccién usaremos la siguiente forma canénica z = y? — 2% de un
paraboloide hiperbolico. Sea X un campo vectorial polinomial en R? definido
sobre él. Veremos que la intersecciéon de un plano y el paraboloide hiperboélico
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es un par de rectas que se cruzan o un par de rectas paralelas, cuando la conica
es degenerada; o una parabola o una hipérbola si la cénica es no degenerada.

En las subsecciones siguientes hallamos una cota superior para el ntimero
méximo conicas degeneradas y no degeneradas invariantes de X', dependiendo
de los grados my, my y ms.

4.7.1. Rectas invariantes

Aligual que el hiperboloide de una hoja, el paraboloide hiperbodlico es una
superficie doblemente reglada, recordemos que esto significa que por cada
uno de sus puntos pasan exactamente dos rectas que estan completamente
contenidas en ¢l (ver [3, 2]).

Proposicion 4.44. Si la interseccion de un paraboloide hiperbdlico con un
plano es una conica degenerada, entonces ésta puede ser un par de rectas que
se cruzan o un par de rectas paralelas.

Demostracion. Consideremos el paraboloide hiperbolico cuya ecuacion es
r = y?> — 2% y un plano ax + by + ¢z + d = 0 que interseca al para-
boloide. Supongamos que ¢ # 0, entonces z = —(ax + by + d)/c. Reem-
plazando en = = y? — 2z? obtenemos la ecuaciéon de la conica interseccion
a’z? + 2abxy + (b* — *)y?* + (* + 2ad)x + 2bdy + d* = 0. Por la Proposi-
cion 4.4 y puesto que la coénica es degenerada, d; = c¢*(c? — b? + 4ad) = 0
y dy = —a*c®. De modo que 4ad = b* — ¢ y d < 0. Entonces la conica
interseccion es un par de rectas que se cruzan si a # 0 o un par de rectas
paralelas si a = 0.

Ahora consideremos ¢ = 0. Entonces la ecuacién del plano que interseca
al paraboloide toma la forma ax+by+d = 0. Considerando b # 0, despejando
y en la ecuacién anterior y reemplazando en x = y? — 2? obtenemos que la
ecuacién de la conica interseccion es —d? + bz — 2ad — a*x? + b?2? = 0.
Nuevamente por la Proposicion 4.4 tenemos d; = 0y do = 0. Por lo tanto la
coOnica degenerada es un par de rectas paralelas.

Sic = b= 0, obtenemos el plano ax+d = 0. Suponiendo a # 0, x = —d/a
y reemplazando en z = y? — z? obtenemos —ay® + az?> — d = 0. Luego,
di =a*d =0y dy, = —a®> <0, de lo cual d = 0, asi que el plano x = 0
interseca al paraboloide hiperbolico z = 3y — 2% en un par de rectas que se
cruzan. ]

Como dijimos antes, es conocido que por cada punto del paraboloide
hiperbolico pasan dos rectas. En la siguiente proposicion damos una prueba
de este hecho pues nos permite obtener las ecuaciones de las dos rectas, que
seran usadas en adelante.

Proposicion 4.45. Por cada punto p = (xo, Yo, 20) del paraboloide hiperbo-
lico x = y? — 2% pasan dos rectas.
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Demostracion. Si zg = 0, el punto p esta sobre las dos rectas z =0, y—2z =0
vr=0,y+2z=0.

Si g # 0 entonces existe A € R\ {0} tal que yo+ 20 = Axg. De la ecuacion
del paraboloide, yo — zo = 1/A. Por lo tanto el punto p esta sobre la recta
y+z=Ar,y—z=1/Xcon X\ = (yo + 20)/o-

Por otro lado, si zg # 0, entonces existe p € R\ {0} tal que yo— zo = pxg.
De la ecuacion del paraboloide, yg + z9p = 1/u. Por lo tanto p esta sobre la
rectay —z=px,y+2z=1/p con = (yo — 20)/xo- O

Observacion 4.46. De la demostracion de la Proposicion 4.45 se obtiene
que el paraboloide hiperbélico x = y*> — 2 contiene las dos familias de rectas

y+z=Ar y+2=0
y—z=1/\, r=0 (4.25)
(a) (b)
Ys
Yy—z=pr y—z=0
y+z=1/u, r=0 (4.26)

(a) (b)
con N # 0 y p#0.

Como vamos a estudiar las rectas invariantes, de la demostracion de la
Proposicion 4.45 s6lo nos hace falta considerar los planos de ecuaciones y +
z—AXr =00y —2z— pur = 0. La familia de planos y + 2 — Az = 0 corta
al paraboloide hiperbolico en la familia de rectas (4.25(a)) cuando A # 0y
x # 0,y en la recta (4.25(b)) cuando A = 0. Mientras que la familia de planos
y — z — pxr = 0 interseca al paraboloide hiperboélico en la familia de rectas
(4.26(a)) siempre que p # 0y x # 0, y en la recta (4.26(b)) cuando u = 0.

Sea X = (P,Q, R) un campo vectorial polinomial definido sobre el pa-
raboloide hiperbolico x — y? + 2% = 0. Se cumple que P = 2(yQ — zR), asf
X = (2(yQ - 2R), Q. R).

Proposicion 4.47. Existen campos vectoriales polinomiales X definidos so-
bre el paraboloide hiperbdlico que poseen infinitas rectas invariantes, teniendo
en cuenta sus multiplicidades.

Demostracion. Vamos a determinar X de modo que todas las rectas de la
familia (4.25(a)) sean invariantes por X'. Consideremos Wy = (x,y + z), de
modo que si f =y+ 2z — Az, A € R entonces f € W;. El polinomio extéctico
de X asociado a W es

w(®) =60, x
! Y+ z x
—2(Q + R) — 2(y + 2)(y@ — =) (4.27)

= (z — 2y* — 2y2)Q + (z + 2yz + 22*)R.
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Como nos interesa que X' posea infinitas rectas es necesario que ey, (X) = 0.
Luego, por (4.27) deben existir polinomios ()1 y R; tales que @ = (z+2yz+
222)Q1 vy R = (v —2y*> —2yz)R,. Por lo tanto ey, (X) = (Q1 + Ry)(x — 2y —
2yz)(x + 2yz + 22%). Asi, podemos tomar Q; =1y Ry = —1 y conseguimos
el campo vectorial cuyo sistema diferencial asociado es

i =2z(z — 2y* — 2yz) + 2y(z + 2yz + 227),
y =7+ 2yz + 22°, (4.28)
i =—x+ 2y + 2yz.

Ahora verifiquemos que todas las rectas (4.25(a)) son invariantes por X. Sea
f=y+2z—Axrcon A € R, entonces Xf = 2(y + 2)(y + 2 — \x), por tanto
f =0 es un plano invariante con cofactor K = 2(y + z) para todo A\ € R. En
consecuencia el campo vectorial cuyo sistema diferencial asociado es (4.28)
tiene infinitas rectas invariantes. O

Teorema 4.48. Supongamos que el campo vectorial polinomial X en R3 de
grado m = (my, ma, m3) definido sobre el paraboloide hiperbélico x = y? — 22
tiene un numero finito de rectas invariantes. Entonces el nimero mdzimo de
rectas contenidas en planos invariantes de X de cada familia (4.25) y (4.26),
es a lo mds

24+ mg st Mg > ms,

24+mg st mg < ms.

Demostracion. Sean Wy = (z,y + z) y Wa = (z,y — z), calculemos los poli-
nomios extacticos ey, (X) y ew,(X) y sus grados correspondientes. Como

x y+z

€W1(X):'X(x) X(y—i—z) y ’

el d) = \m) X(y— 7).

y sabiendo que P = 2(y(@ — zR), desarrollamos los dos determinantes an-
teriores obteniendo ey, (X) = z(Q + R) — 2(y + 2)(yQ — 2R) y ep,(X) =
2(Q — R) —2(y — 2)(yQ — 2R).

Los grados de los monomios de ey, (X) y ew,(X) son 1+ mg, 2 4+ ma,
1 + mg3, 2+ mg3. Por lo tanto el grado de ambos polinomios es 2 + my si
me > m3 0 2+ mg si my < mg; v de aqui se obtiene el niimero méaximo de
rectas invariantes descrito en el enunciado del teorema. O

Proposicion 4.49. La cota proporcionada por el Teorema 4.48 es alcanzable
por la familia de rectas (4.26).

Demostracion. Sea X el campo vectorial polinomial definido sobre el para-
boloide hiperbolico x = y* — 22 cuyo sistema diferencial asociado es

m m m

t=2y—2) [[v—2—mr), y=][—2—mx), 2=]]w—2—ma),

=1 =1 i=1
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conm € Ny u; € Rparatodot=1,...,m. De acuerdo con el Teorema 4.48

el nimero maximo de coénicas degeneradas invariantes que posee X es a lo

mas m + 2. Consideremos Wy = (x,y — z) y el polinomio extéctico asociado
m

ew,(X) = =2(y — 2)? H(y — z — ;). Los planos y — z — ;o = 0 para todo

=1
m

; € R son invariantes por X con cofactor K = —2(y—=z)u; H (y—z—p;z).
j=1
JF#i
Ademas, el plano y—z = 0 también es invariante por X puesto que X se anula
en ¢l y este plano tiene multiplicidad 2. Por lo tanto obtenemos m + 2 rectas
invariantes del campo vectorial, esto es, el nimero maximo proporcionado
por el Teorema 4.48. O

4.7.2. Cobnicas no degeneradas invariantes

En esta seccion estudiamos el niimero maximo de conicas no degeneradas
invariantes de campos vectoriales polinomiales definidos sobre el paraboloide
hiperboélico x = y? — z? que viven en planos invariantes del campo vectorial.

Proposicion 4.50. Si la interseccion de un paraboloide hiperbolico con un
plano es una conica no degenerada entonces ésta es una pardbola o una hi-
pérbola.

Demostracion. Consideremos el paraboloide hiperbolico x = 3% — 22. Si ax +

by + cz + d = 0 es un plano que interseca al paraboloide hiperboélico con

ar + by +d

¢ # 0 entonces z = — . Reemplazando en z = 3% — 2% obtenemos

c
la ecuacion de la conica interseccion a?z? + 2abry + (b* — ¢®)y* + (¢ + 2ad)z +

2bdy+d? = 0. Por la Proposicion 4.1 y puesto que la conica es no degenerada,

? — b? 1
1 + ad) 40y dy = —a’c?. Luego, ad # Z(bZ—CZ).

obtenemos d; = ¢

Ademas, si a = 0, entonces do = 0, por tanto la conica es una parabola; si
a # 0, dy <0y en este caso la conica obtenida es una hipérbola.

Ahora consideremos ¢ = 0, entonces el plano intersecciéon es ax + by +d =
ar +d
0. Sea b # 0, luego y = — i

la ecuacion de la conica interseccion —a?z? 4+ %22 + (b* — 2ad)x — d* = 0.

. Reemplazando en z = y? — 2? obtenemos

1
Realizando los céalculos para d; y do resulta que d; = _Zb4(62 —4dad) # 0y

dy = —a?b?. Por lo tanto si a = 0 la conica es una parabola y obtenemos una
hipérbola cuando a # 0 pues en este caso dy < 0.

Sic=0b=0, la ecuacién del plano interseccion es ax + d = 0. Ademas si
a # 0, entonces © = —d/a. Reemplazando en x = y? — 2% obtenemos, para
este caso, la ecuacion de la conica interseccion —d — ay? + az? = 0. Aqui
di = a?’d # 0y dy = —a® <0, de lo cual se deduce que la conica interseccién
es una hipérbola siempre que d # 0. En consecuencia hemos probado que la
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interseccion del paraboloide hiperbdlico con un plano, en caso que la conica
obtenida sea no degenerada, es una parabola o una hipérbola . O

Proposicion 4.51. Ezxisten campos vectoriales polinomiales X definidos so-
bre el paraboloide hiperbdlico que poseen infinitas conicas no degeneradas in-
variantes, teniendo en cuenta sus multiplicidades.

Demostracion. Sea X el campo vectorial polinomial definido sobre el para-
boloide hiperbolico z = 3% — 22 cuyo sistema diferencial asociado es

©=20Q, y=0@, Z=0

Como Z = 0 los planos f = z —a = 0, con a € R, son invariantes por X.
Todos estos planos intersecan al paraboloide en una parabola, por lo tanto,
X posee infinitas conicas no degeneradas invariantes. O

Teorema 4.52. Supongamos que el campo vectorial polinomial X en R3
de grado m = (mq,ma,m3) definido sobre el paraboloide hiperbolico x =
y?—22 tiene un numero finito de conicas no degeneradas invariantes, teniendo
en cuenta sus multiplicidades. Entonces el numero mdrimo de conicas no
degeneradas invariantes de X contenidas en planos invariantes, teniendo en
cuenta sus multiplicidades, es a lo mds

Mo + dmg st Mo < M3,

Mo + Mg St My > M3.
Demostracion. Sea W = (1, x,y, z). El polinomio extactico de X asociado a
W esta dado por la ecuacion (4.5). Teniendo en cuenta que P = 2(yQ — zR),
X(x)=P, X(y) =Qy X(z) = R desarrollamos ey (X’) obteniendo

EW(X) =
-2 (3QR*Q.” - 4Q°R*Q.R. — 2R*Q.R. + Q*RR.” + 2QR*R.* -

Q*R*Q.. + R°Q.. + Q°R’R.. — QR'R.. + 5Q°R*Q.Q, + R'Q.Q,—
3Q°RR.Q, — 3QR*R.Q, + 2Q°RQ,* + QR*Q,* — 3Q*RQ.R,—

3QR3Q.R, + Q'R.R, + 5Q’R*R. R, — 2Q"Q,R, — 4Q’R*Q,R,+

3Q°RR,” - 2Q°R*Q,. + 2QR"Q,. + 2Q*RR,. — 2Q*R°R,. — Q*RQy,+
Q’R’°Qyy + Q°Ryy — Q°R*Ryy — 2Q"RQ, + 4Q°R*Q, — 2R° Q.+
10yQ°R*Q.Q, — 12:QR*Q-Qq + 2yR*'Q.Q. — 6yQ RR.Q,+

82Q°R’R.Q, — 6yQR*R.Q, + 42R'R.Q, + 8yQ°RQyQ, — 102Q°R*Q, Q.+
WYQR’QyQ. — 22R*QyQr — 4yQ Ry Q. + 62Q°RR, Q. — 8YyQ°R*R, Q.+
62QR’Ry Q. + 8y°Q°RQ2 — 20y2Q*R*Q.” + 4y°QR’Q.” + 122°QR*Q,*
4yzR*Q.% + 2Q°R, — 4QR*R, + 2QR'R, — 6yQ*RQ. R+

82Q*R?Q. R, — 6yQR*Q. R, + 42R*Q. R, + 2yQ*R.R, — 42Q°RR. R, +
10yQ*R*R. R, — 82QR*R. R, — 4yQ*Q, R, + 62Q°RQ, R, — 8yQ*R*Q, R+
62QR*QyuR, — 22Q* Ry R, + 12yQ*RR, R, — 10:Q*R’Ry R, — 8y*Q* Q. R+
24y2Q*RQ. R, — 164°Q°R*Q, R, — 162°Q*R*Q, R, + 24y2QR3*Q R, —
82°R*Q. R, — 4y2Q"R,* + 12y°Q*RR,* + 42>Q*RR,> — 20y2Q*R*R,*+
82°QR’R,” — 4yQ°R* Q- + 42Q*R*Qq + 4YyQR*Qq. — 42R° Qo+
4YQ*RR,. — 42Q°R’R,. — 4yQ*R’R,. + 42QR'R,. — 4yQ*RQ.+

(4.29)
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42Q3R*Quy + 4yQ*R3Quy — 42QR*Quy + 4yQ° Ry — 42Q*RR .y~

4YQ’R*Ryy + 42Q°R° Ry — 4y Q" RQuz + 8y2Q° R*Qus + 4y Q° R Qo —

42°Q* R’ Quo — 8y2QR'Qua + 42° R°Quw + 4y°Q° Ry — 8y2Q" RRyy—

4P Q°R* Ry +42°Q° R* Ry + 8y2Q R Ry — 42°QR' Ry,
De esta expresion obtenemos que los grados de los monomios del polinomio
ew (X) son 3ms + 3ms — 2, mo + 5mz — 2, 2ma + 4dmsz — 2, dmy + 2m3 — 2
oMo +msz — 2, dmo +m3 — 1, 3mo + 3mz — 1, mo +5msz — 1, dmg +2mgz — 1,
2meo + 4msz — 1, dmy + ms, 4ms + 2mg, 3me + 3ms, 2msy + 4mg y mo + dms.
Asi,

grado(ew (X)) = max{bma+ms, 4ma+2mg, 3mo+3ms, 2ma+4ms, me+5ms}.
Podemos ver que si mo < mg, las desigualdades siguientes se cumplen

5ma + mg < 4dms + 2ms3 < 3ma + 3msg < dms + 2ms < mo + Hms.
Por lo tanto el grado de ey (X) es

Mo + 5z si Mgy < Mg,

5Mmy + msg Si mg > ms.

Estos valores nos proporcionan una cota para el nimero maximo de pla-
nos invariantes (contando sus multiplicidades) que intersecan al paraboloide
hiperbolico x = y? — 22. De modo que el teorema queda demostrado. O

Proposicion 4.53. La cota del Teorema 4.52 disminuida en cuatro es al-
canzable.

Demostracion. Sea X el campo vectorial polinomial definido sobre el para-
boloide hiperbolico z = y? — 2% cuyo sistema diferencial asociado esta dado
por

i = _4y32m—2’ y — _y2 Zm—2’ i = yd Zm—S’
con m € N, m > 3. De acuerdo con el Teorema 4.52 el ntimero maximo de
coOnicas no degeneradas invariantes que posee X es a lo mas 6m. Verifiquemos
que este campo vectorial alcanza esta cota disminuida en cuatro. El polinomio

extéctico (4.29) para X es
ew (X)) = 12y 1 (42 + 27). (4.30)

El plano y = 0 es invariante con cofactor K = —yz™ 2 y z = 0 también

es invariante con cofactor K = y32™*. En consecuencia obtenemos 6m — 4
planos reales invariantes, contando sus multiplicidades. Dado que ninguno de
estos planos tienen la forma de las ecuaciones de (4.27) obtenemos que ellos
intersecan al paraboloide hiperbdlico en cénicas no degeneradas.

Otro sistema diferencial cuyo campo vectorial asociado también alcanza
la cota 6m — 4 para el nimero maximo de cotas no degeneradas invariantes
es el siguiente

& =dyz(y—o—1)""", g=z2y—r-1)""" i=—yly—z-1)""", (4.31)
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con m € N. Su polinomio extactico (4.29) es ey (X) = 12y(y—z—1)""02(y*+
2?). Los planos y = 0, y — 2 — 1 = 0 y z = 0 son invariantes e intersecan al
paraboloide en coénicas no degeneradas. De modo que teniendo en cuenta sus
multiplicidades obtenemos 6m — 4 conicas no degeneradas invariantes. [

Dado que estamos considerando campos vectoriales polinomiales reales y
sus curvas invariantes reales también, en la prueba de la Proposicion 4.53 no
consideramos los dos planos complejos que se obtienen del factor 2+ 22 en el
polinomio extéactico (4.30). Sin embargo, los planos y4iz = 0 son invariantes,
de modo que si pensamos el campo vectorial en los complejos y tenemos en
cuenta sus dos conicas invariantes complejas obtenidas de la interseccion de
estos planos y el paraboloide obtenemos la cota 6m — 2 para el nimero de
conicas no degeneradas invariantes, la cual es méas cercana a la cota 6m que
proporciona el Teorema 4.52. Lo mismo sucede con el campo vectorial cuyo
sistema diferencial asociado es (4.31).

4.8. Paraboloide eliptico

En esta seccién trabajamos con la siguiente forma canoénica x = y? + 22
de un paraboloide eliptico.

Proposicion 4.54. La interseccion de un paraboloide eliptico con un plano
es un unico punto, una pardbola, o una elipse.

Demostracion. Consideremos el paraboloide eliptico # = y? + 22 y suponga-
mos que ax + by + cz + d = 0 es un plano que interseca al paraboloide con
ar + by +d

c
la ecuacion de la conica interseccion a?x? 4 2abzy + (b + ) y* + (2ad — )z +

2bdy + d* = 0.

Por la Proposicion 4.1, se sigue que dy = —3c*(0* + ¢ —4ad) y dy = a*c®.
Como ¢ # 0, d; = 0 solo si 4ad = b* + ¢*. En este caso, también a # 0
puesto que de lo contrario tendriamos b = ¢ = 0. Asi obtenemos dy > 0y por
tanto la conica interseccion es solo un punto. Si d; # 0, entonces la conica
interseccion es una parébola si a = 0 y una elipse si a # 0.

¢ # 0, entonces z = — . Reemplazando en = = 3% + 22 obtenemos

Ahora consideremos ¢ = 0. Entonces la ecuacién del plano que interseca
al paraboloide toma la forma ax+by+d = 0. Considerando b # 0, obtenemos
que la ecuacion de la conica interseccion es a*x? 4+ %22 4 (2ad — b*)xz + d* = 0.
Calculando los determinantes d; y ds resulta que d; = —ib‘l(b2 — dad) y
dy = a*b*. Como b # 0 tenemos que la conica es degenerada (d; = 0) si
b* = 4ad, de lo cual también se obtiene que a y d no son cero. Asi d*> > 0
y por tanto la conica interseccion es so6lo un punto. Si d; # 0, entonces la
conica interseccion es una parabola si @ = 0 y una elipse si a # 0.

Si ¢ = b = 0, obtenemos el plano ax + d = 0. Sea a # 0, entonces la
ecuacion de la conica interseccion es ay? + az? +d = 0. Aqui, d; = a*d y
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dy = a®> > 0. Como a # 0, d; = 0 siempre que d = 0, y en este caso la conica
interseccion es un tnico punto, asi que el plano z = 0 interseca al paraboloide
eliptico # = y? — 22 en s6lo un punto. Si d # 0, entonces d; # 0 y por tanto
la conica interseccion es una elipse. O

4.8.1. Cobnicas no degeneradas invariantes

Sea X un campo vectorial polinomial en R? definido sobre el paraboloide
eliptico y> + 22 —x = 0. Si X = (P,Q, R), se cumple que P = 2(yQ + zR).
Para estos campos vectoriales X', hallamos una cota superior del ntimero
méximo de parabolas y elipses invariantes que viven en planos invariantes de

X.

Proposicion 4.55. Ezxisten campos vectoriales polinomiales X definidos so-
bre el paraboloide eliptico que poseen infinitas conicas no degeneradas inva-
riantes, teniendo en cuenta sus multiplicidades.

Demostracion. Sea X el campo vectorial polinomial definido sobre el para-
boloide eliptico x = y? + 22 cuyo sistema diferencial asociado es

©=20Q, y=0@, Z=0

Como Z = 0, los planos f = z —a = 0, con a € R, son invariantes por
X. Todos los planos f = 0 intersecan al paraboloide en una parabola (ver
Proposicion 4.54). Por lo tanto, X posee infinitas conicas no degeneradas
invariantes. O

Teorema 4.56. Supongamos que el campo vectorial polinomial X en R3 de
grado m = (my, my, my) definido sobre el paraboloide eliptico x = y* + 2*
tiene un numero finito de conicas no degeneradas invariantes, teniendo en
cuenta sus multiplicidades. Entonces

(a) el nimero mdximo de pardbolas distintas contenidas en planos inva-
riantes de X es a lo mds

2mse +ms 81 Mo > Mg,
Mo + 2ms3 st My < M3,

(b) el nimero mdzimo de pardbolas y elipses contenidas en planos inva-
riantes de X, teniendo en cuenta sus multiplicidades, es a lo mds

dMmo + mg  Si Mo > Mg,
Mo + dmg st Moy < M3.

Demostracion. De la demostracion de la Proposicion 4.54 tenemos que la
interseccion del paraboloide eliptico @ = y?+22 con un plano que lo interseque
es una parabola cuando el plano es paralelo al eje x. Por tanto para estudiar el
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numero de parabolas invariantes sélo nos hace falta considerar estos planos,
que tienen la forma ay 4+ bz + ¢ = 0 con a,b,c € R. Sea W = (1,y, 2),
teniendo en cuenta que P = 2(y@ + zR) encontramos el polinomio extactico
de X asociado a W,

ew(X) = — R?°Q. + QRR. — QRQ, + Q*R, — 2yQRQ, — 2:R*Q,+

2 (4.32)
29Q?R, + 2:QRR,.

De esta expresion obtenemos que los grados de los monomios del polinomio
ew (X) son mg +2mg — 1, 2mg +mg — 1, 2mgy + mg y ma + 2mg. Asi el grado
de ew(X) es el maximo de estos valores. Por lo tanto ey (X) tiene grado
ms + 2ms si my < mg3, 0 2my 4+ ms si my > ms. En consecuencia el niimero
méaximo de planos invariantes paralelos al eje x que intersecan al cilindro
eliptico x = y? + 2% es my + 2ms si my < ms, 6 2msy + ms si my > ms. De
modo que se cumplen las cotas dadas por el teorema en la parte (a).
Sabemos que la interseccion de un plano ax+by—+cz+d = 0 con el parabo-
loide eliptico = y?+ 22 es una parabola o una elipse si la conica obtenida es
no degenerada, ahora encontramos una cota para el nimero maximo de estas
conicas invariantes. Sea W = (1, x,y, z). Calculamos el polinomio extéctico

ew(X) =

—2(3QR*Q? — 4Q°R*Q.R. + 2R*Q.R. + Q*RR? — 2QR°R? — Q*R*Q..—
R°Q.. + Q°R’R.. + QR'R.. + 5Q°R*Q.Q, — R'Q.Q, — 3Q°RR.Q,+
3QR’R.Qy +2Q°RQ; — QR’Q; — 3Q°RQ.R, + 3QR’Q.R, + Q"R.R,—
5Q°R*R.R, — 2Q*Qy Ry + 4Q*R*QyR, — 3Q°RR; — 2Q°R*Q,.—
2QR*Q,. +2Q*RR,. +2Q°R*R,. — Q*RQ,, — Q*R*Q,, + Q°R,,+
Q’R’Ry, —2Q*RQ, — 4Q°R*Q, — 2R°Q, + 10yQ°R*Q. Q.+
12:QR*Q.Q. — 2yR*Q.Q. — 6yQ°RR.Q. — 82Q*R’R.Q, + 6yQR*R.Q.+
4zR'R.Q. + 8yQ RQ, Q. + 102Q°R*Q, Q. — 4yQR’Qy Qs — 22R'QyQ,—
Q' R, Q. — 62Q°RR,Q. + SyQ’R*R, Q. + 62QR*R, Q.. + 8y*Q*RQ>+
20y2Q*R*Q?% — 4y*QR3*Q? + 122°QR*Q? — 4yzR*Q? + 2Q° R, +
4Q°R*R, + 2QR'R, — 6yQ*RQ.R, — 82Q°R*Q.R, + 6yQR>*Q.R,+
42R*Q.R, + 2yQ*R.R, + 42Q°RR.R, — 10yQ°’R*’R.R, — 82QR*R.R,—
4yQ*Qy Ry — 62Q°RQy Ry + 8YyQ*R*Qy R, + 62QR*Qy R, + 22Q* Ry R, —
12yQ°RR, R, — 102Q*R’Ry R, — 8y*Q*Q. R, — 24y2Q*RQ, R+
16y°Q*R*Q. R, — 162°Q*R*Q. R, + 24y2QR*Q. R, + 82°R*Q. R, +
4y2Q*R?2 — 120°Q3RR? + 42°Q3RR? — 20y2Q*R*R? — 82°QR>R> -
4YQ R*Quz — 42Q°R°Qyz — 4YQR'Qrz — 42R°Qq + 4yQ RR,.+
42Q°R*R,, + 4yQ’R*Ry. + 42QR* R, — 4yQ* RQyy — 42Q° R*Qryy—
4YQ*R*Quy — 42QR*Quy + 4yQ° Ruy + 42Q* RRyy + 4yQ° R* Ry +
42Q*R’ Ry — 49° Q" RQuw — 8y2Q° R* Qo — 4y°Q* R’ Quy — 42°Q° R Qi —
8Y2QR*Quy — 42° R°Quw + 49> Q° Ry + 8y2Q* RR,y + 49> QP R* Ryt
422Q°R? Ry + 8y2Q°R3R, + 42°QR*R,.,.).

(4.33)
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De esta expresion obtenemos que los grados de los monomios del polino-
mio ey (X) son 3mg + 3mg — 2, mg + 5mg — 2, 2mg + dmg — 2, 4mg + 2mg — 2
dMo +m3z — 2, dmo +m3 — 1, 3mg + 3mz — 1, mg +5mgz — 1, dmg + 2mgz — 1,
2mo + 4dmsz — 1, bmy + mg, 4ms + 2mg, 3meo + 3ms, 2ms + 4dmg y mo + Sms.
Asi,

grado(ey (X)) = max{bma+ms, 4ma+2mg, 3mae+3ms, 2mo+4ms, me+oms}.
Notemos que si my < mg tenemos las desigualdades siguientes
5ma + mg < 4dms + 2ms < 3mag + 3msg < dms + 2ms < mo + Hms.

Por lo tanto el grado de ey (X) es mas + 5mg si my < mg3, y de una
manera similar se obtiene que el grado de ey (X)) es 5mgy+mg si my > m3. En
consecuencia tenemos una cota para el nimero maximo de planos invariantes
(contando sus multiplicidades) que intersecan al paraboloide eliptico x =
y? + 2%, De aqui, el teorema se sigue. O

Proposicion 4.57. La cota dada en la afirmacion (a) del Teorema 4.56
disminuida en 1 y la cota de la afirmacion (b) del Teorema 4.56 disminuida
en 2 son alcanzables.

Demostracion. Consideremos X" el campo vectorial polinomial definido sobre
el paraboloide eliptico x = y? + 22 cuyo sistema diferencial asociado es

T=2y+ ", y=1, i=2z"

De acuerdo con el Teorema 4.56 el nimero méximo de parabolas invariantes
que X puede tener es a lo mas 2m. El polinomio extactico dado por (4.32)
es ew(X) = mz*™~1. El plano z = 0 es invariante por X’ con cofactor K =
zm~1 v su multiplicidad es 2m — 1, esto es obtenemos la cota menos uno
proporcionada por el Teorema 4.56(a).

Sea X el campo vectorial polinomial definido sobre el paraboloide con
sistema diferencial asociado

=4 - 1)z g= (- 1)y, 2= (- 1)

Segun el Teorema 4.56 el nimero maximo de conicas no degeneradas in-
variantes que posee X es a lo méas 6m. Verifiquemos que este campo vectorial
alcanza esta cota disminuida en dos. El polinomio extéactico (4.33) es

ew(X) = —12(x — 1) 27 (y — 2)2(y + 2).

El plano = = 1 es invariante con cofactor K = 4(z—1)™"3y?z. También y = 0
es un plano invariante con cofactor K = (x — 1) 22. Los planos y + 2z = 0
son invariantes con cofactor K = =4 (z — 1)™ 2y respectivamente, y el plano
z = 0 es invariante con cofactor K = (z—1)™"'¢% En consecuencia contando
sus multiplicidades, obtenemos 6m — 2 conicas no degeneradas contenidas en
estos planos invariantes. O
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4.8.2. Cobnicas degeneradas invariantes

De la Proposicion 4.66, las conicas degeneradas obtenidas de planos in-
variantes tangentes al paraboloide eliptico son puntos.

Proposicion 4.58. Existen campos vectoriales polinomiales X definidos so-
bre el paraboloide eliptico que tienen infinitas conicas degeneradas invarian-
tes, teniendo en cuenta sus multiplicidades.

Demostracion. El sistema diferencial polinomial
r=2zy, y=x 2z2=0,

deja invariante el paraboloide eliptico z = 3% 4+ 2z2. En la prueba de la Pro-
posicion 4.54 obtuvimos los planos tangentes al paraboloide, de manera que
para conseguir las conicas degeneradas invariantes contenidas en estos planos
debemos considerar W = (1,z,y, z). El polinomio extactico (4.33) es cero.
Por lo tanto, la multiplicidad del plano invariante = 0 es infinita. Ade-
més, este plano invariante es tangente en el origen al paraboloide eliptico.
En consecuencia la proposiciéon esta probada. O

Teorema 4.59. Supongamos que el campo vectorial polinomial X en R3 de
grado m = (my, ma, m3) definido sobre el paraboloide eliptico v = y*>+2? tiene
un numero finito de conicas degeneradas invariantes, teniendo en cuenta sus
multiplicidades. El nimero mdximo de conicas degeneradas contenidas en
planos invariantes de X, teniendo en cuenta sus multiplicidades, es a lo mds

dMmo +ms St My > M3,
Mo + dmg st Moy < M.

Ademas, esta cota disminuida en cinco es alcanzable.

Demostracion. Para encontrar la cota del nimero maximo de conicas dege-
neradas invariantes de X’ consideramos W = (1, z,y, z), el cual es el mismo
espacio usado en la prueba del Teorema 4.56(b) para obtener la cota de co-
nicas no degeneradas invariantes. Por lo tanto, la cota obtenida en ambos
casos es la misma.

Sea X el campo vectorial polinomial definido sobre el paraboloide eliptico

con sistema diferencial asociado
i =20""ay+2), y=a" i=a""

El niimero méximo de conicas degeneradas invariantes de X es 6m — 1. Verifi-
quemos que X alcanza esta cota menos cinco. El polinomio extactico dado por
(4.33) es ey (X) = 42970 (1 +22% + 2t + 20y? — 4a3y? +2yz — 1022y 2 — 6222).
El plano = 1 es invariante por X con cofactor K = 22™ %(xy + 2) y su
multiplicidad es 6m — 6. Por consiguiente obtenemos la cota menos cinco
para el nimero maximo de conicas degeneradas invariantes de X. O
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4.9. Elipsoide

Vamos a usar la siguiente forma canoénica 22 + y? + 22 — 1 = 0 de un
elipsoide, esto es, la esfera.

Proposicion 4.60. La interseccion de la esfera con un plano es un unico
punto, o una circunferencia.

Demostracion. Consideremos un plano az + by 4+ ¢z +d = 0 con ¢ # 0, que
interseque la esfera 2% + y? + 2?2 — 1 = 0, entonces z = —(azx + by + d)/c.
Reemplazando en z? + y? + 22 — 1 = 0 obtenemos la coénica interseccién
(a® + ®)x? + 2abxy + (0* + )y + 2adx + 2bdy — ¢ + d* = 0. Aplicando la
Proposicion 4.12 a esta expresion resulta que dy = —c*(a® + 0>+ —d?) y
dy = *(a®>+1?+c%). Como ¢ # 0, dy > 0, y por lo tanto la conica interseccion
es degenerada y es un tinico punto si d; = 0, esto es si d*> = a®> +b*> +c%; o es
no degenerada y es una circunferencia si d; # 0.

Si ¢ = 0, la ecuacion del plano es ax + by + d = 0. Suponiendo b # 0
obtenemos la ecuacion de la conica interseccion a?z?+b22%+(2ad—b?)z+d? =
0 y los determinantes d; = —b*(a? +b0* — d?) y dy = b*(a* +b*). Como b # 0,
dy > 0y entonces la conica interseccion es degenerada (d; = 0) si d? = a®+b?
y es un tnico punto, o es una circunferencia si d; # 0.

Sic=b =0, obtenemos el plano ax+d = 0. Sea a # 0, entonces x = —d/a
y reemplazando en 22 + y? + 22 — 1 = 0, tenemos a’y? + a2 + d*> — a®> = 0
y los determinantes d, = a*(d* — a?), dy = a* > 0. Como a # 0, d; = 0
si d = +a, y la coénica intersecciéon es un tnico punto. Si d # +a, entonces
dy # 0 y por consiguiente la conica interseccion es una circunferencia. ]

4.9.1. Circunferencias invariantes

Sea X un campo vectorial polinomial en R? definido sobre la esfera z? +
y? + 22 = 1. La interseccion de la esfera con un plano es una circunferencia
o un dnico punto. Hallaremos una cota superior para el nimero méximo
de éstas circunferencias invariantes de X que viven en planos invariantes.
Si X = (P,Q, R), se satisface que zR = —xP — y(@, de modo que X =

<P7 Qv_@>

Proposicion 4.61. Existen campos vectoriales polinomiales X definidos so-
bre la esfera que poseen infinitas circunferencias invariantes, teniendo en
cuenta sus multiplicidades.

Demostracion. Sea X el campo vectorial polinomial definido sobre la esfera
22 +y* + 22 = 1 cuyo sistema diferencial asociado esta dado por
r=z y=0, zZz=-—x

Como y = 0, los planos f = y + a, con a € R son invariantes por X.
Estos planos intersecan a la esfera en circunferencias, de modo que obtenemos
infinitas circunferencias invariantes del campo vectorial X. O
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Teorema 4.62. Supongamos que el campo vectorial polinomial X en R? de
grado m = (my, my, ms3) definido sobre la esfera x® +y* + 22 = 1 tiene un
numero finito de circunferencias invariantes, teniendo en cuenta sus multi-
plicidades. Entonces el nimero mdximo de circunferencias invariantes de X
contenidas en planos invariantes, teniendo en cuenta sus multiplicidades, es

a lo mads
S5mi +mo — 3 st my > Mo,

mi+ome —3  Sstmy < Mo.

Demostracion. Sea W = (1,x,y, z). El polinomio extactico de X asociado a
W esta dado por la ecuacion (4.5). Usando que zR = —(zP+yQ), X (z) = P,
X(y) =Q y X(z) = R desarrollamos el polinomio extéactico

ew(X) =

Z—lﬁ ( —22*P*QP, — 2222 P*QP, + 2*P*QP, — 823y P3Q?*P.—
22yz2P3Q*P, — 122%y*P?Q3 P, — 2°2°P2Q3P, — 4?22 P?Q3P.+
2:4P?Q3P, — 8xy3PQ*P, — 2xy2>PQ*P, — 2y*Q°P, — y°2°Q° P+
QP + 2x4zP3QP22 + 23:2,23P3QPZ2 + 6x3sz2Q2P22 + 5$y23P2Q2P22+
62°y*2PQ*P? — 2?2° PQ®P? + 3y*2° PQ*P? + 2xy3zQ4PZ2 — xyz3Q4Pz2—|—
20 PPQ., + 2222 P°Q., — 2'P5Q. + 823y P*'QQ. + 22y2*P'QQ.+
12x2y2P3Q2Q2 + J?QZQPBQQQZ + yQZZPBQQQz _ 2z4P3Q2Qz—|—

82y’ P?Q°Q. + 22yz> P’ Q°Q. + 2y PQ*Q. + y*2*PQ*Q. — 2" PQ'Q.—
2042 P*P,Q. — 22%2° P*P.Q. — 423y2zP3QP.Q. — 6xyz>P3QP.Q.+

427 2° P*Q*P.Q. — 4y°2° P’ Q*P.Q. + 42y’ 2PQ° P.Q. + 67yz° PQ*P.Q.+
2" 2Q P.Q. + 25°2° Q" P.Q. — 20°y2P*Q? + 2y  P*Q2 — 6272 P*QQ%—
32722 PPQQI + 4?2’ PPQQ7 — 61y’ 2 P*Q* Q% — 5ay2* P2Q* Q% —

242 PQ3Q? — 2y° P PQ3Q? — x*2PYQP.. — 2?23 P'QP.. — 423y2P3Q*P,.—
22yz° P3Q*P,, — 62%y*2P?Q3P,, — 2?2°P2Q3P,. — y*2* P2Q*P,.—

4y’ 2PQ*P,, — 22yz> PQ*P,. — y*2Q°P.., — y*2°Q°P.. + 2*2P°Q..+ (4.34)
2?2’ PPQ.. + 42°y2P'QQ.. + 22yz° P'QQ.. + 627y 2P Q* Q.+
x2z3P3Q2Q22 + y2z3P3Q2Q22 + 4a:y32P2Q3QZZ + Qxyz3P2Q3sz+

Yy 2PQYQ.. + y* 2 PQ*Q.. + 32°2P*Q*P, + 322° P?Q*P,+

92%y2P2Q*P, + 3yz*P*Q*P, + 92y*2 PQ* P, + 3v2* PQ* P, +

3y°2Q°P, + 3yz°Q° P, — 52°22P*Q*P, P, — 52 P?*Q*P, P,—
102°y2*PQ* P, P, — 6yz*PQ*P, P, — 5xy*2°Q*P, P, + v2*Q*P, P,+
3x322P3QQZPy + 3xz4P3QQzPy + 4x2y22P2Q2Q2Py—|—

W P2Q%Q. P, — 2y?2*PQQ. P, — 322" PQ*Q.P, — 24°22Q*Q.P,~
2y2'Q"Q. Py + 3222° PQPP? + 3:°PQP? + 3xyz*Q" P2 — 32°2P'QQ,—
3xz3P4QQy — 9x2sz3Q2Qy — 3y23P3Q2Qy — 9:cy22P2Q3Qy—
322°P2Q%Q, — 3y°2PQ*Q, — 3y*PQ*Q, + 32°2*P*QP.Q,+
3xz4P3QPZQy + 4x2y22P2Q2PzQy + 4yz4P2Q2PzQy — nyzQPQngQy—
322" PQ P.Qy — 2y°2°Q"' P.Q, — 2yz"' Q' P.Q, — 2°2*P'Q.Q,—
2z2'P*Q.Qy + 20°y2’ P’ QQ.Q, — 2yz* P*QQ.Q, + Txy’ 2 P’ Q*Q.Q,+
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522 P°Q*Q.Qy +4y°2° PQ’Q.Qy + 4y2"PQ*Q.Q, — 122’ P’ Q*P,Q, —
42°P?Q*P,Q, — 2vyz*PQ*P,Q, + 2y*2°*Q*P,Q, + 2:°Q*P,Q,+

x223P3QQ§ + z5P3QQ§ — xyz?’PQQQQz — 2y2z3PQ3Q§ - 225PQ3Q§+

20322 P3Q*P,, + 222" P*Q?P,, + 62%y2*P?Q*P,., + 2yz*P?>Q*P,.+
62y°22PQ*P,, + 222*PQ*P,. + 2y*2*Q°P,, + 2yz*Q°P,. — 2232 P*QQ,.—
202 P*QQ,. — 62%yz* P’ Q*Q,. — 2y2* P*Q*Q,. — 62y° 2" P*Q%Q.—
2xz4P2Q3QyZ — 2y322PQ4Qy2 — 2yz4PQ4QyZ — x2z3P2Q3Pyy—

25P2Q3Pyy — 2wyz3PQ4Pyy — y2z3Q5Pyy — z5Q5Pyy + x223P3Q2ny+
2PP3Q*Q,, + 22y P2Q3Qy, + y2 2P PQYQyy + 2" PQ* Q. + 32° 2P QP+
33:23P4QP$ + 9x2sz3Q2Pm + 3yz3P3Q2PgE + 9xy22P2Q3Pm—|—

3222 P2Q3 P, + 3y°2PQ*P, + 3yz>PQ*P, — 42*2*P3QP, P, — 4x2*P3QP,P,—
72%y22P?Q? P, P, — 5yz*P*Q*P,P, — 2xy?2* PQ*P, P, + 2x2*PQ*P, P, +
V222Q PP, + y2*Q P, P, + 20322 P*Q. P, + 222 PYQ. P, + 2%y2*P2QQ. P, +
3yz*P?QQ. P, — 4xy* 22 P*Q*Q. P, — 422* P*Q*Q. P, — 3y°2*PQ*Q. P, —
3yz*PQ*Q. P, + 52°2* P2Q*P, P, + 52° P*Q*P, P, + 4xy>* PQ*P, P, —
y?22Q P, P, — 2°Q Py P, — 3222 P3QQ, P, — 32°P*QQ, P: + 3y*2* PQ*Q, P+
32°PQ*Qy Py + 22°2° P3QP2 + 22°PPQP2 + xyz° P*Q*P? — y*2° PQ P2 —
2PPPQ3P? — 32%2P°Q, — 3x2°P°Q, — 92%y2P*'QQ, — 3y2*P*QQ,—

92122 P3Q%Q, — 3223 P3Q%*Q. — 3y°2P2Q3Q, — 3yz°P?Q%Q, + 22°22P*P.Q,+
202 P*P,Qq + 2°y2° PP QP.Q, + 3yz* PPQP.Q, — 42y°2* P’ Q*P.Q,—

422* P*Q*P.Q. — 3y* " PQ* P.Q, — 3yz" PQ*P.Q, + 52°y2"P*Q.Q.—
y2*P1Q. Q. + 10222’ P3QQ. Q. + 622 P3QQ. Q. + 512 P?Q*Q. Q.+

5y2' P2Q%*Q.Q. — 322 2* P3QP,Q, — 32° P2 QP, Q. + 3y* 2 PQ* P, Q.+
32°PQ*PyQu + °2° P*QyQq + 2° P*QyQr — 42yz° PPQQy Q. — 5y°2° P’ Q*Qy Q0 —
52°P2Q%Q,Q, — 22223 P PQ, — 22° PP, Q, + 27y2* PP QP Q.+

17 PPQ* PoQq + 42° P’ Q* P,Q. — 3ayz*PUQ} — 3y°2°PPQQ2 — 32°P*QQ5+
20322 PYQP,. + 202 P*QP,. + 62°yz*> P3Q*P,. + 2yz*P3Q*P,.+
62y° 22 P2Q3 P, + 222*P?Q®P,. + 2y°2°PQ*P,. + 2yz*PQ*P,.—

20° 22 PP Q. — 202 P°Q,. — 62%y2* PQQ,. — 2y2* P*QQ.. — 62y°2° P* Q% Q-
202 P?Q*Qq. — 20°2° P?Q°Qq — 292" P?Q%Qq — 2272 PPQ Py —

22° P*Q* Pyy — Avyz° P2Q* Pyy — 2y*2° PQ* Py — 22° PQ* Pyy + 207 2° P*QQyy+
2Z5P4QQW + 4xyz3P3Q2Qa:y + 2y2z3P2Q3wa + 225P2Q3Qw - x223P4QPM—
2 PYQPyy — 20y2° PPQ*Pry — y?2° PPQ° Py — 2° PP Q% Py + 2° 2 PP Qo+

2’ P°Qua + 20y2° P*QQus + y*2° PP Q*Qua + 2° P Q*Qua) -

De esta expresion obtenemos que los grados de los monomios del polino-
mio ey (X) son bmy +mg — 3, 4my + 2mg — 3, 3my + 3mg — 3, 2my + 4mg — 3
y my + bms — 3. Podemos ver que si m; > my se cumplen las desigualdades
siguientes

OMmi+me—3 > dmi+2mo—3 > 3m1+3me—3 > 2mi+4me—3 > mqi+ome—3.

Por lo tanto el grado de ey (X) es bmy + mo — 3 si m; > my, y de una
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manera similar se obtiene que el grado de ey (X) es my + 5mg — 3 si my <
msy. En consecuencia el nimero maximo de planos invariantes (contando sus
multiplicidades) que intersecan la esfera x? + y* + 22 = 1 es 5my +my — 3 si
mi > Mo, 6 My + 5my — 3 si m; < mo. De modo que se obtienen las cotas
dadas por el teorema. O

Proposicion 4.63. La cota proporcionada por el Teorema 4.62 disminuida
en cuatro es alcanzable.

Demostracion. Sea X = (P,Q,R) con P = 2™ 3y%z, Q = 2" 32’y y R =
—22%y%2™* donde m € N y m > 5, el campo vectorial polinomial definido
sobre la esfera 22 + y? + 22 = 1. De acuerdo con el Teorema 4.62 el niimero
méximo de conicas degeneradas invariantes que posee X es a lo mas 6m — 3,
teniendo en cuenta sus multiplicidades. Verifiquemos que esta cota se alcanza.
El polinomio extactico (4.34) de X es

ew(X) =62"(z —y) y' (z +y) 25" (227 + 22)(2y* + 22). (4.35)

El plano = = 0 es invariante por X con cofactor K = 3%2™3, y = 0 también
es invariante con cofactor K = 222™ % y z = 0 es invariante con cofactor
K = —222y?2™5. Los planos x £y = 0 son invariantes con cofactores K =
+ayz™"3 respectivamente. Contando estos planos con sus multiplicidades
obtenemos 6m — 7 circunferencias invariantes de X, que corresponde a la

cota proporcionada por el Teorema 4.62 disminuida en cuatro. 0

En la prueba de la Proposicién 4.63 no consideramos los cuatro planos
complejos que se obtienen de los factores 222 + 22 y 2y% + 22 en el polinomio
extactico (4.35). Sin embargo, los planos complejos v/2z+iz = 0y /2y=iz =
0 son invariantes, de modo que teniendo en cuenta las conicas complejas que
resultan de su interseccién con la esfera obtendriamos la cota 6m — 3 para el
nimero maximo de circunferencias invariantes de X que coincide con la cota
proporcionada por el Teorema 4.62.

4.9.2. Cobnicas degeneradas invariantes

De acuerdo con la Proposicion 4.60, las conicas degeneradas que aparecen
cuando tenemos planos invariantes tangentes a la esfera 22 + 42 + 22 = 1 son
puntos.

Proposicion 4.64. Ezxisten campos vectoriales polinomiales X definidos so-
bre la esfera que tienen infinitas conicas degeneradas invariantes, teniendo
en cuenta sus multiplicidades.

Demostracion. El sistema diferencial polinomial
t=zx—-1), y=0, 2Z=-z(x—-1),

deja invariante la esfera z* + y? + 2% = 1. Entonces dado que en la prueba de
la Proposicion 4.60 obtuvimos los planos tangentes a la esfera, para conseguir
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las conicas degeneradas invariantes contenidas en estos planos debemos con-
siderar W = (1, z,y, z). El polinomio extéactico (4.34) es cero. Por lo tanto,
la multiplicidad del plano invariante x = 1 es infinita. Ademaés, este plano
invariante es tangente en (1,0,0) a la esfera. En consecuencia la proposicion
esta probada. O

Teorema 4.65. Supongamos que un campo vectorial polinomial X in R? de
grado m = (my, my, m3) definido sobre la esfera x* + y* + 2° = 1 tiene un
numero finito de conicas degeneradas, teniendo en cuenta sus multiplicida-
des. Entonces el nimero mdzimo de conicas degeneradas invariantes de X
contenidas en planos invariantes, teniendo en cuenta sus multiplicidades, es
a lo mds

5m1+m2—3 simlzmg,

mi+dme —3 st my < mo.

Ademds, esta cota menos siete es alcanzable.

Demostracion. Observemos que el resultado de este teorema coincide con la
cota del Teorema 4.62, esto sucede porque en ambos casos W = (1,z,y,2) y
por lo tanto obtenemos los mismos polinomios extacticos cuyo grado produce
la cota requerida. En consecuencia la prueba sigue los mismos pasos que la
prueba del Teorema 4.62.

Sea X el campo vectorial polinomial definido sobre la esfera con sistema
diferencial asociado

d=z+ 1" g=—z@+ 1) i=—(r+ )" 2P+ x—y).

El nimero méximo de conicas degeneradas invariantes de X es 6m — 4. Veri-
fiquemos que X alcanza esta cota menos siete. El polinomio extactico (4.34)
es

ew(X) = —(z+1)"12(32% + 92 + 92° + 325 — 922y — 1823y — 9zty+
9zy? + 92%y? — 3y® + 6222 + 142222 + 132322 + 52?2 — 6y22—
Tryz? — dx?yz? — y22% + 21 + 4ozt + 2222%).
El plano z + 1 = 0 es invariante por X con cofactor K = z(z + 1)™ 2 y su

multiplicidad es 6m — 11. Por consiguiente obtenemos la cota menos siete
para el nimero maximo de conicas degeneradas invariantes de X. O

4.10. Hiperboloide de dos hojas

Trabajaremos con la siguiente forma canénica x> + y? — 22 + 1 = 0 del
hiperboloide de dos hojas.

Proposicién 4.66. La interseccion de un hiperboloide de dos hojas con un
plano es una pardbola, una elipse, una hipérbola o un unico punto.
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Demostracion. Consideremos el hiperboloide de dos hojas 22 +3?—22+1 =0
y el plano azx + by + cz + d = 0 que interseca al hiperboloide.

ar + by +d

Sic # 0, entonces z = — . Reemplazando en 22 +y?—22+1 =0

c
obtenemos la ecuacion de la conica interseccion que viene dada por
(¢ — a*)a® — 2abxy + (¢ — b*)y* — 2adr — 2bdy + ¢ — d* = 0.

Por la Proposicién 4.1, obtenemos que d; = —c*(a® + > — ® + d?) y
dy = —c?(a®>+b*—c?). La conica interseccion es degenerada si ¢ = a?+b?+d>.
En este caso, dy = c2d?® > 0, es decir la conica es solamente un punto. Si la
conica es no degenerada (¢ # a® + b* + d?), entonces ésta es una hipérbola
si 2 < a® + b%; es una parabola si ¢ = a® +b? y es una elipse si ¢ > a® + b?.

Ahora consideremos ¢ = 0, entonces la ecuacion del plano que interseca al
hiperboloide toma la forma ax + by + d = 0. Considerando b # 0, obtenemos
la ecuacion de la conica interseccion (a? + b%)z? — b22% + 2adx + b* + d* = 0.
Realizando los célculos de los determinantes d; y dy resulta d; = —b*(a® +
V> + d?) y dy = —b*(a® + 7).

Observemos que d; # 0y ds < 0, de modo que la cénica no degenerada
es una hipérbola. Si b = 0, la ecuacion del plano queda ax + d = 0. Entonces
considerando a # 0 tenemos d; = —a*(a® + d*) y dy = —a* < 0. De modo
que la conica en este caso es no degenerada y es una hipérbola. O

4.10.1. Conicas no degeneradas invariantes

Sea X un campo vectorial polinomial en R? definido sobre el hiperboloide
de dos hojas 2% + 32 — 22 + 1 = 0. Hallaremos una cota superior para el
numero de las conicas no degeneradas que viven en planos invariantes de X'. Si

P
X = (P,Q, R), se cumple que zR = zP+yQ, y luego X = (P, Q, M)
z
Proposicion 4.67. Existen campos vectoriales polinomiales X definidos so-

bre el hiperboloide de dos hojas que poseen infinitas conicas no degeneradas
mvariantes, teniendo en cuenta sus multiplicidades.

Demostracion. Sea X el campo vectorial polinomial definido sobre el hiper-
boloide de dos hojas 22 + > — 2% + 1 = 0 cuyo sistema diferencial asociado
esta dado por

r=z y=0 zZz=u

Como y = 0 los planos f =y +a, con a € R y a # 0 son invariantes por X.
Los planos f = 0 intersecan al hiperboloide de dos hojas 2?+y?—2%+1 = 0 en
hipérbolas. Por lo tanto, el campo X posee infinitas conicas no degeneradas
invariantes. ]

El teorema siguiente proporciona una cota para el nimero maximo de
conicas no degeneradas invariantes de campos definidos sobre el hiperboloide
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de dos hojas 2% + 3% — 22 + 1 = 0. Dada la similitud que tiene esta tltima
ecuacion con la ecuacion del hiperboloide de una hoja, obtenemos el mismo
resultado para el caso de campos definidos sobre el hiperboloide de una hoja
(Teorema 4.42) y la demostracion es esencialmente la misma, por esto no la
escribiremos.

Teorema 4.68. Supongamos que el campo vectorial polinomial X en R3 de
grado m = (my,my, mg3) definido sobre un hiperboloide de dos hojas tiene
un numero finito de conicas no degeneradas invariantes, teniendo en cuenta
sus multiplicidades. Entonces el niumero mdzimo de conicas no degeneradas
invariantes de X contenidas en planos invariantes, teniendo en cuenta sus
multiplicidades, es a lo mds

5m1+m2—3 S my ng,
mi+dme —3 st m; < ma.

Proposicion 4.69. La cota proporcionada por el Teorema 4.68 disminuida
en uno es alcanzable.

Demostracion. Es similar a la demostracion de la Proposicion 4.53. 0

4.10.2. Conicas degeneradas invariantes

De acuerdo con la Proposicion 4.66 obtenemos conicas degeneradas inva-
riantes cuando tenemos planos invariantes tangentes al hiperboloide de dos
hojas, y en este caso son puntos.

Proposicion 4.70. Existen campos vectoriales polinomiales X definidos so-
bre el hiperboloide de dos hojas x* + y*> — 22 + 1 = 0 que tienen infinitas
conicas degeneradas, teniendo en cuenta sus multiplicidades.

Demostracion. Consideremos
=0, y==z2(z2-1), Z=y(z-1),

el sistema diferencial polinomial asociado al campo vectorial X que deja
invariante al hiperboloide de dos hojas 22 + y? — 22 +1 = 0. Entonces el
polinomio extactico asociado ey (X) con W = (1,z,y,z2) es cero. Por lo
tanto la multiplicidad del plano invariante z = 1 es infinita. Ademas, este
plano invariante es tangente al hiperboloide en el punto (0,0, 1). Por lo tanto
la proposicion queda demostrada. O

Teorema 4.71. Supongamos que un campo vectorial polinomial X en R?
de grado m = (my, my, m3) definido sobre el hiperboloide de dos hojas x> +
y? — 22 +1 = 0 tiene un nimero finito de conicas degeneradas invariantes,
teniendo en cuenta sus multiplicidades. Entonces el nimero mdximo de coni-
cas degeneradas invariantes de X contenidas en planos invariantes, teniendo
en cuenta sus multiplicidades, es a lo mads

dmi +mo —3 st my > Mo,
mi+ome —3  stmy < Mo.
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Ademas, esta cota menos ocho es alcanzable.

Demostracion. Notamos que la cota de los Teoremas 4.68 y 4.71 para el
caso de conicas no degeneradas y conicas degeneradas respectivamente es la
misma. Esto sucede porque en ambos casos W = (1,z,vy, z), y por lo tanto
obtenemos los mismos polinomios extacticos cuyo grado proporciona la cota
buscada.

Sea X' el campo vectorial polinomial definido sobre la esfera con sistema
diferencial asociado

t=zE+D)"7 g=zz+ )" 2=+ )" (@ +y +y2).

El ntimero maximo de conicas degeneradas invariantes de X' es 6m — 4. Veri-
fiquemos que X alcanza esta cota menos ocho. El polinomio extéctico ey (X))
con W= (1,z,y,z2) es

EW ()( ) =

(z + 1)0m=12(22% + 823y + 122292 + 8wy + 2y* + 623yz + 1822y 2+
18z 2 + 6ytz — 220222 — dayz? — 29222 + 622y2%22% + 1229322 + 6y*22+
2223 — dwyzd — by + 2wy + 2yt 2d — 42t 4 22224 + Aoyt — 2922t —
825 + 3xy2® + 2y%2° — 820 + 220 — 427 — 28).

El plano z+1 = 0 es invariante por X con cofactor K = (z+1)"3(z+y+yz)
y su multiplicidad es 6m — 12. Por consiguiente, obtenemos la cota menos
ocho del nimero méximo de coénicas degeneradas de X. O
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Capitulo 5

Integrales primeras Liouvillianas
para sistemas cuadraticos con una
silla integrable

Sea R[z,y] el anillo de todos los polinomios en las variables z e y y
coeficientes en R. Un sistema diferencial polinomial cuadratico o simplemente
un sistema cuadrdtico es un sistema diferencial polinomial en R? de la forma

donde P, @ € R[z,y] y el maximo de los grados de Py @ es 2.

Los sistemas cuadréaticos han sido ampliamente estudiados en los tltimos
cien anos y se han publicado alrededor de mil articulos sobre ellos [13, 16, 17].
Aunque estos sistemas son considerados como una de las familias més faciles
entre los sistemas diferenciales su estudio no es trivial, asi por ejemplo toda-
via permanece abierto el problema de clasificar todos los campos vectoriales
integrables de dimension 2. Para méas informacion sobre campos vectoriales
diferenciables integrables en dimension 2, ver por ejemplo [4].

La clasificacion de los centros para sistemas cuadraticos tiene una larga
historia que comenzé con los trabajos de Dulac [6], Kapteyn [10, 11|, Bautin
2], ete. Schlomiuk, Guckenheimer y Rand [15] describieron una breve historia
del problema del centro en general que incluye una lista de 30 articulos sobre
el tema y la historia turbulenta del centro para el caso cuadratico (ver paginas
3,4y 13).

Los focos débiles y los centros cuadraticos se clasifican usando las cons-
tantes de Lyapunov Vi, V5 y V3. Dulac [6] fue el primero en detectar que
los focos débiles y los centros cuadraticos pueden pasar a sillas débiles e in-
tegrables a través de un cambio complejo de variables, ver detalles en [9].
Recientemente este tipo de sillas han sido estudiadas por varios autores Cai
Sulin [3], Joyal y Rousseau [9], y Artés, Llibre y Vulpe [1]. Estos tltimos
autores caracterizaron los retratos de fase de todos los sistemas cuadraticos
con una silla integrable, pero no encontraron sus integrales primeras. En este
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capitulo proporcionamos expresiones explicitas para las integrales primeras
de cada familia de estos sistemas cuadraticos.

Este capitulo estd organizado de la siguiente forma. En la seccién 5.1
presentamos el concepto de silla integrable, clasificamos los sistemas cuadra-
ticos con una silla integrable e introducimos la nociéon de integral primera
Liouvilliana. En la seccién 5.2 obtenemos los factores integrantes inversos
polinomiales para los sistemas cuadréticos con una silla integrable. Final-
mente proporcionamos las integrales primeras Liouvillianas de los sistemas
cuadraticos con una silla integrable.

Este capitulo ha dado lugar al articulo:

Y. BorLANoOS, J. LLIBRE Y C. VALLS, Liouvillian first integrals for qua-

dratic systems with an integrable saddle, el cual fue enviado a publicar en
diciembre de 2012.

5.1. Sillas integrables

Una silla débil es una silla hiperboélica tal que la traza de su parte lineal
es cero. Mas concretamente, de [1, 3, 6, 9] si un sistema cuadratico posee una
silla débil via una transformacion afin este sistema puede ser escrito como

& =x4ar® + bry + cy’, = —y— ka® — lay — my?,

con una silla débil en el origen. Ademaés, decimos que el origen es una silla
integrable si

Li=Im—ab=0,
Ly =kb(2m — b)(m + 2b) — cl(2a — I)(a +21) = 0,
L3 = (ck — Ib)[acl(2a — 1) — bkm(2m — b)] = 0.
Teniendo en cuenta estas condiciones, los sistemas cuadraticos con una silla

integrable pueden ser reducidos a las siguientes cinco familias de sistemas
cuadraticos [1],

i =z — 2cka® + 2y + cy?, U =—1y— ka? — ckzy + 2, (5.2)
& =z +mz® + 2y + cy?, §=—y—cx’ —xy —my’, (5.3)
i =z + Ima® + xy + cy’, g =—y—cl’z® — lry — my?, (5.4)
& =z + ax® + cy?, y=—y— ka® — my?, (5.5)
& =z + ar® + 2may + cy?, = —y — ka® — 2axy — my>. (5.6)

Haciendo un cambio lineal de coordenadas y un rescalado de la variable
independente, cualquier sistema diferencial polinomial que tenga una silla
débil en el origen puede ser escrito como
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donde p y ¢ son polinomios reales sin términos constantes ni términos lineales.
Haciendo el cambio de variables

r=(w+w)/2, y=(w—w)i/2, (5.8)

y de la variable independiente 7" = it el sistema diferencial (5.7) se convierte
en el sistema diferencial complejo

W=+ Pw,w), W=—-w+Qw, ), (5.9)

donde Py @ son polinomios complejos. Entonces las cantidades foco V; del
sistema (5.9) coinciden con las cantidades silla L; del sistema (5.7). Debido a
esta dualidad entre cantidades foco y cantidades silla tenemos que una silla
integrable tiene una integral primera analitica definida en una vecindad de
ella. Esta es la razon para llamar a esta silla una silla integrable. El cambio
complejo (5.8) es introducido justamente para mostrar la dualidad de focos
débiles y sillas débiles. Debemos mencionar que el sistema complejo (5.9)
tiene una integral primera analitica compleja local en una vecindad del origen,
para mas detalles ver [12, 7] o la seccién 12 del libro [8]; y volviendo atrés a
través de los cambios de variables conseguimos una integral primera analitica
compleja local en una vecindad de la silla integrable real. En consecuencia
las partes real e imaginaria de esta integral primera analitica compleja son
integrales primeras analiticas locales de la silla integrable.

Es conocido que todos los sistemas cuadraticos con una silla integrable
poseen una integral primera Liouvilliana, ver por ejemplo [1]. Una integral
primera Liouvilliana es una integral primera que se puede escribir por medio
de cuadraturas de funciones elementales, para mas detalles ver [14]. Noso-
tros encontraremos las integrales primeras Liouvillianas de cada una de las

familias (5.2)—(5.6).

5.2. Factores integrantes inversos polinomiales

Sea W un subconjunto abierto de R? simplemente conexo. Una funcion
de clase C! no—cero V : W — R es un factor integrante inverso del sistema
(5.1) sobre W si ésta es una solucion de la ecuacion diferencial parcial lineal

ov oV
P— — =div(P,Q)V, 5.10

donde div(P,Q) = OP/0x + 0Q/Jy es la divergencia del campo vectorial
X = (P, Q) asociado al sistema (5.1).

Teorema 5.1. Los sistemas cuadrdticos (5.2)—-(5.6) poseen un factor inte-
grante inverso polinomial V =V (z,y).

(a) Para el sistema (5.2) V = V11 Vig con
Vip =ka? — 2ckzy + Aky? + 2ckx + 2y — 1,
Vie =(1 — k) (ka® — 3cka®y + 3kay® — S ky® + 3cka®+
3(1 — ®k)xy — 3cy?®) + 6e(ckx +y) — 2c.
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(b) Para el sistema (5.3) V =V Vae con

Var =(c —m)(x +y) — 1,
Vaa =(2¢ = 1)(c+m — 1)(cz® — (¢ — m — Day + cy®)+
2c((c+m—1)(z+y) +1).

(¢) Para el sistema (5.4) V = V3V con

Var =1 = (cd —m)(lz + y),
Vay =2¢ — (2l — 1)((cl — 1)* — m*)xy + 2¢(cl +m — 1)
(Iz +y) + c(2cl — 1)(cl +m — 1)(1%2* + 3?).

(d) Para el sistema (5.5)
V =(ck — am)(kz® + 3zy + ax’y + may® + cy®)—
(a® + km)x* — (ac + m*)y* — 2azx — 2my — 1.

(e) Para el sistema (5.6) V = 1. Por lo tanto el sistema (5.6) es Hamilto-
nLano.

Demostracion. Para cada una de las afirmaciones del teorema, la prueba es
obtenida buscando una solucién polinomial de la ecuacion diferencial lineal
parcial (5.10).

Para el sistema cuadratico (5.2) la ecuacion (5.10) es

5% oV
— 9cky> 2 ) — k2 22) — —
(z — 2ckx —Hsy—i—cy)ax—i-( y — ka® — ckxy + y)ay

(5(y — ckx))V =0, (5.11)

Buscamos una solucion polinomial V' de grado 5 que sea solucion de (5.11).
Tenemos que
- 2 2 er 2 3
V= 5Ak2(c2k — 1) (kx* — 2ckzy + c*ky® + 2ckr + 2y — 1)[(1 — k) (k2 —

Aky? — 3(ckx?y — Akry? — cka® — (1 — A2k)xy + cy?) + 2¢(3ckx + 3y — 1)],

con S constante, es un factor integrante inverso polinomial del sistema (5.2).
Por las propiedades de los factores integrantes podemos quitar la constante
multiplicativa en la expresiéon anterior y el polinomio restante también es
un factor integrante inverso del sistema. Haciendo V = Vi;Vj5 con Vi =
kx? — 2ckzy + ky? + 2ckx + 2y — 1y Vig = (1 — 2k)(ka® — 3ckz’y +
3c?kxy? — Aky3 + 3ckx® + 3(1 — 2k)xy — 3cy?) + 6¢(ckz +y) — 2¢ obtenemos
el factor integrante inverso polinomial del sistema (5.2). Por lo tanto esto
prueba la afirmacion (a) del teorema.

De forma anéloga al caso anterior obtenemos los factores integrantes in-
versos polinomiales de los sistemas cuadraticos (5.3)—(5.5). Para el sistema
cuadratico (5.6) tenemos div(P, Q) = 0 y por lo tanto el sistema es Hamilto-
niano y su factor integrante inverso es 1. ]
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5.3. Integrales primeras Liouvillianas

Recordamos que un sistema diferencial polinomial (5.1) con un factor
integrante inverso V' = V(x,y) : W — R posee una integral primera dada

por
i) = [ ﬁﬁjjzidwg(x), (5.12)
oOH

Q

donde g se escoge de modo que — = ——.

En 1992 Singer [14] probdé que un sistema diferencial polinomial tiene
una integral primera Liouvilliana si y s6lo si éste tiene un factor integrante
inverso de la forma

exp (/ Uﬂx,y)das—l—/%(m,y)dy) : (5.13)

donde U; y U, son funciones racionales que verifican 0U,; /0y = 0U,/0z. En
1999 Christopher [5] mejoro los resultados de Singer mostrando que el factor
integrante inverso (5.13) puede ser escrito en la forma

exp(g/h) H £ (5.14)

donde g, h y f; son polinomios y \; € C.

Como todos los factores integrantes inversos de los sistemas (5.2)—(5.6)
son polinomiales (Teorema 5.1) son de la forma (5.14). En consecuencia por
los resultados de Singer y Christopher hemos obtenido una nueva demostra-
cion de que todas las integrales primeras de los sistemas cuadréticos con una
silla integrable son Liouvillianas.

Teorema 5.2. Las siguientes afirmaciones se cumplen.

(a) Una integral primera del sistema (5.2) es

Vi
V—122 st 1+ C2k' 7é 0,
4ex + 622 + (1 — 4y + 6y?)

si 1+c%k=0.
Vi

(b) Una integral primera del sistema (5.3) es
Vatm=lyem  sim#c, 1 —c, 3c—1, ¢ #1/2,
(2c—1)(z+y) —log |Vaa| si m=c#1/2,

(2¢ — 1)(c(2¢ — 1) (2? + y?) + (=4 + 6¢ — 2)ay + 2c(x + y))+
2clog |Voy| sim=1—c#1/2,
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1

W(Q(Zc —1)(2c+ (1 —2¢)%x)y + ¢(3 + 4(2¢ — 1)z)) + 2clog | Vay|
91

sim=3c—1%#1/2,

1
T (4Vae — 8 + (2m — 1)2(2? + (2m + 1)ay + y?) — 8Vay log [2Vas])
22

si c=1/2, m#1/2,
ademds si m = ¢ = 1/2, el sistema (5.3) coincide con el sistema (5.6) con
a=k=1/2.
(¢) Una integral primera del sistema (5.4) es
Viy

m-+cl—1
Vi1

sim=#£cl, 1 —cl, 3cl — 1, 2cl # 1,

1
o (4c(2V3y — 8¢) + (2m — 1)*(2? + 2¢(2m + 1)xy + 4c*y?)—
32

16cVaalog |2Vse|)  si 2¢l # 1, m # 1/2,
(2cl — 1)(lx +y) — log |Vaa| st m =cl, 2cl # 1,

(2c — 1)((—=2 + 2cl(3 — 2¢l))zy + 2¢(lx + y) + c(2cl — 1)(1P2* + y2))+
2clog|Vs|  si m=1—cl, 2cl # 1,

1
vz [—16c¢%1*2? + 22(lx — 1) 4+ 822z (3le — 1 + ¢(—121%2* + 8lz — 1))] +
31

2
v—(x +4cPx + ¢(2 — 4lx))) + 2clog |Vay| st m = 3cl — 1, 2cl # 1,
31

ademds st m = 1/2, el sistema (5.4) coincide con el sistema (5.6) con a =

1/(4c) y k =1/(8¢%).

(d) Una integral primera del sistema (5.5) es

23: (x + ax® + cr?)log ly — 1y
i—1 f(r:)

donde f(r) = 3c(am — ck)r?* 4+ 2(ac+m? — ckmz + am?*z)r + a(am — ck)x? +
3(am — ck)x +2m y ri, ro y 3 son las tres raices del siguiente polinomio en
la variable r

(=2 + acm)r?® 4+ (ac + m?* — ckma + am®z)r* + (2m — 3ckx + 3amaz—
ackz? + a®>ma?)r + (2ax + a*z? + kma® — ck®a® + akma® + 1),

(e) Una integral primera del sistema Hamiltoniano (5.6) es

kx® + 3ax*y + 3may? + cy® + 3xy.
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Demostracion. Como el sistema (5.2) tiene un factor integrante inverso po-
linomial V' dado por el Teorema 5.1(a), de acuerdo a la ecuacion (5.12) su
integral primera asociada a V' es

x — 2ckz? + xy + cy?
H(z,y) —/ dy + g(x),

V(z,y)
H —y — ka® — ck 2y
talque%—zz— i VC Tyt 2y .Deaqui g(z) =0y
1 2 27, 2
H:m(310g|—1+kx + 2y + c*ky® + x(2ck — 2cky)|

—2log|(1 — k) (kx® — 3cka®y + 3ckxy® — *ky® + 3cka®+
3(1 — *k)zy — 3cy®) + 6¢(ckz +y) — 2¢]),

siempre que 1+ ¢k # 0. Ignorando la constante que aparece en H podemos
escribir la integral primera en la forma

3
Vi

3log |Vi1] — 2log|Via| = log 7
12

Y

donde V37 y Vi3 son las funciones definidas en el Teorema 5.1(a). Finalmente,
aplicando la funcion exponencial a la expresion anterior obtenemos la integral
primera racional del sistema cuadratico (5.2) y por tanto hemos probado la
afirmacion (a) si 1+ c?k # 0.

Si 1+ c%k =0, el sistema cuadratico (5.2) toma la forma

. 222 9 . 1 5 1 2
x:x+7+xy+cy, y:—y—l—ga: —|—Ea:y+2y.

Nuevamente por el Teorema 5.1(a), Vi; = —(c+x — cy)?/c? y Via = —2(c+
T — cy)3 /c?. Calculamos la integral primera asociada a V' = V};V}, mediante
la ecuacion (5.12) y obtenemos

(dex + 627 + (1 — 4y + 6y%))  dex + 62° + (1 — 4y + 6y°)
24(c+x — cy)* B 242V ’

quitando la constante en el denominador completamos la prueba de la afir-
macion (a) del teorema.

Para el sistema (5.3), usamos el factor integrante inverso polinomial dado
por el Teorema 5.1(b) y calculamos la integral primera asociada a este factor
integrante inverso consiguiendo

1
(2c—=1)(c—=m)(Bec—m —1)(c+m —1)

1|+ (e —m)log|(2¢c — 1)(c+m — 1)(cax® — (c — m — 1)xy + cy*)+
2¢((c+m—1)(z+y)+1)])

((c+m—1)log|(c—m)(x +y)—
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siempre que m # ¢,1 —¢,3¢c — 1 y ¢ # 1/2. Eliminamos la constante que
aparece en el denominador y escribimos esta expresion como

(c+m—1)log |[Var| + (¢ — m) log [Vaa| = log [V5i™ V55 ™|,

donde V51 y Vi son las funciones definidas en el Teorema 5.1(b). De aqui
obtenemos la integral primera de la afirmacion (b) del teorema para todo
m#c,1—c,3c—1yc#1/2.

Sim = ¢, del Teorema 5.1(b) tenemos que Vy; = —1, Vay = (2c—1)*(ca®+
zy + cy?) + 2¢((2¢ — 1)(z +y) + 1) y la integral primera es

(2¢c —1)(x 4+ y) — log |Vas|
(2¢—1)3 ’

para todo ¢ # 1/2. Aunque podemos ignorar la constante que aparece en el
denominador, es facil verificar que la expresion asi obtenida es una funcion
constante en ¢ = 1/2. Por lo tanto esta funciéon es una integral primera
siempre que m = ¢ # 1/2 como se declara en la afirmacion (b) del teorema.

Ahora, si m = 1 — ¢ tenemos Vo1 = (2c — 1)(x +y) — 1, Vo = 2c y la
integral primera del sistema es

(20 = Dlele = (a7 4 57) + (=4 + 6 - Dyt

2¢(x +y)) + 2clog [Van ).

Observamos que esta funcion no esta definida en ¢ = 0, 1/2, sin embargo
eliminando la constante multiplicativa la integral primera resultante esté
definida y no es constante en ¢ = 0, pero es una constante compleja si ¢ =
1/2. Por lo tanto esta tltima funcion es una integral primera del sistema si
m =1—c # 1/2, asi obtenemos la afirmacion (b) para este caso.

Considerando ahora m = 3¢ — 1, obtenemos Va1 = (1 — 2¢)(z +y) — 1,
Vs = 2¢(1+ (2¢ — 1)(x +y))?, y la integral primera es

1 c(3+4(2c — 1)z) + 2(2¢ — 1)(2¢ + (2¢ — 1)%z)
4e(2¢ —1)3 V&

J + 2010g ‘V21|

con ¢ # 0,1/2. También aqui observamos que la funcion obtenida eliminando
la constante multiplicativa en la expresion anterior esta definida y no es cons-
tante en ¢ = 0, mientras que en ¢ = 1/2 es una constante, por consiguiente
tenemos una integral primera del sistema siempre que m = 3c — 1 # 1/2, asi
probamos este caso de la afirmacion (b) del teorema.

Si ¢ = 1/2, entonces Voo = (m — 1/2)(z +y) + 1 = =V y la integral
primera es

(4Voe + (2m — 1)%(2? + (2m + 1)ay + y?) — 8Vay log [2Vas| — 8)
(277’2, — 1)3‘/22

para todo m # 1/2. Eliminando la constante que aparece en el denominador,
la funcion resultante es constante si m = 1/2. Por lo tanto ésta es una integral
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primera siempre que ¢ = 1/2 y m # 1/2 y asi la afirmacion (b) del teorema
queda demostrada para este caso.

Sim =c=1/2, el sistema es
&=a+a?/24ay+y7)2, §=—a?)2—y—ay—y*/2

con factor integrante inverso V' = 1, por lo tanto el sistema (5.3) en este caso
es Hamiltoniano y pertenece a la familia (5.6) con a = ¢ =m =k = 1/2.
Esto completa la prueba de la afirmacion (b) del teorema.

Para el sistema cuadratico (5.4) la integral primera asociada a su factor
integrante inverso polinomial dado por el Teorema 5.1(c) es

1
(2¢l = 1)(cl —m)(3cl —m —1)(cl +m — 1)
(2l — 1)((cl — 1)2 = m?)zy + 2c(cl +m — 1)(lx + y) + (2l — 1)
(cl +m —1)(P2* + y?)| — (el +m — 1) 1log |1 — (cl — m)(lz + y)])

((m — cl)log |2¢c—

para todo 2¢cl # 1y m # cl,1—cl,3cl—1, la cual se puede escribir, omitiendo
el factor constante, como

(m — cl)log |Vi5 =" = (cl +m — 1) log | V5T,

m—cl
32
m~+cl—1
Vs

o equivalentemente, siendo V31 y V3 las funciones definidas en el

Teorema 5.1(c).

Si 2cl = 1, entonces Vi3 = (4de + (2m — 1)(x + 2¢y))/(4c), Vg = (m —
1/2)x + ¢(24 (2m — 1)y) y la integral primera del sistema es

1
2¢(2m — 1)3V3y
4¢(2V39 — 8¢) — 16¢V3, log |2V3s]

[(2m — 1)%(2? + 2¢(1 + 2m)zy + 4c*y?)+

siempre que ¢ # 0y m # 1/2. Sin embargo, la funciéon obtenida eliminando el
factor constante en el denominador esta definida y no es constante en ¢ =0
pero toma un valor constante en m = 1/2. Asi obtenemos la integral primera
de la afirmacion (¢) del teorema para el caso 2cl =1y m # 1/2.

Ahora consideramos ¢l = m. En este caso V31 = 1, V33 = 2¢ + (2¢l —
1)(2cy + z(2¢l + (2l — 1)y) + ¢(2¢l — 1)(I?2* + y?)) y la integral primera es

———((2cl — 1)(lz +y) — log | V-

con 2¢l # 1. Aqui también comprobamos que la funciéon obtenida eliminando
la constante en la expresion anterior es constante si 2¢l = 1, por consiguiente
esta integral primera esté definida siempre que ¢l = m 'y 2¢l # 1 como aparece
en la afirmacion (c) del teorema en este caso.
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Sim =1-—cl, tenemos V33 = 1 — (2cl — 1)(lz + y), V32 = 2¢ y la integral
primera es

46(#1_1)3[(20[ — 1)((=2 = 2cl(—=3 + 2¢l))zy + 2¢(lx + y)+

c(2cl — 1)(P2* 4+ y?)) + 2clog |V ]

para todo ¢ # 0y 2cl # 1. De esta funcion anterior obtenemos la integral
primera de la afirmacion (c) del teorema en el caso m =1 — ¢l y 2¢l # 1. Si
¢ = 0 la integral primera esta definida y no es una constante.

Sim = 3cl —1, entonces V33 = 1 — (1 —2cl)(lx +y), V3o = 2¢(l(x — 2clx —
2cy) +y — 1)? y la integral primera es

1
de(2cl — 1)3
2c(c(3 + 41(2cl — 1)x) + 2(2cl — 1)(2c + (1 — 2cl)*z)y)

2clog | V-
‘/32 -+ C0g| 31|

siempre que ¢ # 0 y 2cl # 1. La integral primera obtenida excluyendo el
factor constante esta definida y no es constante en ¢ = 0 pero es constante si
2cl # 1, por lo tanto hemos conseguido la integral primera de la afirmacién
(c) del teorema en el caso m =3¢l — 1y 2¢l # 1.

Finalmente, si m = 1/2 y 2cl = 1, el sistema (5.4) queda

2 2 2

s 2 .
ATyt g=-y- 55—

T €T e

que es un sistema Hamiltoniano y coincide con el sistema (5.6) para a =
1/(4c) y k = 1/(8¢*). En consecuencia hemos probado la afirmacion (c) del
teorema.

Para el sistema (5.5), obtenemos una integral primera asociada con el
factor integrante inverso V' del Teorema 5.1(d), mediante la ecuacion (5.12)

dada por
/ x + ax® + cy?
— 4,
v
y de aqui resulta la integral primera de la afirmacion (d) del teorema.

Por el Teorema 5.1(e) sabemos que el sistema cuadratico (5.6) es Hamil-
toniano, y por lo tanto su factor integrante inverso es 1. Por lo tanto de la
ecuacion 5.12 una integral primera para este sistema es

3

k
/(am2 + 2may +cy? +x)dy + %,

que corresponde a la proporcionada en la afirmacion (e) del teorema. O
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Capitulo 6

Retratos de fase de los sistemas
cuadraticos Lotka—Volterra

con un invariante Darboux en el
disco de Poincaré

Los sistemas cuadraticos Lotka—Volterra y su generalizacion a dimension
n comenzaron a estudiarse en [13, 18|. Mas tarde estos sistemas diferenciales
fueron estudiados por Kolmogorov [10], y después algunos autores les llama-
ron sistemas Kolmogorov. Existen muchos fenémenos naturales que pueden
ser modelados por estos sistemas diferenciales tales como el tiempo de evo-
lucion de especies en conflicto en biologia [9, 15|, las reacciones quimicas, la
fisica del plasma [11], la hidrodindmica [2], la dindmica [3], la economia etc.

Especificamente en este capitulo estudiamos los sistemas cuadraticos Lotka—
Volterra que tienen un invariante Darboux y caracterizamos todos sus retra-
tos de fase globales en el disco de Poincaré para cada uno de ellos. Conocer
una integral primera de un sistema diferencial en el plano tiene un interés
especial porque permite calcular las expresiones explicitas de las trayectorias
del sistema. Sin embargo, cuando no podemos calcular una integral prime-
ra es util determinar si el sistema tiene un invariante Darboux (para mas
detalles ver la seccion 6.1).

Este capitulo ha dado lugar al articulo:

Y. BoLANOS, J. LLIBRE Y C. VALLS, Phase portraits of quadratic Lotka—
Volterra systems with a Darboux invariant in the Poincaré disc, el cual ha
sido enviado a publicar en marzo de 2013.

El capitulo se organiza como sigue. Comenzamos proporcionando algunos
conceptos basicos sobre los sistemas cuadraticos Lotka—Volterra que poseen
un invariante Darboux (seccion 6.1). En la seccion 6.2 obtenemos la carac-
terizacion de dichos sistemas cuadréticos (ver Teorema 6.3). Las dos seccio-
nes siguientes contienen las nociones sobre la compactificacion de Poincaré
(seccion 6.3), las separatrices y las regiones candnicas (seccion 6.4) que ne-



Retratos de fase de los sistemas cuadraticos Lotka—Volterra
122 con un invariante Darboux en el disco de Poincaré

cesitaremos mas adelante. En la seccion 6.5 presentamos los resultados que
usaremos de la clasificacion de los sistemas diferenciales polinomiales homo-
géneos cuadraticos desarrollada por Date en [5]. Finalmente, en las secciones
6.6 y 6.7 caracterizamos los retratos de fase globales de los sistemas Lotka-
Volterra con un invariante Darboux en el disco de Poincaré (Teoremas 6.7 y
6.8).

6.1. Sistemas Lotka—Volterra con un invariante
Darboux

Sea Rz, y] (resp. Clz,y]) el anillo de los polinomios en las variables z
e y con coeficientes en R (resp. C). Consideremos un sistema de ecuaciones
diferenciales polinomiales o simplemente un sistema diferencial polinomial en
R? definido por

donde P,@ € Rlz,y] y el punto denota la derivada respecto a la variable
independiente ¢ usualmente llamada el tiempo. Decimos que el maximo de los
grados de los polinomios Py @ es el grado del sistema (6.1). Usualmente un
sistema diferencial polinomial cuadrdtico de grado 2 es llamado simplemente
un sistema cuadrdtico.

El campo vectorial cuadrdtico X asociado al sistema cuadratico (6.1) esta
dado por

0 0
X = P(x, y)a—x + Q(z, y)@ (6.2)

Sea f € Clz,y] \ {0}. La curva algebraica f(z,y) = 0 es una curva
algebraica invariante del sistema polinomial (6.1) si para algin polinomio
K € Clz,y] tenemos

of

Xf=Pso+Q

of
a_y—Kf.

El polinomio K se llama el cofactor de la curva algebraica invariante f = 0.

Sea g,h € Clz,y] y supongamos que g y h son primos relativos en el
anillo C[z,y] o que h = 1. Entonces la funcion exp(g/h) se llama un factor
exponencial del sistema (6.1) si para algin polinomio K € C[z,y| de grado a
lo méas m — 1 tenemos que

¥ (on (1)) = ke ()

Una funcion real localmente no constante H de clase C' definida sobre un
conjunto abierto U es una integral primera del campo vectorial polinomial
X si H(x(t),y(t)) es constante para todo valor de ¢ para el cual la solucion
(z(t),y(t)) de X esta definida sobre U. Observemos que H es una integral
primera de X si y solo si Y H = 0 sobre U.
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Una funcién no constante I = I(z,y,t) es un invariante de X si

ar_dn dl
at  dee ay? T dr

Esto es, I es un invariante de X si ésta es una integral primera que depende
del tiempo t. Ademés, decimos que I es un invariante Darbouz si es un
invariante que puede ser escrito como

I = lAl . ..f;pF{“ .. .F:q exp(st),

donde f1 =0,..., f, = 0 son curvas algebraicas invariantes de X, F},..., [}
son factores exponenciales de X', A\,..., Ay, pu1,..., 1y € Cy s € R\{0}.

Un sistema cuadrdtico Lotka—Volterra tiene la forma
t=x(ax+by+c), y=y(Ar+ By+C), (6.3)

donde a, b, c, A, B, C son constantes. Nosotros estamos interesados en estu-
diar los sistemas cuadréaticos (6.3) que poseen un invariante Darboux.

Sea ¢,(t) la solucion del sistema (6.1) que pasa a través del punto p € R?
definido sobre su intervalo maximal (o, w,) tal que ¢,(0) = p. Si w, = 0o
definamos el conjunto

w(p) = {q € R? : existe {t,} con t, — o0 y é(t,) — ¢ cuando n — oo}
De la misma forma si o, = —0o definamos el conjunto
a(p) = {q € R? : existe {t,} con t,, = —oc0 y ¢(t,) — ¢ cuando n — oco}.

Los conjuntos w(p) y a(p) son llamados el conjunto w—limite (o simplemente
w-limite) y el conjunto a—limite (o a—limite) de p, respectivamente.

En términos generales, con una integral primera podemos describir com-
pletamente el retrato de fase de un sistema diferencial plano, mientras que un
invariante Darboux proporciona informaciéon sobre su comportamiento asin-
totico, esto es sobre los conjuntos a— y w-limite de todas sus trayectorias.
Més concretamente tenemos el siguiente resultado.

Lema 6.1. Sea I(x,y,z) = f(z,y)e’ un invariante Darboux del sistema
(6.1). Sean p € R? y ¢,(t) la solucion del sistema (6.1) en el disco de Poin-
caré. Entonces

(a) w(p) C{f(x,y) =0}, y
(0) a(p) € {f(z,y) =0}

donde la adherencia se toma dentro del disco de Poincaré.
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Demostracion. Probaremos la afirmacion (a), la prueba de la afirmacion (b)
es similar. Supongamos s > 0y sea ¢,(t) = (x,(t), y,(t)). Puesto que I(x,y,t)
es un invariante I(x,(t),y,(t),t) = a € R para todo t € (a,,w,) v, asi

@ = Jim 1z, (1), yp(0).1) = Jim Flay (). 9y (0)e”"

Como lim; o €* = 00, tenemos que limy_,o f(2,(t),y,(t),t) = 0. Por lo
tanto, por continuidad y por la definicién de conjuntos w— y a—limite tenemos
que w(p) C {f(z,y) = 0}. =

6.2. Caracterizacion de los sistemas Lotka—
Volterra con un invariante Darboux

Con el fin de probar el Teorema 6.3 primero recordemos un resultado de
la Teoria de Darboux que necesitaremos, para una prueba ver el Teorema 8.7
de [6].

Proposicion 6.2. Supongamos que un sistema polinomial (6.1) de grado m
posee p curvas algebraicas invariantes irreducibles f; = 0 con cofactores K;
para i = 1,...,p y q factores exponenciales F; = exp(g;/h;j) con cofactores
[ para 3 =1,...,q. Si existen A;, jt; € C no todos cero tales que

p q
i=1 Jj=1

para algin s € R\{0}, entonces la funcion (multi-valuada)
MR M exp(st) (6.5)
es un wnvariante Darboux de X .

Teorema 6.3. Los sistemas cuadrdticos Lotka—Volterra (6.3) que tienen un
invariante Darboux son

t=z(lar+by+c), y=Cy con C#0, (6.6)

[ l
a'c:x(—Al—Qx—Bl—zy—l—c), y=y(Az+By+C) con 11 #0. (6.7)
1 1

—Cll—clg)t I

Sus invariantes Darboux son e~y y e xhy’2 | respectivamente, don-

de ly y ly son constantes.

Demostracion. Es facil verificar que las rectas x = 0 y y = 0 son curvas
algebraicas invariantes de los sistemas cuadraticos Lotka—Volterra (6.3) con
cofactores K1 = ax + by + ¢y Ky = Ax + By + C, respectivamente. Por lo
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tanto, resolviendo la ecuacion (6.4) con K; y Kj obtenemos dos soluciones
que son

S = —Clg, A= 0, B = O, ll = O, (68)

S = —Cll - Clg, a = _AZQ/ZI, b= —Blg/ll, ll 7& 0. (69)

De (6.8) llegamos a la familia de sistemas cuadraticos Lotka—Volterra (6.6)
que tienen el invariante Darboux e~“!y cuando C' # 0. Similarmente de (6.9)
obtenemos la familia (6.7) con el invariante Darboux e~ (¢h+C2)tzliyl2 cyando
—cly — C'ly # 0, como afirma el teorema. O

A lo largo del capitulo no consideraremos los sistemas diferenciales (6.6)
y (6.7) que se convierten en sistemas diferenciales lineales, asi solamente
consideramos los sistemas diferenciales cuadraticos (6.6) y (6.7).

6.3. La compactificacién de Poincaré

Sea X' un campo vectorial plano de grado n. El campo vectorial compacti-
ficado de Poincaré p(X') correspondiente a X es un campo vectorial analitico
inducido sobre S? como sigue (ver por ejemplo [8], el Capitulo 5 de [6]). Sea
S* ={y = (y1,y2,y3) € R®: y? +y3 +y3 = 1} (la esfera de Poincaré) y T,S*
el espacio tangente a S? en el punto y. Consideremos la proyeccién central
[ T001)S* — S% Esta funcion define dos copias de X', una en el hemisferio
norte y la otra en el hemisferio sur. Denotemos por X’ el campo vectorial
Df o X definido sobre S? excepto sobre su ecuador S! = {y € §* : y3 = 0}.
Claramente S! esté identificado como el infinito de R?. Con el fin de exten-
der X’ a un campo vectorial sobre S? (incluyendo S!) X tiene que satisfacer
algunas condiciones adecuadas. En el caso que X sea un campo vectorial
plano de grado n, p(X) es la tinica extension analitica de y5 'A” a S. Sobre
S*\S' existen dos copias simétricas de X, y conociendo el comportamiento
de p(X) alrededor de S', conocemos el comportamiento de X en el infinito.
La proyeccion del hemisferio norte cerrado de S? sobre y3 = 0 mediante la
transformacion (y1,ys2,y3) — (y1,y2) se llama el disco de Poincaré, y se
denota por D?. La compactificacién de Poincaré tiene la propiedad que S* es
invariante por el flujo de p(X).

Decimos que dos campos vectoriales polinomiales X e ) sobre R? son to-
poldgicamente equivalentes si existe un homeomorfismo sobre S? preservando
el infinito S' que lleva 6rbitas del flujo inducido por p(X) en 6rbitas del flujo
inducido por p()), preservando o revirtiendo simultaneamente el sentido de
todas las orbitas.

Como S? es una variedad diferenciable, para calcular la expresion para
p(X), podemos considerar las seis cartas locales U; = {y € S? : yy; > 0}, y V; =
{y € $? : y; < 0} donde i = 1,2,3; y los difeomorfismos F; : U; — R?* y G; :
V; — R? para i = 1,2, 3 son los inversos de las proyecciones centrales de los
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planos tangentes en los puntos (1,0,0),(—1,0,0),(0,1,0), (0,—1,0), (0,0, 1)
y (0,0, —1), respectivamente. Denotemos por (u, v) el valor de F;(y) o Gi(y)
para cualquier i = 1,2,3 (por lo tanto (u, v) representa diferentes cosas

segtn la carta local que se considere). La expresion para p(X) en la carta
local (Uy, Fy) es

1 1 1
=" {—uP (—, g) +Q (—,E)} , v=—0""p <—, E) :
v’ v’ v’

La expresion para p(X) en la carta local (Us, F3) es

y para (Us, F3) es
= Pu,v), ©=0Q(u,v).

La expresion para p(X) en las cartas (V;, G;) es la misma que para U; mul-
tiplicado por (—1)""! para ¢ = 1, 2, 3. En cualquier carta, v = 0 sobre los
puntos de S'. Asi obtenemos un campo vectorial polinomial en cada carta
local.

6.4. Separatrices y regiones canobnicas

Sea p(X) la compactificacion en el disco de Poincaré D del sistema dife-
rencial polinomial (6.1) definido en R?, y sea ® su flujo analitico. Siguiendo
a Markus [14] y Neumann [16] denotemos por (U, ®) el flujo de un sistema
diferencial sobre un conjunto invariante U C D por el flujo ®. El flujo (U, @)
se denomina paralelo si es topologicamente equivalente a uno de los siguientes
flujos:

(i) El flujo definido en R? por los sistemas diferenciales & = 1, y = 0,
llamado flujo banda.

(i) El flujo definido en R* \ {0} por el sistema diferencial en coordenadas
polares » = 0, 0 = 1, llamado flujo anular.

(iii) El flujo definido en R?\ {0} por el sistema diferencial en coordenadas
polares 7 = r, 6 = 0, llamado flujo espiral o radial.

Es conocido que las separatrices del campo vectorial p(X) en el disco de
Poincaré D son:

(I) todas las 6rbitas de p(X) que estan en la frontera de S' del disco de
Poincaré (es decir, en el infinito de R?),

(IT) todos los puntos singulares finitos de p(X),

(III) todos los ciclos limites de p(X), y
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(IV) todas las separatrices de los sectores hiperbélicos de los puntos singu-
lares finitos e infinitos de p(X).

Sea S la union de las separatrices del flujo (D, ®) definido por p(X') en el disco
de Poincaré D. Es facil verificar que S es un conjunto cerrado invariante. Si
N es una componente conexa de D\ S, entonces N es también un conjunto
invariante bajo el flujo ® de p(X), y el flujo (N, ®|y) es llamado una region
candnica del flujo (D, ®).

Proposicion 6.4. Si el nimero de separatrices del flujo (D, ®) es finito,
entonces cada region candnica del flujo (D, @) es paralela.

Para una prueba de esta proposicion ver [16] o [12].

La configuracion de separatrices S, de un flujo (D, ®) es la union de todas
las separatrices S del flujo junto con una o6rbita perteneciente a cada region
canénica. La configuracion de separatrices S. del flujo (D, ®) se denomina
topolégicamente equivalente a la configuraciéon de separatrices S del flujo
(D, ®*) si existe una orientacion que preserve el homeomorfismo de I en D

que transforma orbitas de S. en orbitas de S, y o6rbitas de S en orbitas de
S*.

Teorema 6.5 (Markus-Neumann—Peixoto). Sea (D, ®) y (D, ®*) dos flujos
del compactificado de Poincaré con un numero finito de separatrices de dos
campos vectoriales polinomiales (6.2). Entonces ellos son topoldgicamente
equivalentes si y solo si sus configuraciones de separatrices son topoldogica-
mente equivalentes.

Para una prueba de este resultado ver [14, 16, 17].

Del teorema anterior tenemos que para clasificar los retratos de fase en
el disco de Poincaré de un sistema diferencial polinomial plano que tiene
un namero finito de separatrices finitas e infinitas, es suficiente describir sus
configuraciones de separatrices.

Finalmente, Bautin [1] mostr6 que los sistemas Lotka—Volterra no pueden
tener ciclos limites, por consiguiente solamente buscaremos los otros tipos de
separatrices.

6.5. Sobre la clasificaciéon de sistemas diferen-
ciales cuadraticos homogéneos reales bi—
dimensionales

Date [5] realizo la clasificacion de los retratos de fase de los sistemas dife-

renciales cuadraticos homogéneos reales. A continuacion presentamos algunos
de los resultados obtenidos en [5| que nosotros usaremos.
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Un sistema diferencial cuadratico homogéneo real bi-dimensional se define
por
i = Pha® +2PYry + Pypy®, = Pha® + 2Py + Py’

Primero descompongamos P/(‘fu en la “parte tensor”@iu y la “parte vector’py
como )
3 (0P + 0pa),

donde 65 es la funcion delta Kronecker y k, A, p = 1,2. Ademés Qf, = @},
Yy Q%\I + Q?\2 =0.

Teorema 6.6. Un sistema diferencial cuadrdtico homogéneo real bi—dimen-
sional es afin—equivalente a una y solamente una de las diez formas canonicas
dadas en la Tabla 6.1. Los pardmetros p1 y pa en la forma candnica de tipo 16
son seis—valuados; esto es dos sistemas con (p1, p2) y (P}, Py) respectivamente
son afin—equivalentes si y solamente si los vectores (pr,p2) y (), Ph) estan
conectados a través de una rotacion por 2w /3 y/o una inversion del signo
de p1.

p)\:P)}l—i_P)?% Q];y:Pfu_

Tipo ‘ Forma Canoénica

) = —2xy+ 2x(pr1r + pay)/3
tipo I& ) . I

P y= —2* + 3>+ 2y(prx + pay) /3,
tipo 16 = —2xy+ 2z(pr1x + P2y)/3,

y= 2* +y* + 2y(p1x + Pay)/3,
= (2p1/3 — 1)z + xy,

= 201+ 3)ay/3 + o,

T = (2]31/3 - 1)1‘2,

= 2(pi + 3ay/3.

tipo III(1) =y, U=+

tipo 111(2) T =—ay, y=a°—1y°,

tipo ITI(3) T =2% §=a°+ay,

tipo 11(1)

tipo 11(2)

tipo 1II(4) r=0, y=a?
tipo IV(1) | &=y, 9=y’
tipo IV(2) | #=0, §=0.

Tabla 6.1: Formas canonicas de sistemas cuadraticos homogéneos.

Algunos invariantes fundamentales de un sistema dife-
rencial cuadratico bi-dimensional

Los siguientes invariantes y covariantes conocidos en la teoria invariante
clasica |7] son ttiles para nuestro estudio.
T
Hesiano h'™ = = E e Qr A donde € es el 2-vector contrava-

vo?

N7V7p70':1
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riante unidad de peso 1 con €'? = —¢?! = —1, ¢!l = ¢

2
Discriminante D = —2 E emewh““h)‘”.

Hv)‘7M7V:1
2

2
Invariantes H = Z R pupr v F = Z e““ep’\Qg/\pupppg.
K,A=1 KA, p,0=1

2
Covariante Ty, = Z (2euer "™ + QY \pu/3 + Dipa/9).

Hyr=1
Dado cualquier sistema diferencial cuadrético usando estos invariantes y co-
variantes podemos determinar a cual de los 10 tipos dados en el Teorema 6.6
pertenece. Mas concretamente,

D < 0 ................................................... tlpo I@
_D > 0 ................................................... tlpo I@
(
H A e t1 11(1
[hn)\] 7& 0 7é 0 %pO ( )
— 0 ........................... tlpo 11(2)
F > 0 ............... tlpo III(l)
F < O ............... tlpo III(Z)
D=0 [@Q5.] #0 .
o oy [Tl #0 - tipoTI(3)
N B T\ =0 tipo I11(4)
. [pA] 7é 0 ............ tlpo IV(l)
[Q)\u] =0 o .
\ \ [pA] — () e e tlpo IV(2)

Entre un namero infinito de invariantes de Py, que pueden obtenerse
mediante combinaciones de estos invariantes fundamentales, la siguiente su-
cesion de invariantes es particularmente tutil

Kp=F+9-2)"3H -27(-8)" 3D, m=1,2,...,
para mas detalles ver [4]. Esta sucesion de invariantes juega un papel cru-
cial en la clasificacion de los sistemas diferenciales polinomiales homogéneos
cuadraticos bi-dimensionales como mostraremos ahora.
La Tabla 6.2 proporciona una clasificacion de los sistemas diferenciales
polinomiales homogéneos cuadréaticos que nosotros trataremos segin el tipo
de sistema al que pertenecen.

En la Figura 6.1 se muestran los retratos de fase correspondientes a los
diferentes tipos de estos sistemas diferenciales que aparecen en la Tabla 6.2.

6.6. Retratos de fase globales del sistema Lotka—
Volterra (6.6) con un invariante Darboux

Teorema 6.7. El retrato de fase de cualquier sistema cuadrdtico Lotka—
Volterra (6.6) es topoldgicamente equivalente a una de las 7 configuraciones
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Tipo ‘ Signo de Ky y K3 ‘ Clasificacion
Ky >0 Tipo 16 (1)
Ky, <0 K3>0 Tipo I& (2)
Tipo I& K3 <0 Tipo 1& (3)
K;3>0 Tipo 1& (4)
Ky =0 K3 <0 Tipo 1& (5)
K;=0 Tipo 1& (6)
K2>OOK2:K3:O TlpOI@(l)
Tipo I& Ky <0 Tipo I& (2)
Ky=00K3#0 Tipo 1& (3)
Ky >0 Tipo II(1-1)
Tipo II(1) Ky <0 Tipo 1I(1-2)
Ky =0 Tipo II(1-3)

Tabla 6.2: Clasificacion de sistemas diferenciales cuadraticos homogéneos.

de las Figuras 6.2-6.5.

Demostracion. Consideremos la familia de sistemas cuadraticos Lotka—Volterra
(6.6) y calculemos sus singularidades finitas. Si ac # 0, existen dos puntos
singulares (0,0) y (—c¢/a,0). En los casos a = 0y c# 0,0a # 0y ¢ =0,
solamente tenemos el punto singular (0,0); y sia = 0y ¢ = 0 existen infinitos
puntos singulares de la forma (x,0) con x € R. Recordemos que C' # 0, lo
que garantiza la existencia de un invariante Darboux.

Como queremos clasificar los retratos de fase en el disco de Poincaré
del sistema (6.6), introducimos un reescalado de las variables y del tiempo
para reducir el nimero de sus parametros tanto como sea posible, y de aqui
los retratos de fase obtenidos para el nuevo sistema seran topologicamente
equivalentes a los correspondientes retratos de fase del sistema (6.6). Sea

r=aX, y=pY y t=~T (6.10)
donde «, 3, y v son parametros.

Caso 1: a = ¢ = 0. En este caso el sistema (6.6) se convierte en
i =bry, vy=~Cy, (6.11)

cuyas singularidades (x,0) no son puntos aislados. De (6.10) y (6.11) obte-
nemos que
dX

bafXY =i=aX=a—-, y CBY =y=pY =5
~dT

ay
ydT"

De modo que el sistema (6.11) escrito en las nuevas variables X e Y es

X' =vbBXY, Y'=~CY, (6.12)
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T1po[@\(l)\ Tipo I6(2) Tipo 1&(3)
Tipo I6(4) Tipo I&(5) Tipo I6(6)
<> d@ @
Tipo I (1) Tipo Ib(2) Tipo Id(3)
]po II(1-1) Tipo 11&(1-2) TIPOE 1-3)

Figura 6.1: Retratos de fase para campos vectoriales cuadraticos homogéneos.

donde ’ denota la derivada con respecto a la variable 7. Tomando vC' =1y
vbf = 1 obtenemos que v = 1/C'y, ademas 5 = C'/b cuando b # 0.

Si b =0, el sistema (6.12) es X' =0, Y’ =Y. Como éste es un sistema
diferencial lineal no lo consideramos.

Sea b # 0, entonces el sistema (6.12) es
X' =XY, YV =Y. (6.13)

Por consiguiente el sistema (6.13) posee infinitas singularidades finitas, los
puntos (X, 0). Resolviendo este sistema cuadratico obtenemos las soluciones
=In|X|+k con k € Ry X # 0. La expresion para p(X) en la carta local
Uy es v/ = —u? + uv, v/ = —uwv la cual posee una tnica singularidad sobre
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Figura 6.2: Retrato de fase del sistema (6.11) cuando b # 0. Posee infinitas sepa-
ratrices.

Uy, el origen.

Sobre Us la expresion para p(X) es u' = u — uv, v = —v?. Por lo tanto
el origen es un punto singular sobre U,. Dado que DX(0,0) = 8 8

b # 0, el origen es una singularidad semi-hiperbolica. Por el Teorema 2.19
de [6], éste es un silla-nodo con separatriz estable tangente en (0,0) al eje v
positivo. Las dos separatrices inestables son tangentes al eje u en (0,0). Por
consiguiente reuniendo toda la informacién anterior obtenemos el retrato de
fase del sistema cuadratico (6.11) sobre el disco de Poincaré cuando b # 0, el
cual es topologicamente equivalente al mostrado en la Figura 6.2.

En las figuras usaremos la siguiente notacion. Los puntos singulares son
denotados por puntos, las separatrices que no son puntos singulares por lineas
de mayor grosor y una orbita dentro de una regién candnica se representara
por una linea de menor grosor.

Caso 2: a # 0y ¢ = 0. De aqui el sistema (6.6) es
& =zx(ax +by), y=~Cy. (6.14)

El sistema (6.14) escrito en las variables X e Y, de acuerdo a (6.10), se
convierte en

X' = X(yaaX +~4bpY), Y'=~CY, (6.15)

Tomando vC' = 1, yaa = 1 y 708 = 1 se sigue que v = 1/C' y a = C/a.
Ademas 5 = C/b cuando b # 0.
Sib =0, el sistema (6.15) es

X' =X* Y =Y (6.16)

Este sistema tiene solamente una singularidad finita, el origen, el cual es un
silla-nodo semi-hiperbolico con separatriz estable tangente en (0,0) al eje
X negativo y las dos separatrices inestables tangentes en (0,0) al eje Y. La
expresion para la compactificacion de Poincaré p(X) en la carta local U; es
u' = —u+uv, v = —v. Por consiguiente sobre U; el origen es el tinico punto
singular, el cual es un nodo estable hiperbolico en el infinito. Como el grado
de p(X) sobre Uj es 2, el punto diametralmente opuesto es un nodo inestable

hiperbdlico en V.
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b=0 b+#0
S: 12, CR: 3 S: 17, CR: 4

Figura 6.3: Retratos de fase del sistema (6.14). S es el nimero de todas las sepa-
ratrices y CR es el nimero de todas las regiones canodnicas.

La expresion para p(X) en la carta local Us es

' =u? —uv, v =0 (6.17)

Por lo tanto el origen de Us; es un punto singular linealmente cero. Puesto

que el sistema (6.17) es homogéneo podemos aplicar la clasificacion debida a

Date [5], ver el apéndice. Como P}, = 1, P}, = —1/2, P}, = P} = P2 =

y P} = —1, usando las definiciones dadas en el apéndice y realizando los
0 0

calculos obtenemos D = 0, [h"] = [0 _1/9} #0y H=—-1/4+#0. Por lo
tanto el sistema (6.17) pertenece al tipo II(1). Ademaés el valor del covariante
K5 es 27/8 > 0. Por consiguiente el sistema (6.17) es de Tipo II(1-1). En
consecuencia los retratos de fase en el disco de Poincaré del sistema (6.14) si
b = 0 es topoldgicamente equivalente al mostrado en la Figura 6.3 con b = 0.

Si b # 0 tenemos que el sistema (6.15) es X' = X(X +Y), YV =Y.
Este sistema posee solamente una singularidad finita, el origen el cual es un
silla—nodo semi-hiperbolico con separatriz estable tangente en (0,0) al eje X
negativo y separatrices inestables tangentes al eje Y en (0,0). La expresion
para p(X) en la carta local U; es v/ = —u —u? +uv, v' = —v — uv. De modo
que existen dos singularidades infinitas sobre Uy, (0,0) y (—1,0). El origen
es un nodo estable hiperbolico. El punto singular (—1,0) es un silla-nodo
hiperbolico cuya separatriz estable es tangente en (—1,0) al eje v positivo.
Las separatrices inestables son tangentes en (—1,0) al eje w.

La expresion para p(X) en la carta local U; es v/ = u+u? —uv, v/ = —v?.

Por consiguiente el origen es la tnica singularidad sobre U, el cual es un
silla-nodo semi-hiperbodlico, su separatriz estable es tangente en el origen al
eje v positivo y las separatrices inestables al eje u. Por lo tanto conseguimos
el retrato de fase del sistema (6.14) si b # 0, el cual es topologicamente
equivalente al mostrado en la Figura 6.3 con b # 0.

Caso 3: a =0y c# 0. En este caso el sistema (6.6) es

t=uxz(by+c), y=~0Cy. (6.18)
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Q |
m <0 m >0
S: 13, CR: 4. S: 12, CR: 3.

Figura 6.4: Retratos de fase del sistema (6.18) con m = ¢/C y b # 0.

Nuevamente de (6.10) obtenemos que el sistema (6.18) se convierte en
X' '=X(p7Y +¢y), Y'=C~Y,y deaqui resultan los dos sistemas X' =

gx, Y' =Y sib=0,y X' = X(Y +¢/C),Y' =Y cuando b # 0.

El caso b = 0 no lo estudiamos por ser un sistema diferencial lineal.
Consideremos b # 0, entonces el sistema correspondiente es topologicamente
equivalente al sistema X’ = X(Y +m), Y =Y con m = ¢/C # 0. El
tnico punto singular finito es (0,0) el cual es un nodo inestable hiperbdlico
si m > 0, o una silla hiperbolica si m < 0. La expresion para p(X) en U;
es u' = —u? + (1 — m)uv, v/ = —uv — mv?. Este sistema es homogéneo y
posee un tnico punto singular, el origen, éste es linealmente cero. Apliquemos
el apéndice con el fin de estudiar esta singularidad. Asi obtenemos D = 0,

-1 .
(W] = [ 0/9 8 #0y H = —1/4 # 0. Por lo tanto el sistema pertenece
al tipo II(1). Ademéas K, = 27m/8, en consecuencia si m > 0, el sistema
pertenece al tipo II(1-1), y pertenece al tipo II(1-2) si m < 0.

En U, la expresion para p(X) es v’ = u+ (m — 1)uv, v = —v? Por lo
tanto U, contiene solamente una singularidad, el origen, éste es un silla—nodo
semi—hiperbolico con separatriz estable tangente en el origen al eje v positivo.
Las dos separatrices inestables son tangentes en (0,0) al eje u. En la Figura
6.4 se muestran los retratos de fase topologicamente equivalentes a los del

sistema (6.18) para b # 0.
Caso 4: a # 0y ¢ # 0. De aqui el sistema (6.6) se transforma en
& = ax® + bry +cx, = Cy. (6.19)

De (6.10) tenemos que el sistema (6.19) es topologicamente equivalente a uno
de los dos sistemas X' = X? +¢/CX,Y' =Y sib=00 X' = X? + XY +
c/CX,Y' =Y sib#0.

Analicemos primero el caso b = 0. Consideremos el sistema X' = X2 +
mX,Y' =Y con m # 0. Las singularidades finitas son (0,0) y (—m,0). El
punto singular (0,0) es un nodo inestable hiperbolico si m > 0 y una silla
hiperbolica si m < 0. También (—m,0) es una silla hiperboélica si m > 0
y un nodo inestable hiperbdlico si m < 0. La expresion de p(X) en U es



6.6 Retratos de fase globales del sistema Lotka—Volterra (6.6) con

un invariante Darboux 135
b=0 b#0
S: 16, CR: 5. S: 20, CR: 5.

Figura 6.5: Retratos de fase del sistema (6.19).

' = —u+ (1 —m)uv, v = —v — mov?. Existe una tnica singularidad sobre

Uy, el origen, el cual es un nodo estable hiperbdlico.

En la carta local Uy, p(X) es v/ = u? + (m — 1)uv, v/ = —v?. Por lo
tanto el origen es un punto singular sobre U, linealmente cero. Puesto que
este sistema es homogéneo podemos usar el apéndice para su clasificacion.
De aqui D = —m?/27 < 0 y por lo tanto el sistema pertenece al tipo 1O.
Ademas puesto que Ky = 27/8 > 0, el sistema es del tipo I5(1).

Reuniendo toda la informacién anterior obtenemos los retratos de fase del
sistema (6.19) cuando b = 0 correspondiente a los casos m < 0 o m > 0. Sin
embargo, no es dificil verificar que estas dos configuraciones son topologica-
mente equivalentes. En la Figura 6.5 con b = 0 se presenta un retrato de fase
topologicamente equivalente al del sistema (6.19) cuando b = 0.

Si b # 0, consideremos el sistema X' = X2+ XY +mX, Y’ =Y con
m # 0. Existen dos singularidades finitas, (0,0) y (—m,0). El origen es un
nodo inestable hiperboélico si m > 0, y es una silla hiperbdlica si m < 0.
El punto singular (—m,0) es una silla hiperboélica si m > 0 y es un nodo
inestable hiperbdlico si m < 0. La expresion de p(X) sobre U; es v/ = —u —
u? + (1 —m)uv, v = —v — uv —mv?. Por lo tanto los puntos singulares sobre
Uy son (0,0) y (—1,0). El origen es un nodo estable y (—1,0) es un silla—nodo
semi-hiperbolico, su separatriz estable es tangente al eje v en (—1,0) y las
separatrices inestables tangentes al eje u en (—1,0).

En U, la expresion para p(X) es v/ = u+ u* + (m — uw, v = —v?
Por consiguiente el origen de U, es un punto singular que es un silla-nodo
semi-hiperboélico con separatriz estable tangente en (0,0) al eje v positivo.
Las dos separatrices inestables son tangentes en (0,0) al eje u. Por lo tanto
obtenemos los dos retratos de fase para m < 0y m > 0. Es facil ver que
estas dos configuraciones son topologicamente equivalentes. La Figura 6.5 con
b # 0 muestra un retrato de fase topologicamente equivalente al del sistema
(6.6) en este caso. Esto completa la prueba del Teorema 6.7. O
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6.7. Retratos de fase globales de los sistemas
Lotka—Volterra (6.7) con un invariante Dar-
boux

Teorema 6.8. FEl retrato de fase de cualquier sistema cuadrdtico Lotka—
Volterra (6.7) es topoldgicamente equivalente a una de las 42 configuraciones
de las Figuras 6.6-6.17.

Demostracion. Encontremos los retratos de fase en el disco de Poincaré de
cualquier sistema cuadratico Lotka—Volterra (6.7). Para hacer esto introdu-
cimos un reescalado de las variables y del tiempo con el fin de reducir el
numero de pardametros de este sistema tanto como sea posible. Obteniendo
los retratos de fase para cada uno de los nuevos sistemas conseguiremos los
retratos de fase de los sistemas correspondientes (6.7). Sea © = a X, y = Y
y t =~T, donde o, f y v son parametros. En las nuevas variables X, Y y T
el sistema (6.7) se convierte en

/ l2 l2 /

X' =X (—EAomyX - EBBWY + cy) , Y'=Y(AayX + BpyY +~C),
(6.20)

aqui ’ denota la derivada con respecto a la variable T

Consideremos los siguientes casos. Notemos que si A = B = 0 obtenemos
un sistema diferencial lineal, y en consecuencia no lo consideramos.

Caso 1: A # 0, B = 0. Entonces el sistema (6.20) es
l
X' =X (—l—2Aa7X + cv) , Y =Y(AayX + Cv). (6.21)
1

Con el fin de estudiar el sistema (6.20) consideraremos ocho subcasos.

Subcaso 1.1: C' = ¢ = Iy = 0. De aqui el sistema (6.21) después de un
reescalado de la variable independiente se convierte en

X' =0, Y =XY. (6.22)

Sus singularidades finitas son todos los puntos de los ejes X e Y. Puesto
que X es una integral primera del sistema, las rectas X = constante estan
formadas por orbitas. Resolviendo el signo de Y’ sobre X = constante, se
sigue que el retrato de fase del sistema (6.22) es topologicamente equivalente
al mostrado en la Figura 6.6.

Subcaso 1.2: C = ¢ = 0, Il # 0. Entonces el sistema (6.21) es X' =
l

—l—zAa’yXQ, Y’ = AayXY. Tomando a = 1y v = 1/A el sistema ante-
1

rior se transforma en
X' =mX? Y =XY, (6.23)
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Figura 6.6: Retrato de fase del sistema (6.22). Posee infinitas separatrices.

m <0 0O<m<l1

Figura 6.7: Retratos de fase del sistema (6.23). Poseen infinitas separatrices.

donde m = —ly/l;. Reescalando la variable independiente con ds = XdT, del
sistema (6.23) obtenemos

dX/ds =mX, dY/ds=Y, (6.24)

con m # 0. Primero encontremos los retratos de fase del sistema (6.24),
después ellos nos permitiran obtener los retratos de fase del sistema (6.23).
El sistema (6.24) tiene una tnica singularidad finita, el origen. Si m > 0,
(0,0) es un nodo inestable hiperbdlico, y es una silla hiperbélica cuando
m < 0. En U; la expresion de p(X) es v/ = (1 — m)u, v = —mw. Sim = 1,
tenemos v’ = 0, v = —wv, y por lo tanto existen infinitas singularidades (u, 0).
Ademas la solucion de este sistema son las rectas u = constante. Si m # 1,
obtenemos que (0,0) es un nodo inestable hiperbolico si m < 0, es una silla
hiperbdlica si 0 < m < 1, y es un nodo estable hiperbdlico si m > 1.

La expresion de p(X) en la carta local Uy es v/ = (m — 1)u, v/ = —v.
Por consiguiente (0,0) es un punto singular que es una silla hiperbélica si
m > 1y es un nodo estable hiperbélico cuando m < 1. Asi conseguimos los
retratos de fase del sistema (6.24). Teniendo en cuenta que el reescalado ds =
XdT produce un cambio en la direccion de las 6rbitas donde X es negativo,
obtenemos los retratos de fase del sistema (6.23) que son topologicamente
equivalentes a los dibujados en la Figura 6.7.

Subcaso 1.2: C' =1y = 0, ¢ # 0. De aqui el sistema (6.21) se transforma en
X'=cyX,Y' = AayXY. Tomando v = 1/cy o = ¢/A, tenemos que

X' =X, Y =XY. (6.25)
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Intercambiando las variables X e Y en (6.25) obtenemos el sistema (6.13). Por
lo tanto, el retrato de fase del sistema (6.25) es topologicamente equivalente
al de la Figura 6.2.

Subcaso 1.4: C # 0, ¢ = Iy = 0. Entonces el sistema (6.21) es X’ = 0,
Y' =Y (AayX + ~C). Tomando v = 1/C' y a = C'/A obtenemos

X'=0, Y =XY+YV. (6.26)

Existen infinitas singularidades finitas del sistema (6.26), los puntos de coor-
denadas (X,0) y (—1,Y), esto es los puntos de las dos rectas X = —1y
Y = 0. Puesto que X’ = 0, las soluciones del sistema (6.26) estan contenidas
en las rectas invariantes X = constante. Estudiando el comportamiento de
Y’ sobre estas rectas invariantes se sigue facilmente el retratos de fase del
sistema (6.26), el cual es topologicamente equivalente al dado en la Figura
6.6.

Subcaso 1.5: C = 0, Iy # 0, ¢ # 0. Por consiguiente el sistema (6.21) es
X' = X(—l Aoy X/l + ¢y), Y = AayXY. Tomando v = 1/cy a = ¢/A, el
sistema anterior se convierte en

X' =X +mX? Y =XV, (6.27)

donde m = ly/l;. El sistema (6.27) tiene infinitas singularidades finitas, los
puntos (0,Y"). Haciendo ds = XdT, el sistema (6.27) queda

dX/ds=mX +1, dY/ds=Y (6.28)

con m # 0. El sistema (6.28) tiene solamente una tunica singularidad, el
punto (—1/m,0). Este es una silla hiperbolica cuando m < 0, y es un nodo
inestable hiperbdlico si m > 0. La expresion de p(X) en la carta local U; es
v = (1—m)u—uv, v' = —mv—v?. Entonces solamente el origen es un punto
singular si m # 1. Sin embargo, existen infinitas singularidades si m = 1,
los puntos (u,0). Si m # 1, (0,0) es un nodo inestable hiperboélico si m < 0,
es una silla hiperbodlica si 0 < m < 1 y cuando m > 1, es un nodo estable
hiperbdlico.

En U, la expresion de p(X) es v/ = (m — 1)u + v, v = —v. Por lo tanto
el origen es un punto singular. Si m > 1, éste es una silla hiperbdlica, y es
un nodo estable hiperbodlico si m < 1. Puesto que el reescalado ds = XdT
cambia la orientacion de las orbitas donde X es negativo, obtenemos que
los retratos de fase del sistema (6.27) son topologicamente equivalentes a los
mostrados en la Figura 6.8.

Subcaso 1.6: C # 0, ¢ = 0, I # 0. Por lo tanto el sistema (6.21) es
X' = —lAay/l; X Y = Y(AayX + «C). Tomando v = 1/C'y a = C/A
obtenemos

X' =mX? Y =XY+Y, (6.29)
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Figura 6.8: Retratos de fase del sistema (6.27). Ellos tienen infinitas separatrices.

con m = —lIly/l; # 0. El origen es la unica singularidad finita del sistema
(6.29), el cual es un silla—nodo semi-hiperbélico. Si m > 0, su separatriz
estable es tangente en (0,0) al eje X negativo, y al eje X positivo cuando
m < 0. La expresion de p(&X') en la carta local Uy es v/ = (1 — m)u + uv,
v = —mw. Si m # 1, sobre U; solamente existe un punto singular, el origen;
si m < 0, (0,0) es un nodo inestable hiperbdlico, o es una silla hiperbélica

cuando 0 < m < 1, o es un nodo estable hiperboélico si m > 1. Si m =1, el

sistema es u' = uv, v = —v el cual posee infinitas singularidades, los puntos
(u,0).
La expresion de p(X) en Uy es v/ = —uv + (m — 1)u?, v/ = —uv — v%. Por

consiguiente si m # 1 tenemos que (0,0) es un punto singular linealmente

cero y el sistema es homogéneo. Aplicando el apéndice obtenemos que D = 0,
("] = [8 _732 /9} # 0y H = —m?/4 # 0. En consecuencia el sistema
pertenece al tipo II(1). Como Ky = 27m(m — 1) /8, entonces el sistema es de
tipo II(1-1) si Ky > 0, esto essi m < 0o m > 1. Si 0 < m < 1 entonces
K, < 0y por lo tanto el sistema es del tipo II(1-2). Si m = 1, entonces el
sistema pertenece al tipo I1(1-3).

Por consiguiente obtenemos los retratos de fase del sistema (6.29), los
cuales son topologicamente equivalentes al retrato de fase para b = 0 de
la Figura 6.3 cuando m < 0 o m > 1, y los otros son topologicamente
equivalentes a los representados en la Figura 6.9.

0<m<1
S: 13, CR: 4. Infinitas separatrices.

Figura 6.9: Retratos de fase del sistema (6.29).
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Subcaso 1.7: C' # 0, ¢ # 0, Iy = 0. El sistema (6.21) en este caso se transforma
en X' =y X, Y =Y (AayX +~C). Tomando v = 1/cy o = ¢/ A obtenemos

X' =X, Y =mY +XY, (6.30)

con m = C/c # 0. Intercambiando X e Y en el sistema (6.30), obtenemos
el sistema del subcaso b # 0 del Caso 3 de la prueba del Teorema 6.7.
Por consiguiente los retratos de fase del sistema (6.30) son topologicamente
equivalentes a los representados en la Figura 6.4.

Subcaso 1.8: C'# 0, ¢ # 0, Iy # 0. De aqui tomando v =1/C'y a = C/A en
el sistema (6.21) obtenemos

X =mX?+mX, Y =Y + XY, (6.31)

donde m; = —ly/l; # 0y my = ¢/C # 0. Por lo tanto si my # ma, el
sistema (6.31) tiene solamente dos puntos singulares finitos, los puntos (0, 0)
y (—=my/m1,0), y posee infinitas singularidades cuando m; = ma, todos los
puntos de la recta X = —1y (0,0).

El origen es una silla hiperbolica si ms < 0, y es un nodo inestable hi-
perbolico si my > 0. Si m; # my, la matriz Jacobiana en (—ms/mq,0) es
<_6n2 1 7732 /m1> . El punto (—msy/my,0) es una singularidad hiperboli-
ca. Es un nodo inestable si m; < my < 0, 08i m; > 0y my < 0. Es una silla
cuando my < 0y mg > 0, si mgy < my < 0, 0 si m; > mo > 0. Ademas si
0 < my < msy, es un nodo estable.

Ahora estudiemos el sistema (6.31) en el infinito. La expresion de p(X)
en la carta local Uy es v/ = (1 — my)u + (1 — mo)uv, v/ = —mqv — myv?.
Por consiguiente cuando m; # 1, existe un tnico punto singular en Uy, el
origen, éste es hiperbodlico. Si m; < 0, el origen es un nodo inestable, una
silla si 0 < m; < 1y un nodo estable si m; > 1. Sin embargo existen infinitas
singularidades en U; cuando m; = 1, que son los puntos (u,0).

Sobre Us la compactificacion de Poincaré p(X) es
u' = (my — Du® + (my — Duw, v = —uv —v? (6.32)

Por lo tanto (0,0) es una singularidad linealmente cero. Como el sistema
(6.32) es homogéneo usamos el apéndice para su clasificacion. De aqui D =
—m2m3/27 < 0 y por lo tanto el sistema (6.32) pertenece al tipo I&. Cal-
culando los valores de los covariantes Ky = 27(my — 1)(my —m2)/8 y K3 =
27(mg — 1)(my — mgy +myms) /8, obtenemos la siguiente clasificacion para el
sistema (6.32) mostrada en la Tabla 6.3.

En consecuencia obtenemos los retratos de fase del sistema (6.31), los
cuales son topologicamente equivalentes al retrato de fase para b = 0 de la
Figura 6.5 cuando m; < 0y m; < mo o cuando m; > 1y m; > me, o al
retrato de fase para m < 0 de la Figura 6.8 cuando m; = my < 0, al retrato
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Condicién ‘ Signo de Ko, K3 ‘ Tipo ‘ Retrato de fase

m1 <1, mi <meo Ky >0 e (1) | b= 0 de Fig. 6.5,
m1 > 1, my > mg (1) de Fig. 6.10
m1 > 1, mp <mg, mg>1 Ky <0, K3>0 | I (2) (2) de Fig. 6.10
m1 <0, mp>mg, mg <0 Ky <0, K3<0 | I (3) (3) de Fig. 6.10
0<mi <1, mp>mg, myg <1 (4) de Fig. 6.10
mp =1, mg>1 Ky=0, K3>0 | Is (4) | (6) de Fig. 6.10,

mip =mo, mo >1 m > 1 de Fig. 6.8
my =1, mg <1 Ky=0, K3<0 | Is (5) (5) de Fig. 6.10,

mi1 = mo, Mo < 1 m<0, 0<m<1

de Fig. 6.8
mi =1, mg=1 Ky =0=Kj3 & (6) | m =1 de Fig. 6.8

Tabla 6.3: Clasificacion del sistema homogéneo (6.32).

de fase para 0 < m < 1 de la Figura 6.8 cuando 0 < m; = my < 1, al retrato
de fase para m = 1 de la Figura 6.8 cuando m; = my = 1, y al retrato
de fase para m > 1 de la Figura 6.8 cuando m; = my > 1 y los otros son
topologicamente equivalentes a los de la Figura 6.10.

(1) (2) (3)

N/

0<myp <1, mg>0,m <ma, 1 <my < meo,
S: 16, CR: 5. S: 14, CR: 3.

AT
B

O<m1<1,075m2<1, mlzluo#m2<]~7 m1:1,m2>1,
mi > ma, S: 17, CR: 6. infinitas separatrices. infinitas separatrices.

Figura 6.10: Retratos de fase del sistema (6.31).

Caso 2: A =0, B # 0. En este caso el sistema (6.20) es
/ ly /
X' =X —Z—Bﬁ’yY +ecy), Y =Y (BpyY +~0). (6.33)
1

Subcaso 2.1: C'= ¢ =l = 0. Haciendo un reescalado de la variable indepen-
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diente, el sistema (6.33), en este caso, se convierte en X’ =0, Y’ = Y2, Este
sistema posee infinitas singularidades, todos los puntos del eje X. Como X
es una integral primera del sistema, todas las rectas X = constante estan for-
madas por orbitas. Por lo tanto obtenemos el retrato de fase topologicamente
equivalente al mostrado en la Figura 6.11.

Figura 6.11: Retrato de fase del sistema X’ = 0, Y/ = Y2, Tiene infinitas separa-
trices.

Subcaso 2.2: C = ¢ = 0, Iy # 0. Por lo tanto el sistema (6.33) es X' =
—ly/l}BBYXY, Y’ = BB~Y?. Tomando v =1y 8 = 1/B obtenemos

X' =—l/LXY, Y =Y2 (6.34)
Haciendo el reescalado ds = Y dT encontramos que
X' =mX, Y'=Y (6.35)

con m = —ly/l; # 0. Este sistema es el sistema (6.24). Volviendo atrés a tra-
vés del cambio de variable del sistema (6.35) al sistema (6.34), y teniendo en
cuenta que la orientacion de las 6rbitas cambia cuando Y < 0, obtenemos los
retratos de fase en el disco de Poincaré del sistema (6.34), los cuales son topo-
logicamente equivalentes a los representados en la Figura 6.7, pero los cuatro
retratos de fase de la Figura 6.7 de izquierda a derecha ahora corresponden
a los valores m <0, m > 1, m=1y 0 < m < 1, respectivamente.

Subcaso 2.3: C' =1y = 0, ¢ # 0. Por lo tanto el sistema (6.33) es X' = ycX,
Y’ = BByY? Con v = 1/cy 8 = ¢/B tenemos X' = X, Y’ = Y? Este
sistema corresponde al sistema (6.16) intercambiando las variables X e Y.
Por lo tanto su retrato de fase es topologicamente equivalente al retrato de
fase para b = 0 de la Figura 6.3.

Subcaso 2.4: C # 0, ¢ = ly = 0. Entonces el sistema (6.33) es X’ = 0,
Y’ = BBvY? + vCY. Tomando v = 1/C'y 3 = C'/B obtenemos

X'=0, Y=Y+Y% (6.36)

Las singularidades finitas son los puntos (X,0) y (X, —1) para todo X. Las
Orbitas viven sobre las rectas X = constante. Por lo tanto el retrato de fase
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Figura 6.12: Retrato de fase del sistema (6.36). Posee infinitas separatrices.

del sistema (6.36) es topologicamente equivalente al mostrado en la Figura
6.12.

Subcaso 2.5: C = 0, Iy # 0, ¢ # 0. El sistema (6.33) para estos valores se
convierte en X' = X (—ly/[; BBYY + ¢v), Y’ = BfyY? Tomando v = 1/c y
f = —l1/(B~ls) obtenemos

X' =XY+X, Y =-1/LY" (6.37)

Intercambiando las variables X e Y conseguimos el sistema (6.29) ahora con
m = —ly/l5. Entonces los retratos de fase del sistema (6.37) son el retrato de
fase para b = 0 de la Figura 6.3 cuando m > —1, y los retratos de fase de la
Figura 6.9 de izquierda a derecha corresponden a los de los valores m < —1
ym=—1.

Subcaso 2.6: C # 0, ¢ = 0, I # 0. Por lo tanto el sistema (6.33) es
X' = —1/BByXY, Y = ~4CY + BByY? Tomando v =1/C'y 8 =C/B

obtenemos

X'=-mXY, Y =Y?+1, (6.38)

donde m =I5/l # 0. El sistema (6.38) no posee singularidades reales finitas.
Sobre la carta local U; la expresion de p(X) es v/ = (m + 1)u? + v,

v = muw. Por lo tanto si m # —1, el origen es el tnico punto singular y

éste es linealmente cero. Puesto que este sistema es homogéneo, usamos el
apéndice para su clasificacion. Asi obtenemos D = 4/27 > 0, y por lo tanto
el sistema es de tipo I. Ademés puesto que Ky = 27m?(m + 1)/8 tenemos
que si m > —1, entonces Ky > 0y por lo tanto el sistema es de tipo I&(1).
En el caso m < —1 obtenemos Ky < 0, por consiguiente el sistema es de tipo
I®(2). Sim = —1, entonces Ky = 0, y el sistema es de tipo 1®(3).

La expresion de p(X) en Uy es v/ = —(m + 1)u — uwv?, v/ = —v — v3. Por
lo tanto (0,0) es un punto singular que es una silla hiperboélica si m < —1 'y
es un nodo estable hiperboélico cuando m > —1. En consecuencia, obtenemos
los retratos de fase del sistema (6.38), que son topologicamente equivalentes
a los mostrados en la Figura 6.13.

Subcaso 2.7: C' # 0, ¢ # 0, Il = 0. De aqui el sistema (6.33) se convierte en
X' =~eX,Y' =Y (BBvY +~C). Sea v =1/Cy 5 = C/B, entonces

X'=mX, Y =Y+Y? (6.39)
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m < —1, m > _17
S: 9, CR: 2. infinitas separatrices. S: 8, CR: 1.

Figura 6.13: Retratos de fase del sistema (6.38).

donde m = ¢/C # 0. Las singularidades finitas del sistema (6.39) son los
puntos singulares hiperbolicos (0,0) y (0,—1). Si m < 0, entonces (0,0) es
una silla y (0, —1) es un nodo estable. Si m > 0, tenemos que (0,0) es un
nodo inestable y (0, —1) es una silla.

La expresion de p(X) en la carta local U; es v/ = (1 — m)uv + u?,
v = —mw?. Por lo tanto la tinica singularidad es el origen, el cual es lineal-
mente cero. Puesto que este sistema es homogéneo, aplicando el apéndice
encontramos que D = —1/27 < 0y Ky = 27m?/8 > 0, y de aquf el sistema

anterior es del tipo I&(1).

Sobre la carta local Uy, p(X) es v/ = —u + (m — 1)uv, v' = —v — v?. Por
consiguiente (0, 0) es un punto singular el cual es un nodo estable hiperbélico.
En consecuencia los retratos de fase del sistema (6.39) son topologicamente
equivalentes al retrato de fase de la Figura 6.5 con b = 0.

Subcaso 2.8: C' # 0, ¢ # 0, I # 0. En este caso del sistema (6.33) y tomando
v=1/cy B = c¢/B obtenemos

X' =X —m XY, Y =mpY +Y? (6.40)

donde my = ly/l; # 0y my = C/c # 0. Las singularidades finitas del sistema

(6.40) son los puntos singulares hiperbolicos (0,0) y (0, —my). El punto (0, 0)

es una silla si my < 0, y un nodo inestable cuando my > 0.

1+ mimese 0
0

caso 1 + myms = 0. Entonces m; = —1/my y el sistema (6.40) se convierte

en

Puesto que DX (0, —my) = [ , primero estudiamos el

X' =X(ma+Y)/ma, Y =Y(my+Y). (6.41)

Analicemos el sistema reducido X’ = X/ms, Y/ =Y cuyo tnico punto singu-
lar es el origen. Si my > 0, entonces (0, 0) es un nodo inestable hiperbélico, y
si my < 0, (0,0) es una silla hiperbolica. Sobre la carta local Uy, la expresion
de p(X) es v = (1 — 1/mo)u, v = —v/my entonces (0,0) es la tnica singu-
laridad sobre Uy, que es un nodo inestable hiperbdlico si my < 0; es un nodo
estable hiperbodlico si 0 < my < 1, y es una silla hiperbélica cuando my > 1.

La expresion de p(X') sobre U, es v/ = (1/my — 1)u, v = —v. Por con-
siguiente (0,0) es un punto singular, y éste es hiperbolico. Ademas (0,0) es
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un nodo estable si my < 0 0 mg > 1, y es una silla si 0 < my < 1. En con-
secuencia obtenemos los retratos de fase de X' = X/my, Y/ =Y. Y por lo
tanto cambiando la orientacion de las 6rbitas cuando Y < —msy conseguimos
los retratos de fase del sistema (6.41).

Si 1+ mymgy # 0, entonces obtenemos que (0, —ms) es un nodo estable si
me >0y my < —1/my, es una silla si my >0y my > —1/mg, 0 my <0y
my > —1/my, y es un nodo inestable cuando my < 0y my; < —1/ms.

Sobre la carta local Uy, la expresion de p(&X) es

u' = (mg — Duv + (my + Du?, v = myuv — 0% (6.42)

que es un sistema homogéneo. Por lo tanto podemos aplicar la clasifica-
cion de Date al sistema (6.42) (ver apéndice). Realizando los calculos co-
rrespondientes obtenemos D = —m2/27 < 0, asi el sistema (6.42) per-
tenece al tipo I6&. Puesto que Ky = 27(my + 1)(mymg + 1)/8 v K3 =
—27my(mg — 1)(1 4+ mg + myms)/8 obtenemos la clasificacion dada en la
siguiente tabla.

Condicion Signo de Ks | Tipo Retrato de
y K3 fase
mp < —1, mg >0, m; < —1/mgy (1) de Fig. 6.10
my > —1, mg >0, m1>—1/m2 Ky >0 Ie (1) b=0de
myp > —1, mg < 0,m; < —1/mo Fig. 6.5
mp < —1, 0 <mg <1,m; >—1/mo Ky <0, I (3) | (4) de Fig. 6.10
m1<—1, m2<0,m1<—1/m2 K3<O
—1<my1 <0, mo>1,m3 <—1/my Ky <0, I© (2) | (2) de Fig. 6.10
K3>0
my >0, me <0, my >—1/my Ky <0 I© (3) | (3) de Fig. 6.10
K3 <0
mp =—1, myg>1 Ky =0, Ie (4) | (6) de Fig. 6.10
my = —1/mg, my > 1 K3>0 0<m<1de
Fig.6.8
my = —1, mp < 1 K2=0, |16 (5) | (5) de Fig. 6.10
my = —1/mg, my < 1 K3 <0 0<m<1de
Fig. 6.8
mlz—l,m2:1 KQZO 16(6) m=1de
Ky =0 Fig. 6.8

Tabla 6.4: Clasificacion del sistema homogéneo 6.42.

La expresion para p(X') en la carta local Us es v/ = (1—mg)uv—(mi+1)u,

v' = —v — myv?. Por consiguiente (0,0) es un punto singular, el cual es una
silla hiperbolica si m; < —1, y es un nodo estable hiperbolico si m; > —1.
Si m; = —1 entonces el sistema es u' = (1 — mo)uv, v = —v — muv?, el

cual posee infinitas singularidades, todos los puntos (u,0). En consecuencia,
conseguimos los retratos de fase en el disco de Poincaré del sistema (6.40) para
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cada uno de los casos que ocurren, éstos son topolégicamente equivalentes a
los descritos en la Tabla 6.4.

Caso 3: AB # 0.

Subcaso 3.1: C = ¢ = ly = 0. Por lo tanto el sistema (6.20) es X' = 0,
Y'=Y(AayX + BB~Y). Tomando v =1, a = 1/A y = 1/B, este tultimo
sistema se convierte en X’ = 0, Y’ = Y(X + Y') cuyas singularidades son
los puntos (X, 0) y (X, —X) para todo X. Sus orbitas viven sobre las rectas
X = constante. En consecuencia el retrato de fase sobre el disco de Poincaré
del sistema (6.20) para este caso es topologicamente equivalente al mostrado
en la Figura 6.14.

Figura 6.14: Retrato de fase del sistema X’ =0, Y/ =Y (X +Y). Posee infinitas
separatrices.

Subcaso 3.2: C' = ¢ = 0, ly # 0. Por consiguiente el sistema (6.20) es X' =
X(=ly/ljAayX =13/l BBYY), Y = Y(AayX +BpfyY). Seay =1, a =1/A
y = 1/B, entonces el sistema que se obtiene es

X' =mX(X+Y), Y =Y(X+Y), (6.43)

donde m = —Iy/l; # 0. Las singularidades finitas del sistema (6.43) son
los puntos (X, —X) para todo X. Haciendo el reescalado ds = (X + Y)dT
de la variable independiente, el sistema (6.43) se convierte en X' = mX,
Y’ =Y. Este tdltimo sistema fue estudiado en el Subcaso 2.2. Por lo tanto
cambiando la orientacién de las o6rbitas cuando X + Y < 0 y anadiendo los
puntos singulares (X, —X) obtenemos los retratos de fase del sistema (6.43),
los cuales son topologicamente equivalentes a los mostrados en la Figura 6.15
y el caso m = 1 es topologicamente equivalente al retrato de fase m = 1 de
la Figura 6.7.

Subcaso 3.3: C' =1y = 0, ¢ # 0. Por consiguiente el sistema (6.20) es X' =
X, Y =Y(AayX + BBvY). Tomando v = 1/¢, « = ¢/Ay 8 = ¢/B
obtenemos

X' =X, Y =(X+Y)Y, (6.44)

el cual corresponde al sistema obtenido en el Caso 2 (cuando b # 0) de
la prueba del Teorema 6.7 intercambiando las variables X e Y. De aqui el
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Figura 6.15: Retratos de fase del sistema (6.43). Poseen infinitas separatrices.

retrato de fase del sistema (6.44) es topologicamente equivalente al de la
Figura 6.3 con b # 0.

Subcaso 3.4: C # 0, ¢ = I = 0. Entonces el sistema (6.20) es X' = 0,
Y' = Y(AayX + BpyY 4+ ~4C). Tomando v = 1/C, a = C/Ay g = C/B
tenemos X' =0, Y’ =Y (1 + X +Y) cuyas singularidades finitas son todos
los puntos de las rectas Y = 0y ¥ = —X — 1. Ademas todas las orbitas
viven sobre las rectas X = constante. Por lo tanto el retrato de fase en este
caso es topologicamente equivalente al mostrado en la Figura 6.14.

Subcaso 3.5: C = 0, ly # 0, ¢ # 0. De aqui el sistema (6.20) es X' =
X(=ly/lijAayX — I3/LBBYY + ¢y), Y = Y(AayX + Bp~vY). Tomando
v=1/¢c,a =c¢/Ay 5 = c/B obtenemos

X' =X1-mX—-mY), Y =Y(X+Y), (6.45)

con m = —ly/l; # 0. Las singularidades finitas del sistema (6.45) son los
puntos (0,0) y (1/m,0). Si m > 0, entonces (1/m,0) es una silla hiperbolica,
y es un nodo estable hiperbélico cuando m < 0. El origen es un silla—nodo
semi-hiperbolico con separatriz estable tangente al eje Y negativo.

La expresion de la compactificacion de Poincaré de p(X') sobre la carta
local U; es

u'=(m+Du+ (m+Du* —uww, v =mv+muv — o> (6.46)

Por lo tanto si m # —1, existen dos singularidades sobre Uy, los puntos (0, 0)
y (=1,0) que ambos son hiperboélicos. Ademés (0,0) es a nodo estable si
m < —1, es una silla cuando —1 < m < 0, y es un nodo inestable si m > 0.
El punto (—1,0) es un silla—nodo semi-hiperbélico.

Si m = —1, entonces el sistema (6.46) es u' = —uv, v = —v — uv — v? el
cual posee infinitas singularidades (u,0) para todo u.

Sobre la carta local Uy, p(X) es v/ = —(m + )u — (m + 1)u? + uv,
v/ = —v — wv. Entonces (0,0) es un punto singular hiperbolico: una silla

si m < —1 y un nodo estable si m > —1. Por consiguiente obtenemos los
retratos de fase del sistema (6.45) los cuales son topologicamente equivalentes
a los representados en la Figura 6.16.
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m< 1, m= 1, “1<m<0, m >0,
S: 19, CR: 4. infinitas separatrices. S: 19, CR: 4. S: 21, CR: 6.

Figura 6.16: Retratos de fase del sistema (6.45).

Subcaso 3.6: C # 0, ¢ = 0, Il # 0. De aqui el sistema (6.20) es X' =
1
X(—=ly/lijAayX — I3 /lLBBYY), Y = Y(AayX 4+ BByY +~C). Sea v =

57
a = —E b= —E entonces
T LAY T LB
X' =X(X+Y), Y =Y{1-mX-—mY), (6.47)

donde m = I/l # 0. Por lo tanto el sistema (6.47) intercambiando las
variables X e Y coincide con el sistema (6.45).

Subcaso 3.7: C' # 0, ¢ # 0, I = 0. Entonces el sistema (6.20) es X' =
v X, Y =Y (AayX + BpByY + 4C). Haciendo v = 1/¢c, « = ¢/Ay § =
¢/B obtenemos X' = X, Y’ = mY + XY +Y?% con m = C/c # 0. Este
altimo sistema corresponde al sistema estudiado en el Caso 4 de la prueba
del Teorema 6.7 cuando b # 0 (ver Figura 6.5), intercambiando las variables

XeY.

Subcaso 3.8: C'#0, ¢ # 0, ly # 0. Tomando v =1/c, a = ¢/Ay = ¢/B, el
sistema (6.20) es transformado en

X =X —mXY —m X2, Y =moY + XY +V2 (6.48)

donde my = ly/l; # 0y me = C/c # 0. Los puntos singulares finitos son
(0,0), (1/mq,0) y (0, —ms). El origen es una silla hiperbolica si ms < 0, y es
un nodo inestable hiperbélico si my > 0. Sabemos que my # —1/my, porque
en otro caso, de acuerdo al Teorema 6.3, el sistema (6.48) no podria poseer un
invariante Darboux. Asi el punto (1/m4,0) es un punto singular hiperbélico.
Es un nodo estable si my < —1/my, y es una silla si mg > —1/m;. También
(0, —=m2) es una singularidad hiperbolica. Es un nodo inestable si ms < 0y
my < —1/my, una silla si mg < 0y my > —1/my, un nodo estable si my > 0
y my < —1/mgy y una silla cuando my > 0y my > —1/ma.

X' =X(1-mY —-—mX),Y =-Y/mi(1—mX —mY). La expresion
de p(X) sobre U; es

u' = (1+mu+ (mo — Duv + (1+mu?, v = mv+muuv —v*. (6.49)
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Las singularidades sobre U; son (0,0) y (-1,0) si my # —1. En este caso, el
origen es un punto singular hiperbdlico, es un nodo estable si m; < —1, o
una silla cuando —1 < m; < 0, y un nodo inestable si m; > 0. El punto
(—1,0) es un silla-nodo semi-hiperbolico.

Si m; = —1, entonces el sistema (6.49) se convierte en v’ = (my — 1)uv,
v/ = —v —uv — v? y por lo tanto posee infinitas singularidades sobre Uj,
todos los puntos (u,0). Asi obtenemos los retratos de fase del sistema (6.48)
cuando m; = —1, estos son topologicamente equivalentes a los mostrados en
la Figura 6.17 (5). Note que m; = —1 y my = 1 no puede ocurrir porque en
este caso my = —1/m;.

La expresion de p(X) sobre Uy es u' = —(1 4+ mq)u + (1 — mo)uv — (1 +
mi)u?, v’ = —v —uv —myv?. Entonces (0,0) es una singularidad hiperboélica,
una silla si m; < —1, y un nodo estable si m; > —1. Por consiguiente
obtenemos los retratos de fase del sistema (6.48) de los casos restantes, estos
son topologicamente equivalentes a los representados en la Figura 6.17. Esto
completa la prueba del Teorema 6.8.

(1) (2) (3)

me <0, —1#m; <0o0 ma <0, my >0, my < —1, my > —1/ma,
mo >0, my < —1,S: 21, CR: 4. S: 23, CR: 6. 0<my<1,8:22 CR:5.

(4)

A

mo >0, m <—1o0,
—1<mqy<0,S:24, CR: 7. infinitas separatrices.

Figura 6.17: Retratos de fase del sistema (6.48).
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