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Abstract. In [3] we classified globally the configurations of singularities at infinity of quadratic differential

systems, with respect to the geometric equivalence relation. The global classification of configurations of finite

singularities was done in [2] modulo the coarser topological equivalence relation for which no distinctions are

made between a focus and a node and neither are they made between a strong and a weak focus or between

foci of different orders. These distinctions are however important in the production of limit cycles close to

the foci in perturbations of the systems. The notion of geometric equivalence relation of configurations of

singularities allows us to incorporates all these important purely algebraic features. This equivalence relation

is also finer than the qualitative equivalence relation introduced in [19]. In this article we initiate the joint

classification of configurations of singularities, finite and infinite, using the finer geometric equivalence relation,

for the subclass of quadratic differential systems possessing finite singularities of total multiplicity mf ≤ 1.

We obtain 84 geometrically distinct configurations of singularities for this family. We also give here the global

bifurcation diagram, with respect to the geometric equivalence relation, of configurations of singularities, both

finite and infinite, for this class of systems. This bifurcation set is algebraic. The bifurcation diagram is done

in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants. The results

can therefore be applied for any family of quadratic systems, given in any normal form. Determining the

configurations of singularities for any family of quadratic systems, becomes thus a simple task using computer

algebra calculations.

Résumé. Dans [3] nous avons classifié globalement les configurations de singularités à l’infini des systèmes

différentiels quadratiques, par rapport à la relation d’équivalence géométrique. La classification globale des

configurations de singularités finies a été donée dans [2], modulo la relation d’équivalence topologique, pour

laquelle aucune distinction n’a pas été faite entre un foyer ou un neud, ou entre un foyer fort et un foyer faible

ou bien entre foyers d’ordre différents. Ces distinctions sont pourtant importantes dans la production de cycles

limites proches des foyers, dans les perturbations de ces systèmes. La relation d’équivalence geometrique de

configurations de singularités nous permet d’incorporer toutes ces charactéristiques importantes purement

algebriques. Cette relation d’équivalence est aussi plus fine que la relation d’équivalence qualitative introduite

dans [19]. Dans cet article nous initions la classification globale de toutes les configurations de singularités,

finies et infinies, utilisant la relation plus fine d’équivalence géométrique, pour la sous-classe de systèmes

differentiels quadratiques possédant des singularités finies de multiplicité totale mf ≤ 1. Nous obtenons

84 configurations distinctes géométriquement de singularités pour cette famille. Nous donnons aussi le

diagramme global de bifurcation, par rapport à la relation d’équivalence géométrique des configurations

de singularités, finies et infinies, pour cette famille de systèmes. L’ensemble des points de bifurcation est

algébrique. Le diagramme de bifurcation est réalisé dans l’espace 12-dimensionnel des paramètres et il est

exprimé en termes de polynômes invariants. Les resultats peuvent donc être appliqués à toute famille de

systèmes différentiels quadratiques avec mf ≤ 1, par rapport à n’importe quelle form normale dans laquelle

les systèmes nous sont présentés. Détérminer les configurations de singularités pour cette famille devient alors

une simple tâche utilisant le calcul symbolique à l’ordinateur.
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1. Introduction and statement of main results

We consider here differential systems of the form

(1)
dx

dt
= p(x, y),

dy

dt
= q(x, y),

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of a system (1) the integer

m = max(deg p, deg q). In particular we call quadratic a differential system (1) with m = 2. We denote here

by QS the whole class of real quadratic differential systems.

The study of the class QS has proved to be quite a challenge since hard problems formulated more than a

century ago, are still open for this class. The complete characterization of the phase portraits for real quadratic

vector fields is not known and attempting to topologically classify these systems, which occur rather often

in applications, is a very complex task. This is partly due to the elusive nature of limit cycles and partly to

the rather large number of parameters involved. This family of systems depends on twelve parameters but

due to the group action of real affine transformations and time homotheties, the class ultimately depends on

five parameters, still a rather large number of parameters. For the moment only subclasses depending on at

most three parameters were studied globally, including global bifurcation diagrams (for example [2]) . On the

other hand we can restrict the study of the whole quadratic class by focusing on specific global features of the

systems in this family. We may thus focus on the global study of singularities and their bifurcation diagram.

The singularities are of two kinds: finite and infinite. The infinite singularities are obtained by compactifying

the differential systems on the sphere or on the Poincaré disk as they are defined in Section 6.1 (see also [16]).

The global study of quadratic vector fields in the neighborhood of infinity was initiated by Nikolaev and

Vulpe in [22] where they classified topologically the singularities at infinity in terms of invariant polynomials.

Schlomiuk and Vulpe used geometrical concepts defined in [28], and also introduced some new geometrical

concepts in [29] in order to simplify the invariant polynomials and the classification. To reduce the number of

phase portraits in half, in both cases the topological equivalence relation was taken to mean the existence of a

homeomorphism carrying orbits to orbits and preserving or reversing the orientation. In [4] the authors clas-

sified topologically (adding also the distinction between nodes and foci) the whole quadratic class, according

to configurations of their finite singularities.

In the topological classification no distinction was made among the various types of foci or saddles, strong

or weak of various orders. However these distinctions, of algebraic nature, are very important in the study

of perturbations of systems possessing such singularities. Indeed, the maximum number of limit cycles which

can be produced close to the weak foci in perturbations depends on the orders of the foci.

The distinction among weak saddles is also important since for example when a loop is formed using two

separatrices of one weak saddle, the maximum number of limit cycles that can be obtained close to the loop

in perturbations is the order of weak saddle.

There are also three kinds of simple nodes as we can see in Figure 1 below where the local phase portraits

around the singularities are given.

Figure 1. Different types of nodes
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In the three phase portraits of Figure 1 the corresponding three singularities are stable nodes. These

portraits are topologically equivalent but the solution curves do not arrive at the nodes in the same way. In

the first case, any two distinct non-trivial phase curves arrive at the node with distinct slopes. Such a node

is called a star node. In the second picture all non-trivial solution curves excepting two of them arrive at the

node with the same slope but the two exception curves arrive at the node with a different slope. This is the

generic node with two directions. In the third phase portrait all phase curves arrive at the node with the

same slope.

We recall that the first and the third types of nodes could produce foci in perturbations and the first type

of nodes is also involved in the existence of invariant straight lines of differential systems. For example it can

easily be shown that if a quadratic differential system has two finite star nodes then necessarily the system

possesses invariant straight lines of total multiplicity 6.

Furthermore, a generic node may or may not have the two exceptional curves lying on the line at infinite.

This leads to two different situations for the phase portraits. For this reason we split the generic nodes at

infinity in two types.

The distinctions among the nilpotent and linearly zero singularities finite or infinite can also be refined, as

it will be seen in Section 4. Such singularities are usually called degenerate singularities so here too we call

them degenerate.

The geometric equivalence relation for finite or infinite singularities, introduced in [3], takes into account

such distinctions.

This equivalence relation is finer than the qualitative equivalence relation introduced by Jiang and Llibre

in [19] since it distinguishes among the foci of different orders and among the various types of nodes. This

equivalence relation also induces a finer distinction among the more complicated degenerate singularities.

To distinguish among the foci (or saddles) of various orders we use the algebraic concept of Poincaré-

Lyapunov constants. We call strong focus (or strong saddle) a focus with non–zero trace of the linearization

matrix at this point. Such a focus (or saddle) will be considered to have the order zero. A focus (or saddle)

with trace zero is called a weak focus (weak saddle). For details on Poincaré-Lyapunov constants and weak

foci we refer to [20].

Algebraic means, i.e. the linearization matrices at these nodes and their eigenvalues, distinguish the nodes

in Figure 1.

The finer distinctions of singularities are also algebraic in nature. In fact the whole bifurcation diagram of

the global configurations of singularities, finite and infinite, in quadratic vector fields and more generally in

polynomial vector fields can be obtained by using only algebraic means, among them, the algebraic tool of

polynomial invariants.

Algebraic information may not be significant for the local (topological) phase portrait around a singularity.

For example, topologically there is no distinction between a focus and a node or between a weak and a

strong focus. However, as indicated before, algebraic information plays a fundamental role in the study of

perturbations of systems possessing such singularities.

In [13] Coppel wrote:

”Ideally one might hope to characterize the phase portraits of quadratic systems by means of algebraic

inequalities on the coefficients. However, attempts in this direction have met with very limited success...”

This proved to be impossible to realize. Indeed, Dumortier and Fiddelers [15] and Roussarie [25] exhibited

examples of families of quadratic vector fields which have non-algebraic bifurcation sets. However, the following

is a legitimate question:

How far can we go in the global theory of quadratic (or more generally polynomial) vector fields by using

mainly algebraic means?
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For certain subclasses of quadratic vector fields the full description of the phase portraits as well as of the

bifurcation diagrams can be obtained using only algebraic tools. Examples of such classes are:

• the quadratic vector fields possessing a center [37, 26, 40, 23];

• the quadratic Hamiltonian vector fields [1, 5];

• the quadratic vector fields with invariant straight lines of total multiplicity at least four [30, 31];

• the planar quadratic differential systems possessing a line of singularities at infinity [32];

• the quadratic vector fields possessing an integrable saddle [6].

• the family of Lotka-Volterra systems [33, 34], once we assume Bautin’s analytic result saying that

such systems have no limit cycles;

In the case of other subclasses of the quadratic class QS, such as the subclass of systems with a weak focus

of order 3 or 2 (see [20, 2]) the bifurcation diagrams were obtained by using an interplay of algebraic, analytic

and numerical methods. These subclasses were of dimensions 2 and 3 modulo the action of the affine group

and time rescaling. So far no 4-dimensional subclasses of QS were studied globally so as to produce also

bifurcation diagrams and such problems are very difficult due to the number of parameters as well as the

increased complexities of these classes.

Although we now know that in trying to understand these systems, there is a limit to the power of algebraic

methods, these methods have not been used far enough. For example the global classification of singularities,

finite and infinite, using the geometric equivalence relation, which is finer than the qualitative equivalence

relation, can be done by using only algebraic methods. The first step in this direction was done in [3] where

the study of the whole class QS, according to the configurations of the singularities at infinity was obtained by

using only algebraic methods. This classification was done with respect to the geometric equivalence relation.

Our work in [3] can be extended by incorporating also the finite singularities. In this way we can obtain the

global geometric classification of all possible configurations of singularities, finite and infinite, of quadratic

differential systems, by purely algebraic means.

Our goal in this work is to take the first step in this direction by joining the results for infinite singularities

in [3] with finite singularities of total multiplicity mf ≤ 1, of quadratic differential systems.

We extend here below the notion of configuration of singularities defined in [3] only for infinite singularities,

to all singularities, both finite and infinite. We distinguish two cases:

1) If we have a finite number of infinite singular points and a finite number of finite singularities we call

configuration of singularities, finite and infinite, the set of all these singularities each endowed with its own

multiplicity together with their local phase portraits endowed with additional geometric structure involving

the concepts of tangent, order and blow–up equivalences defined in Section 4 and using the notations described

in Section 5.

2) If the line at infinity Z = 0 is filled up with singularities, in each one of the charts at infinity X 6= 0 and

Y 6= 0, the system is degenerate and we need to do a rescaling of an appropriate degree of the system, so that

the degeneracy be removed. The resulting systems have only a finite number of singularities on the line Z = 0.

In this case we call configuration of singularities, finite and infinite, the union of the set of all points at infinity

(they are all singularities) with the set of finite singularities - taking care of singling out the singularities of

the “reduced” system at infinity -, taken together with the local phase portraits of finite singularities endowed

with additional geometric structure as above and of the infinite singularities of the reduced system.

We continue to use here ISPs as a shorthand for “infinite singular points”.

We obtain the following

Main Theorem. (A) The configurations of singularities, finite and infinite, of all quadratic vector fields with

finite singularities of total multiplicity mf ≤ 1 are classified in Diagrams 1 and 2 according to the geometric

equivalence relation. We have 84 geometric distinct configurations of singularities, finite and infinite. More

precisely 32 configurations with mf = 0 and 52 with mf = 1.
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(B) For mf = 1 we have only two configurations with a center but 5 configurations with a finite integrable

saddle, and the maximum order of a weak focus (or of a weak saddle) is one.

(C) For mf = 1 we have: 4 configurations with a weak focus of order one but only 2 configurations with a

weak finite saddle of order one; 6 configurations with a strong focus but 7 configurations with a strong finite

saddle.

(D) Necessary and sufficient conditions for each one of the 84 different equivalence classes can be assembled

from Diagrams 1 and 2 in terms of 30 invariant polynomials with respect to the action of the affine group

and time rescaling, given in Section 7.

(E) The Diagrams 1 and 2 actually contain the global bifurcation diagram in the 12-dimensional space

of parameters, of the global configurations of singularities, finite and infinite, of this family (mf ≤ 1) of

quadratic differential systems.

(F ) The phase portraits in the neighborhood of the line at infinity corresponding to mf = 0 and to mf = 1

are given in Figure 2. More precisely we have:

mf = 0: Configs - 3; 4; 5; 30; 18; 28; 17; 13; 8; 24; 11; 15; 36; 35; 32; 46;

mf = 1: Configs - 2; 6; 31; 20; 14; 26; 25; 9; 23; 16; 12; 21; 39; 37; 33; 38; 45.

The invariants and comitants of differential equations used for proving our main results are obtained fol-

lowing the theory of algebraic invariants of polynomial differential systems, developed by Sibirsky and his

disciples (see for instance [35, 38, 24, 7, 12]).

2. Some geometrical concepts

In this section we use the same concepts we considered in [3] such as orbit γ tangent to a semi–line L at

p, well defined angle at p, characteristic orbit at a singular point p, characteristic angle at a singular point,

characteristic direction at p. Since these are basic concepts for the notion of geometric equivalence relation

we recall here these notions.

We assume that we have an isolated singularity p. Suppose that in a neighborhood U of p there is no other

singularity. Consider an orbit γ in U defined by a solution Γ(t) = (x(t), y(t)) such that limt→+∞ Γ(t) = p (or

limt→−∞ Γ(t) = p). For a fixed t consider the unit vector C(t) = (
−−−−−→
Γ(t)− p)/‖−−−−−→Γ(t)− p‖. Let L be a semi–line

ending at p. We shall say that the orbit γ is tangent to a semi–line L at p if limt→+∞ C(t) (or limt→−∞ C(t))

exists and L contains this limit point on the unit circle centered at p. In this case we call well defined angle

of Γ at p the angle between the positive x–axis and the semi–line L measured in the counter–clockwise sense.

We may also say that the solution curve Γ(t) tends to p with a well defined angle. A characteristic orbit at

a singular point p is the orbit of a solution curve Γ(t) which tends to p with a well defined angle. We call

characteristic angle at the singular point p a well defined angle of a solution curve Γ(t). The line through p

extending the semi-line L is called a characteristic direction.

If a singular point has an infinite number of characteristic directions, we will call it a star–like point.

It is known that the neighborhood of any isolated singular point of a polynomial vector field, which is not

a focus, a center or a star-like point, is formed by a finite number of sectors which could only be of three

types: parabolic, hyperbolic and elliptic (see [16]). It is also known that any degenerate singular point can be

desingularized by means of a finite number of changes of variables, called blow–up’s, into elementary singular

points (for more details see Section 3 or [16]).

Consider the three singular points given in Figure 3. All three are topologically equivalent and their

neighborhoods can be described as having two elliptic sectors and two parabolic ones. But we can easily

detect some geometric features which distinguish them. For example (a) and (b) have three characteristic

directions and (c) has only two. Moreover in (a) the solution curves of the parabolic sectors are tangent
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Diagram 1. Global configurations: case µ0 = µ1 = µ2 = µ3 = 0, µ4 6= 0
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Diagram 2. Global configurations: case µ0 = µ1 = µ2 = 0, µ3 6= 0
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Diagram 2 (continued). Global configurations: case µ0 = µ1 = µ2 = 0, µ3 6= 0

to only one characteristic direction and in (b) they are tangent to two characteristic directions. All these

properties can be determined algebraically.

The usual definition of a sector is of a topological nature and it is local with respect to a neighborhood

around the singular point. We work with a new definition of local sector, introduced in [3] which is of an

algebraic nature and which distinguishes the systems of Figure 3.

We call borsec (contraction of border and sector) any orbit of the original system which carried through

consecutive stages of the desingularization ends up as an orbit of the phase portrait in the final stage which

is either a separatrix or a representative orbit of a characteristic angle of a node or a of saddle–node in the

final desingularized phase portrait.

Using the concept of borsec, we define a geometric local sector with respect to a neighborhood V as a region

in V delimited by two consecutive borsecs. For example, a semi–elementary saddle–node can be topologically
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Figure 2. Topologically distinct local configurations of ISPs ([29],[32])

described as a singular point having two hyperbolic sectors and a single parabolic one. But if we add the

borsec which is any orbit of the parabolic sector, then the description would consist of two hyperbolic sectors

and two parabolic ones. This distinction will be critical when trying to describe a singular point like the one

in Figure 4 which topologically is a saddle–node but qualitatively (in the sense of [20]) is different from a

semi–elementary saddle–node.
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Figure 3. Some topologically equivalent singular points

Figure 4. Local phase portrait of a saddle-node.

Generically, a geometric local sector is defined by two borsecs arriving at the singular point with two different

well defined angles and which are consecutive. If this sector is parabolic, then the solutions can arrive at the

singular point with one of the two characteristic angles and this is a geometrical information than can be

revealed with the blow–up. In this case it may also happen that orbits arrive at the singular point in every

angle inside the sector. We will call such a sector a star–like parabolic sector and we will be denoted by P ∗.

If the sector is elliptic, then generically the solutions inside the sector will depart from and arrive at the

singular point in both characteristic angles. It may also happen that orbits arrive at the singular point in

every angle inside the sector. Such a sector will be called star–like elliptic sector and will be denoted by E∗.

There is also the possibility that two borsecs defining a geometric local sector tend to the singular point

with the same well defined angle. Such a sector will be called a cusp–like sector which can either be hyperbolic,

elliptic or parabolic respectively denoted by Hf, Ef and Pf.

Moreover, in the case of parabolic sectors we want to include the information as to whether the orbits arrive

tangent to one or to the other borsec. We distinguish the two cases writing by
x
P if they arrive tangent to the

borsec limiting the previous sector in clock–wise sense or
y
P if they arrive tangent to the borsec limiting the

next sector. In the case of a cusp–like parabolic sector, all orbits must arrive with only one well determined

angle, but the distinction between
x
P and

y
P is still valid because it occurs at some stage of the desingularization

and this can be algebraically determined. Thus, complicated degenerate singular points like the two we see

in Figure 5 may be described as
y
PE

x
P HHH (case (a)) and E

x
PfHH

y
PfE (case (b)), respectively.

Figure 5. Two phase portraits of degenerate singular points.
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A star–like point can either be a node or something much more complicated with elliptic and hyperbolic

sectors included. In case there are hyperbolic sectors, they must be cusp–like. Elliptic sectors can either be

cusp–like or star–like. So, some special angles will be relevant. We will call special characteristic angle any

well defined angle in which either none or more than one solution curve tends to p within this well defined

angle. We will call special characteristic direction any line such that at least one of the two angles defining it,

is a special characteristic angle.

3. The blow–up technique

To draw the phase portrait around an elementary hyperbolic singularity of a smooth planar vector field we

just need to use the Hartman-Grobman theorem. For an elementary non-hyperbolic singularity the system can

be brought by an affine change of coordinates and time rescaling to the form dx/dt = −y+ ..., dy/dt = x+ ...

and it is well known that in this case the singularity is either a center or a focus. One way to see this is by the

Poincaré-Lyapounov theory. In the quadratic case we can actually determine using the Poincaré-Lyapounov

constants if it is a focus or a center and then the local phase portrait is known (see [37], [26]). For higher order

systems we have the center-focus problem: we can only say that the phase portrait around the singularity is

of a center or of a focus but we cannot determine with certainty which one of the two it is.

In case of a more complicated singularity, such as a degenerate one, we need to use the blow–up technique.

This is a well known technique but since it plays such a crucial role in this work, we shall briefly describe it

here. We are using this technique in a slightly modified (actually simplified) way to lighten the calculations.

This slightly modified way is in complete agreement with the usual blow–up procedure.

The idea behind the blow–up technique is to replace a singular point p by a circle or by a line on which

the “composite” degenerate singularity decomposes (ideally) into a finite number of simpler singularities pi.

For this idea to work we need to construct a new surface, on which we have a diffeomorpic copy of our vector

field on R2\{p} or at least on the complement of a line passing through p, and whose associated foliation with

singularities extends also to the circle (or to a line) which replaces the point p on the new surface.

One way to do this is to use polar coordinates. Clearly we may assume that the singularity is placed at

the origin. Consider the map φ : S1 × R −→ R2 defined by φ(θ, r) 7→ (r cos θ, r sin θ). Restrictions of this

map φ on S1 × (0,∞) and on S1 × (−∞, 0) are diffeomeorphisms, mapping the upper, respectively lower part

of the cylinder on R2\{(0, 0)}. But φ−1(0, 0) is the circle S1 × {0}. This application defines a diffeomorphic

vector field on the upper part of the cylinder S1 × R. In fact this is the passing to polar coordinates. The

resulting smooth vector field extends to the whole cylinder just by allowing r to be negative or zero. This

full vector field on the cylinder has either a finite number of singularities on the circle (this occurs when the

initial singular point is nilpotent) or the circle is filled up with singularities (when we start with a point for

which the linear part of the system at this point vanishes). In this latter case we need to work with the

reduced system obtained by dividing the right hand side of the equations by a factor rs with an adequate s to

obtain a finite number of singularities. Since R2 \ {(0, 0)} is diffeomorphic to the upper part of the cylinder

we only need to consider r > 0 for which this factor rs is also positive. Removing this factor does not affect

the nature of the orbits and their orientation. The map φ collapses the circle on the cylinder (and hence

the singularities located on this circle) to the origin of coordinates in the plane. In case the phase portraits

around the singularities on the circle can be drawn then the inverse process of blowing down the upper side

of the cylinder completed with the circle allows us to draw the portrait around the origin of R2. In case the

singularities on the circle are still degenerate, we need to repeat the process a finite number of times. This is

guaranteed by the theorem of desingularization of singularities (see [10] and [14])

The blow–up by polar coordinates is simple, leading to a simple surface (the cylinder), on which a diffeo-

morphic copy of our vector field on R2\{(0, 0)} extends to a vector field on the full cylinder. The origin of

the plane ”blows-up” to the circle φ−1(0, 0) on which the singularity splits into several simpler singularities.
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The visualization of this blow–up is easy. But this process has the disadvantage of using the transcendental

functions: cos and sin and in case several such blow–ups are needed this is computationally very inconvenient.

It would be more advantageous to use a construction involving rational functions. More difficult to visualize,

this algebraic blow–up is computationally simpler, using only rational transformations. The blow-up in this

case starts with a directional blow–up of a point of the plane, by this meaning that in this case to replace the

point with a line sitting on a manifold playing the role of the cylinder in the preceding case.

Consider the algebraic surface S in R3 defined by the equation y = xz. We may think of this surface as

being here the analogue of the cylinder in the polar blow-up. Like the cylinder, S is a differentiable manifold.

Indeed, π1,3 : S → R2, is a global chart for this manifold. We observe that the line Lz = {(0, 0, z)|z ∈ R} (the

z-axis in R3), lies on S. The projection π1,2 : S → R2, π1,2(x, xz, z) = (x, xz) collapses the z-axis to the point

(0, 0). The line Lz may be thought here as the analogue of the circle in the polar blow-up construction. The

restriction

ψ = π1,2
∣∣
S\Lz

: S \ Lz −→ R2 \ {x = 0}
of π1,2 to S\Lz is a diffeomorphism with inverse ψ−1(x, y) = (x, y, y/x) transferring our vector field restricted

to the open set x 6= 0 of the plane (x, y) to a diffeomorphic vector field on S\Lz. The map π1,3 ◦ ψ−1 carries

our vector field on the plane (x, y), restricted to x 6= 0, to a diffeomorphic vector field on the open set x 6= 0

of the plane (x, z). This is actually the vector field on S \ Lz calculated in the chart given by π1,3.

We now compute this vector field on the plane (x, z). We start with a polynomial differential system of the

form (1) with a degenerate singular point at the origin (0, 0). We have p(x, y) = p1(x, y) + . . .+ pn(x, y) and

q(x, y) = q1(x, y)+ . . .+ qn(x, y) where pi(x, y) and qi(x, y) (for i = 1 . . . , n) are the sums of the homogeneous

terms involving xryl with r + l = i of p and q. We call the starting degree of (1) the positive integer m such

that (pm(x, y), qm(x, y)) 6= (0, 0) but (pi(x, y), qi(x, y)) = (0, 0) for i = 0, 1, . . . ,m− 1.

This differential system when transferred on S and calculated in the chart π1,3 by using y = xz becomes:

dx/dt = xm(pm(1, z) + . . .+ xn−mpn(1, z)),

dz/dt = xm−1[qm(1, z) + . . .+ xn−mqn(1, z)− zx(pm(1, z) + . . .+ xn−mpn(1, z))],

because dy/dt = d(xz)/dt = zdx/dt+ xdz/dt. This system is defined over the whole plane (x, z) and in case

m > 1 the line x = 0 (the z-axis in the plane (x, z)), is filled up with singularities. If m = 1 then p1(x, y) and

q1(x, y) cannot be both identically zero. If q1(x, y) ≡ 0 then q1(1, z) ≡ 0 and again we must have the z-axis

filled up with singularities. But if q1(x, y) = ax+ by is not identically zero, then (a, b) 6= (0, 0). If b 6= 0 then

q1(1, z) = a+ bz and (0,−a/b) is the unique singular point on the z-axis. If however b = 0 then q1(x, y) = ax

and hence q1(1, z) = a 6= 0 and we have no singular point on the z-axis. So for a nilpotent point with m = 1

we either get an infinite number of singularities or a unique singularity or no singularity on the z-axis.

Just like in the polar blow-up when we eliminated the common factor rs, here we eliminate the common

factor xm−1 (or xm in case qm(x, y) ≡ 0 but pm is not identically zero. But in doing so we need to take some

precautions which we explain below. Consider the system above and its associated ”reduced” system

(2)
dx/dt = x

[
pm(1, z) + . . .+ pn(1, z)

]
,

dz/dt = qm(1, z) + . . .+ xn−mqn(1, z)− z
[
pm(1, z) + . . .+ xn−mpn(1, z)

]
,

obtained by removing the common factor xm−1 on the right side of the equations. We observe that for x > 0

the two systems have the same orbits and their orbits have the same orientations, but the orbits are described

by the solutions of the two systems with different speeds so we have a time change (rescaling). If m is even

then m − 1 is odd and hence xm−1 is negative for x < 0 and the orbits of the two systems for x < 0 are

described by the solutions of the two differential systems with opposite orientations. We need to take care of

this when at the end we blow down the line to the point (0, 0). At the points on the z-axis (x = 0) for which

qm(1, z) = 0 we have singularities. The finite number of singularities obtained in this way for the reduced

system is analogous to the finite number of singularities on the circle we obtained in the reduced system in
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the polar blow-up. Thus the singular point at the origin is blown-up to a finite number of singularities on the

z-axis of the plane (x, z). We call this the directional blow-up in the direction of y-axis of the plane (x, y).

In this blow-up construction the y-axis was excluded. Indeed, the surface S does not contain the y-axis

and we have a copy of our vector field on S only for the complement in the plane (x, y) of the y-axis, i.e only

on the open set x 6= 0. However, by doing an analogous blow-up in the direction of x-axis, the y-axis can be

included. The two blow-ups can then be glued so as to obtain a complete blow-up on a Möbius band which

will in this case be the full analogue of the cylinder in the polar blow-up. The circle at the center of the

Möbius band is then viewed as the space P1(R) of all directions in the plane (x, y). To see here the need of

this twisting on the Möbius band we observe that the map π1,3 ◦ ψ−1 sends the left side of the y-axis in the

(x, y) plane to the left side of the z-axis on the (x, z) plane. While sending the semi-line y = 0 and x < 0 to

the semi-line z = 0 and x < 0 this map flips the second and third quadrant in the (x, z) plane. Indeed, the

second (respectively third) quadrant in the (x, y) plane are sent to the third (respectively second) quadrant

in the (x, z) plane. In this work we use a procedure, a sort of shortcut, to be explained further below which

enables us to manage without the Möbius band.

The equation giving us the singular points on the z-axis in the (x, z) plane according to (2) is zpm(1, z)−
qm(1, z) = 0 and going back to the (x, y) coordinates by replacing z = y/x (for x 6= 0) we get the equation

ypm(x, y)− xqm(x, y) = 0.

The polynomial PCD(x, y) = ypm(x, y)−xqm(x, y), where m is the starting degree of a system of the form

(1), is called the Polynomial of Characteristic Directions of (1). In case PCD(x, y) 6≡ 0 the factorization of

PCD(x, y) gives the characteristic directions at the origin. So, in order to be sure that the y–axis is not a

characteristic direction we only need to show that x is not a factor of PCD(x, y). In case it is, we need to

do a linear change of variables which moves this direction out of the vertical axis and does not place any

other characteristic direction on this axis. If all the directions are characteristic, i.e. PCD(x, y) ≡ 0, then the

degenerate point will be star–like and at least two blow–ups must be done to obtain the desingularization.

Anyway, in quadratic systems there are no degenerate star–like singular points which are degenerate. So, the

number of characteristic directions is finite and there exists the possibility to make such a linear change. We

will use changes of the type (x, y) → (x + ky, y) where k is some number (usually 1). It seems natural to

call this linear change a k–twist as the y–axis gets twisted with some angle depending on k. It is obvious

that the phase portrait of the degenerate point which is studied cannot depend on the set of k’s used in the

desingularization process.

Once we are sure that we have no characteristic direction on the y–axis we do the directional blow–up

(x, y) = (x, xz). This change sends the x axis of the (x, y) plane to the X axis of the (x, z) plane and

replaces the singular point (0, 0) with a whole vertical axis in the (x, z) plane. The old orbits which arrived

at (0, 0) with a well defined slope s now arrive at the singular point (0, s) of the new system. Studying these

new singular points, one can determine the local behavior around them and their separatrices which after the

blow–down describe the behavior of the orbits around the original singular point up to geometrical equivalence

(for definition see next section). Often one needs to do a tree of blow–up’s (combined with some translation

and/or twists) if some of the singular points which appear on x = 0 after the first blow–up are also degenerate.

4. Equivalence relations for singularities of planar polynomial vector fields

We first recall the topological equivalence relation as it is used in most of the literature. Two singularities

p1 and p2 are topologically equivalent if there exist open neighborhoods N1 and N2 of these points and a

homeomorphism Ψ : N1 → N2 carrying orbits to orbits and preserving their orientations. To reduce the

number of cases, by topological equivalence we shall mean here that the homeomorphism Ψ preserves or

reverses the orientation. We observe that this second notion which is usually used in the literature on

classification problems of polynomial vector fields (see [19, 2]), does dot conserve stability.
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In [19] Jiang and Llibre introduced another equivalence relation for singularities which is finer than the

topological equivalence:

We say that p1 and p2 are qualitatively equivalent if i) they are topologically equivalent through a local

homeomorphism Ψ; and ii) two orbits are tangent to the same straight line at p1 if and only if the corresponding

two orbits are also tangent to the same straight line at p2.

We say that two simple finite nodes, with the respective eigenvalues λ1, λ2 and σ1, σ2, of a planar polynomial

vector field are tangent equivalent if and only if they satisfy one of the following three conditions: a) (λ1 −
λ2)(σ1 − σ2) 6= 0; b) λ1 − λ2 = 0 = σ1 − σ2 and both linearization matrices at the two singularities are

diagonal; c) λ1 − λ2 = 0 = σ1 − σ2 and the corresponding linearization matrices are not diagonal.

We say that two infinite simple nodes P1 and P2 are tangent equivalent if and only if their corresponding

singularities on the sphere are tangent equivalent and in addition, in case they are generic nodes, we have

(|λ1| − |λ2|)(|σ1| − |σ2|) > 0 where λ1 and σ1 are the eigenvalues of the eigenvectors tangent to the line at

infinity.

Finite and infinite singular points may either be real of complex. In case we have a complex singular point

we will specify this with the symbols c© and c© for finite and infinite points respectively. We point out that the

sum of the multiplicities of all singular points of a quadratic system with a finite number of singular points,

is always 7. (Here of course we refer to the compactification on the complex projective plane P2(C) of the

foliation with singularities associated to the complexification of the vector field, see Section 6.1). The sum of

the multiplicities of the infinite singular points is always at least 3, more precisely it is always 3 plus the sum

of the multiplicities of the finite points disappeared at infinity.

We use here the following terminology for singularities:

We call elemental a singular point with its both eigenvalues not zero;

We call semi–elemental a singular point with exactly one of its eigenvalues equal to zero;

We call nilpotent a singular point with both its eigenvalues zero but with its Jacobian matrix at that

point not identically zero;

We call intricate a singular point with its Jacobian matrix identically zero.

The intricate singularities are usually called in the literature linearly zero. We use here the term intricate

to indicate the rather complicated behavior of phase curves around such a singularity.

Roughly speaking a singular point p of an analytic differential system χ is a multiple singularity of multi-

plicity m if p generates m singularities, as closed to p as we wish, in analytic perturbations χε of this system

and m is the maximal such number. In polynomial differential systems of fixed degree n we have several

possibilities for obtaining multiple singularities. i) A finite singular point splits into several finite singularities

in n-degree polynomial perturbations. ii) An infinite singular point splits into some finite and some infinite

singularities in n-degree polynomial perturbations. iii) An infinite singularity splits only in infinite singular

points of the systems in n-degree perturbations. To all these cases we can give a precise mathematical meaning

using the notion of intersection multiplicity at a point p of two algebraic curves (see [27], [28]).

We will say that two foci (or saddles) are order equivalent if their corresponding orders coincide.

Semi–elemental saddle–nodes are always topologically equivalent.

To define the notion of geometric equivalence relation of singularities we first define for nilpotent and intricate

singular points, the notion of blow–up equivalence. We start by having a degenerate singular point p1 at the

origin of the plane of coordinates (x0, y0), such that p1 has a finite number of characteristic directions. We

define an ε-twist as a k-twist with k small enough so that no characteristic direction (or special characteristic

direction in case of a star point) with negative slope is moved to positive slope. Then if x0 = 0 is a characteristic

direction, we do an ε-twist. After the blow–up (x0, y0) = (x1, y1x1) the singular point is replaced by the
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straight line x1 = 0 in the plane (x1, y1). The neighborhood of the straight line x1 = 0 in the projective plane

obtained identifying the opposite infinite points of the Poincaré disk is a Möebius band M1.

The straight line x1 = 0 will be invariant and may be formed by a continuum of singular points. In that

case, with a time change, this degeneracy may be removed and the y1–axis will remain invariant.

Now we have a number k1 of singularities located on the affine axis x1 = 0. We do not include the infinite

singular point which is the origin of the local chart U2 at infinity (Y 6= 0) because we already know that it

does not play any role in understanding the local phase portrait of the singularity p1. We can then list the k1

singularities as p1,1, p1,2, ..., p1,k1 with decreasing order of the y1 coordinate. The p1,i is adjacent to p1,i+1 in

the usual sense and p1,k1 is also adjacent to p1,1 on the Möebius band.

Assume now that we have a degenerate singular point p1 at the origin of the plane (x0, y0) with an infinite

number of characteristic directions. Then if x0 = 0 is a special characteristic direction, we do an ε-twist.

After the blow–up (x0, y0) = (x1, y1x1) the singular point is replaced by the straight line x1 = 0 in the plane

(x1, y1). The neighborhood of the straight line x1 = 0 in the projective plane obtained identifying the opposite

infinite points of the Poincaré disk is a Möebius band M1.

The straight line x1 = 0 will be invariant and formed by a continuum of singular points. In that case, with

a time change, this degeneracy may be removed and the y1–axis will no longer be invariant.

Now we have a set of cardinality k1 formed by singularities located on the axis x1 = 0 plus contact points

of the flow with the axis x1 = 0. Again we do not include the infinite singular point at the origin of the local

chart U2 at infinity (Y 6= 0) because we already know that it does not play any role in understanding the local

phase portrait of the singularity p1. We list again the k1 points as p1,1, p1,2, ..., p1,k1 with decreasing order of

the y1 coordinate. The p1,i is adjacent to p1,i+1 in the usual sense and p1,k1 is also adjacent to p1,1 by the

Möebius band.

Let p2 be a degenerate singularity of another polynomial vector field and suppose that it is located at the

origin of the plane (x̄0, ȳ0).

The next definition works whether the singular points are star–like or not.

We say that p1 and p2 are one step blow–up equivalent if modulus a rotation with center p2 (before the

blow–up) and a reflection (if needed) we have:

(i) the cardinality k1 from p1 equals the cardinality k2 from p2;

(ii) we can construct a homeomorphism φ1p1
: M1 → M2 such that φ1p1

({x1 = 0}) = {x̄1 = 0}, φ1p1
sends

the points p1,i to p2,i and the phase portrait in a neighborhood U of the axis x1 = 0 is topologically

equivalent to the phase portrait on φ1p1
(U);

(iii) φ1p1
sends an elemental (respectively semi–elemental, nilpotent or intricate) singular point to an ele-

mental (respectively semi–elemental, nilpotent or intricate) singular point;

(iv) φ1p1
sends a contact point to a contact point.

Assuming p1,j and φ
1
p1
(p1,j) = p2,j are both intricate or both nilpotent, then the process of desingularization

(blow–up) must be continued.

We do exactly the same study we did before for p1 and p2 now for p1,j and p2,j . We move them to the

respective origins of the planes (x1, y1) and (x̄1, ȳ1) and we determine whether they are one step blow–up

equivalent or not.

If successive degenerate singular points appear from desingularization of p1 we do the same kind of changes

that we did for p1,j and apply the corresponding definition of one step blow–up equivalence. This is repeated

until after a finite number of blow–up’s all the singular points that appear are elemental or semi–elemental.

We say that two singularities p1 and p2, both nilpotent or both intricate, of two polynomial vector fields

χ1 and χ2, are blow–up equivalent if and only if

(i) they are one step blow–up equivalent;
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(ii) at each level j in the process of desingularization of p1 and of p2, two singularities which are related

via the corresponding homeomorphism are one step blow–up equivalent.

Definition 1. Two singularities p1 and p2 of two polynomial vector fields are locally geometrically equivalent if

and only if they are topologically equivalent, they have the same multiplicity and one of the following conditions

is satisfied:

• p1 and p2 are order equivalent foci (or saddles);

• p1 and p2 are tangent equivalent simple nodes;

• p1 and p2 are both centers;

• p1 and p2 are both semi–elemental singularities;

• p1 and p2 are blow–up equivalent nilpotent or intricate singularities.

We say that two infinite isolated singularities P1 and P2 of two polynomial vector fields are blow–up equiv-

alent if they are blow–up equivalent finite singularities in the corresponding infinite local charts and the

number, type and ordering of sectors on each side of the line at infinity of P1 coincide with those of P2.

Definition 2. Let χ1 and χ2 be two polynomial vector fields each having a finite number of singularities. We

say that χ1 and χ2 have geometric equivalent configurations of singularities if and only if we have a bijection

ϑ carrying the singularities of χ1 to singularities of χ2 and for every singularity p of χ1, ϑ(p) is geometric

equivalent with p.

5. Notations for singularities of polynomial differential systems

In this work we encounter all the possibilities we have for the geometric features of both the finite and the

infinite singularities in the whole quadratic class as well as the way they assemble in systems of this class. Since

we want to describe precisely these geometric features and in order to facilitate understanding, it is important

to have a clear, compact and congenial notation which conveys easily the information. The notation we use,

even though it is used here to describe finite and infinite singular points of quadratic systems, can easily be

extended to general polynomial systems.

We describe the finite and infinite singularities, denoting the first ones with lower case letters and the second

with capital letters. When describing in a sequence both finite and infinite singular points, we will always

place first the finite ones and only later the infinite ones, separating them by a semicolon‘;’.

Elemental points: We use the letters ‘s’,‘S’ for “saddles”; ‘n’, ‘N ’ for “nodes”; ‘f ’ for “foci”; ‘c’ for

“centers” and c© (respectively c©) for complex finite (respectively infinite) singularities. In order to augment

the level of precision we will distinguish the finite nodes as follows:

• ‘n’ for a node with two distinct eigenvalues (generic node);

• ‘nd’ (a one–direction node) for a node with two identical eigenvalues whose Jacobian matrix is not

diagonal;

• ‘n∗’ (a star–node) for a node with two identical eigenvalues whose Jacobian matrix is diagonal.

Moreover, in the case of an elemental infinite generic node, we want to distinguish whether the eigenvalue

associated to the eigenvector directed towards the affine plane is, in absolute value, greater or lower than the

eigenvalue associated to the eigenvector tangent to the line at infinity. This is relevant because this determines

if all the orbits except one on the Poincaré disk arrive at infinity tangent to the line at infinity or transversal

to this line. We will denote them as ‘N∞’ and ‘Nf ’ respectively.

Finite elemental foci and saddles are classified as strong or weak foci, respectively strong or weak saddles.

When the trace of the Jacobian matrix evaluated at those singular points is not zero, we call them strong

saddles and strong foci and we maintain the standard notations ‘s’ and ‘f .’ But when the trace is zero, except

for centers and saddles of infinite order (i.e. saddles with all their Poincaré-Lyapounov constants equal to
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zero), it is known that the foci and saddles, in the quadratic case, may have up to 3 orders. We denote them

by ‘s(i)’ and ‘f (i)’ where i = 1, 2, 3 is the order. In addition we have the centers which we denote by ‘c’ and

saddles of infinite order (integrable saddles) which we denote by ‘$’.

Foci and centers cannot appear as singular points at infinity and hence there is no need to introduce their

order in this case. In case of saddles, we can have weak saddles at infinity but the maximum order of weak

singularities in cubic systems is not yet known. For this reason, a complete study of weak saddles at infinity

cannot be done at this stage. Due to this, in this work we shall not even distinguish between a saddle and a

weak saddle at infinity.

All non–elemental singular points are multiple points, in the sense that there are perturbations which have

at least two elemental singular points as close as we wish to the multiple point. For finite singular points we

denote with a subindex their multiplicity as in ‘s(5)’ or in ‘ês(3)’ (the notation ‘ ’ indicates that the saddle

is semi–elemental and ‘ês(3)’ indicates that the singular point is nilpotent). In order to describe the various

kinds of multiplicity for infinite singular points we use the concepts and notations introduced in [29]. Thus we

denote by ‘
(
a
b

)
...’ the maximum number a (respectively b) of finite (respectively infinite) singularities which

can be obtained by perturbation of the multiple point. For example ‘
(
1
1

)
SN ’ means a saddle–node at infinity

produced by the collision of one finite singularity with an infinite one; ‘
(
0
3

)
S’ means a saddle produced by the

collision of 3 infinite singularities.

Semi–elemental points: They can either be nodes, saddles or saddle–nodes, finite or infinite. We will

denote the semi–elemental ones always with an overline, for example ‘sn’, ‘s’ and ‘n’ with the corresponding

multiplicity. In the case of infinite points we will put ‘ ’ on top of the parenthesis with multiplicities.

Moreover, in cases that will be explained later (see page 18), an infinite saddle–node may be denoted by

‘
(
1
1

)
NS’ instead of ‘

(
1
1

)
SN ’. Semi–elemental nodes could never be ‘nd’ or ‘n∗’ since their eigenvalues are always

different. In case of an infinite semi–elemental node, the type of collision determines whether the point is

denoted by ‘Nf ’ or by ‘N∞’ where ‘
(
2
1

)
N ’ is an ‘Nf ’ and ‘

(
0
3

)
N ’ is an ‘N∞’.

Nilpotent points: They can either be saddles, nodes, saddle–nodes, elliptic–saddles, cusps, foci or centers.

The first four of these could be at infinity. We denote the nilpotent singular points with a hat ‘̂’ as in ês(3)
for a finite nilpotent elliptic–saddle of multiplicity 3 and ĉp(2) for a finite nilpotent cusp point of multiplicity

2. In the case of nilpotent infinite points, we will put the ‘̂’ on top of the parenthesis with multiplicity, for

example
(̂
1
2

)
PEP −H (the meaning of PEP −H will be explained in next paragraph). The relative position

of the sectors of an infinite nilpotent point, with respect to the line at infinity, can produce topologically

different phase portraits. This forces us to use a notation for these points similar to the notation which we

will use for the intricate points.

Intricate points: It is known that the neighborhood of any singular point of a polynomial vector field

(except for foci and centers) is formed by a finite number of sectors which could only be of three types:

parabolic, hyperbolic and elliptic (see [16]). Then, a reasonable way to describe intricate and nilpotent points

is to use a sequence formed by the types of their sectors. The description we give is the one which appears

in the clock–wise direction (starting anywhere) once the blow–down of the desingularization is done. Thus

in non degenerate quadratic systems, we have just seven possibilities for finite intricate singular points of

multiplicity four (see [4]) which are the following ones:

• a) phpphp(4);

• b) phph(4);

• c) hh(4);

• d) hhhhhh(4);

• e) peppep(4);

• f) pepe(4);

• g) ee(4).
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We use lower case letters because of the finite nature of the singularities and add the subindex (4) since

they are all of multiplicity 4.

For infinite intricate and nilpotent singular points, we insert a dash (hyphen) between the sectors to split

those which appear on one side or the other of the equator of the sphere. In this way we will distinguish

between
(
2
2

)
PHP − PHP and

(
2
2

)
PPH − PPH .

Whenever we have an infinite nilpotent or intricate singular point, we will always start with a sector

bordering the infinity (to avoid using two dashes). When one needs to describe a configuration of singular

points at infinity, then the relative positions of the points, is relevant in some cases. In [3] this situation only

occurs once for systems having two semi–elemental saddle–nodes at infinity and a third singular point which

is elemental. In this case we need to write NS instead of SN for one of the semi–elemental points in order

to have coherence of the positions of the parabolic (nodal) sector of one point with respect to the hyperbolic

(saddle) of the other semi–elemental point. More concretely, Figure 3 from [29] (which corresponds to Config.

3 in Figure 2) must be described as
(
1
1

)
SN,

(
1
1

)
SN, N since the elemental node lies always between the

hyperbolic sectors of one saddle–node and the parabolic ones of the other. However, Figure 4 from [29] (which

corresponds to Config. 4 in Figure 2) must be described as
(
1
1

)
SN,

(
1
1

)
NS, N since the hyperbolic sectors of

each saddle–node lie between the elemental node and the parabolic sectors of the other saddle–node. These

two configurations have exactly the same description of singular points but their relative position produces

topologically (and geometrically) different portraits.

For the description of the topological phase portraits around the isolated singular points the information

described above is sufficient. However we are interested in additional geometrical features such as the number

of characteristic directions which figure in the final global picture of the desingularization. In order to add

this information we need to introduce more notation. If two borsecs (the limiting orbits of a sector) arrive

at the singular point with the same slope and direction, then the sector will be denoted by Hf, Ef or Pf.
The index in this notation refers to the cusp–like form of limiting trajectories of the sectors. Moreover, in

the case of parabolic sectors we want to make precise whether the orbits arrive tangent to one borsec or to

the other. We distinguish the two cases by
x
P if they arrive tangent to the borsec limiting the previous sector

in clock–wise sense or
y
P if they arrive tangent to the borsec limiting the next sector. Clearly, a parabolic

sector denoted by P ∗ would correspond to a sector in which orbits arrive with all possible slopes between the

those of the borsecs. In the case of a cusp–like parabolic sector, all orbits must arrive with only one slope,

but the distinction between
x
P and

y
P is still valid if we consider the different desingularizations we obtain

from them. Thus, complicated intricate singular points like the two we see in Figure 5 may be described as(
4
2

) y
PE

x
P −HHH (case (a)) and

(
4
3

)
E

x
PfH−H

y
PfE (case (b)), respectively.

The lack of finite singular points will be encapsulated in the notation ∅. In the cases we need to point out

the lack of an infinite singular point, we will use the symbol ∅.
Finally there is also the possibility that we have an infinite number of finite or of infinite singular points. In

the first case, this means that the polynomials defining the differential system are not coprime. Their common

factor may produce a line or conic with real coefficients filled up with singular points.

Line at infinity filled up with singularities: It is known that any such system has in a sufficiently small

neighborhood of infinity one of 6 topological distinct phase portraits (see [32]). The way to determine these

portraits is by studying the reduced systems on the infinite local charts after removing the degeneracy of the

systems within these charts. In case a singular point still remains on the line at infinity we study such a point.

In [32] the tangential behavior of the solution curves was not considered in the case of a node. If after the

removal of the degeneracy in the local charts at infinity a node remains, this could either be of the type Nd,

N and N? (this last case does not occur in quadratic systems as it was shown in [3]). Since no eigenvector

of such a node N (for quadratic systems) will have the direction of the line at infinity we do not need to

distinguish Nf and N∞. Other types of singular points at infinity of quadratic systems, after removal of the

degeneracy, can be saddles, centers, semi–elemental saddle–nodes or nilpotent elliptic–saddles. We also have
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the possibility of no singularities after the removal of the degeneracy. To convey the way these singularities

were obtained as well as their nature, we use the notation [∞; ∅], [∞; N ], [∞; Nd], [∞; S], [∞; C], [∞;
(
1
0

)
SN ]

or [∞;
(̂
3
0

)
ES].

Degenerate systems: We will denote with the symbol 	 the case when the polynomials defining the

system have a common factor. This symbol stands for the most generic of these cases which corresponds to a

real line filled up with singular points. The degeneracy can also be produced by a common quadratic factor

which defines a conic. It is well known that by an affine transformation any conic over R can be brought to one

of the following forms: x2+y2−1 = 0 (real ellipse), x2+y2+1 = 0 (complex ellipse), x2−y2 = 1 (hyperbola),

y − x2 = 0 (parabola), x2 − y2 = 0 (pair of intersecting real lines), x2 + y2 = 0 (pair of intersecting complex

lines), x2 − 1 = 0 (pair of parallel real lines), x2 + 1 = 0 (pair of parallel complex lines), x2 = 0 (double line).

We will indicate each case by the following symbols:

•	[|] for a real straight line;

•	[◦] for a real ellipse;

•	[ c©] for a complex ellipse;

•	[ )( ] for an hyperbola;

•	[∪] for a parabola;

•	[×] for two real straight lines intersecting at a finite point;

•	[· ] for two complex straight lines which intersect at a real finite point.

•	[‖] for two real parallel lines;

•	[‖c] for two complex parallel lines;

•	[|2] for a double real straight line.

Moreover, we also want to determine whether after removing the common factor of the polynomials, singular

points remain on the curve defined by this common factor. If the reduced system has no finite singularity on

this curve, we will use the symbol ∅ to describe this situation. If some singular points remain we will use the

corresponding notation of their types. As an example we complete the notation above as follows:

•
(	 [|];∅

)
denotes the presence of a real straight line filled up with singular points such that the reduced

system has no singularity on this line;

•
(	 [|]; f

)
denotes the presence of the same straight line such that the reduced system has a strong

focus on this line;

•
(	 [∪];∅

)
denotes the presence of a parabola filled up with singularities such that no singular point of

the reduced system is situated on this parabola.

Degenerate systems with non–isolated singular points at infinity, which are however isolated

on the line at infinity: The existence of a common factor of the polynomials defining the differential system

also affects the infinite singular points. We point out that the projective completion of a real affine line filled

up with singular points has a point on the line at infinity which will then be also a non–isolated singularity.

In order to describe correctly the singularities at infinity, we must mention also this kind of phenomena

and describe what happens to such points at infinity after the removal of the common factor. To show the

existence of the common factor we will use the same symbol 	 as before, and for the type of degeneracy

we use the symbols introduced above. We will use the symbol ∅ to denote the non–existence of real infinite

singular points after the removal of the degeneracy. We will use the corresponding capital letters to describe

the singularities which remain there. Let us take note that a simple straight line, two parallel lines (real

or complex), one double line or one parabola defined by the common factor (all taken over the reals) imply

the existence of one real non–isolated singular point at infinity in the original degenerate system. However a

hyperbola and two real straight lines intersecting at a finite point imply the presence of two real non–isolated

singular points at infinity in the original degenerate system. Finally, a complex ellipse and two complex

straight lines which intersect at a real finite point imply the presence of two complex non–isolated singular
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points at infinity in the original degenerate system. Thus, in the reduced system these points may disappear

as singularities and in case they remain, they must be described. For the first four cases mentioned above we

will give the description of the corresponding infinite point. In the next four cases we will give the description

of the corresponding two singular points. As agreed, we will use capital letters to denote them since they are

on the line at infinity. We give below some examples:

• Nf , S,
(	 [|]; ∅

)
means that the system has a node at infinity such that an infinite number of orbits

arrive tangent to the eigenvector in the affine part, a saddle, and one non–isolated singular point

which belongs to a real affine straight line filled up with singularities, and that the reduced linear

system has no infinite singular points in that position;

• S,
(	 [|];N∗) means that the system has a saddle at infinity, and one non–isolated singular point

which belongs to a real affine straight line filled up with singularities, and that the reduced linear

system has a star node in that position;

• S,
(	 [ )( ]; ∅, ∅

)
means that the system has a saddle at infinity, and two non–isolated singular points

which belong to a hyperbola filled up with singularities, and that the reduced constant system has no

singularities in those positions;

•
(	 [×];N∗, ∅

)
means that the system has two non–isolated singular points at infinity which belong to

two real intersecting straight lines filled up with singularities, and that the reduced constant system

has a star node in one of those positions and no singularities in the other;

• S,
(	 [◦]; ∅, ∅

)
means that the system has a saddle at infinity, and two non–isolated (complex) singular

points which are located on the complexification of a real ellipse which has no real points at infinity,

and the reduced constant system has no singularities in those positions.

When there is a non–isolated infinite singular point such that the reduced system has a singularity at that

position, it may happen that one or several characteristic directions at this point, directed towards the affine

plane, could coincide with a tangent line to the curve of singularities at this point. This situation could

produce many different geometrical (or even topological) combinations but in the quadratic case we only have

a few of them for which we introduce a coherent notation. This notation can be further developed for higher

degree systems. In quadratic systems we only need to distinguish among some situations in which, after the

removal of the degeneracy, a characteristic direction of the infinite singular point may coincide or may not

coincide with a tangent line to the curve of singularities at this point. We show in Figure 6 two cases that

need to be distinguished (case (a) and (b)). Here we will use a numerical subscript which denotes the cardinal

number K of the union of the set of characteristic directions, together with the set of tangent lines to the

curve of singularities at this point, all of them considered in a neighborhood of the point at infinity on the

Poincaré sphere. The singularities at infinity of examples (a) and (b) of Figure 6 would then be denoted by

S,
(	 [|];N∞

3

)
(case (a)) and S,

(	 [|];N∞
2

)
(case (b)).

Figure 6

Degenerate systems with the line at infinity filled up with singularities: For a quadratic system

this implies that the polynomials must have a common linear factor and there are only two possible phase

portraits, which can be seen in Figure 6 (the portraits (c) and (d)). In order to be consistent with our
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notation and considering generalization to higher degree systems, we describe the two cases in a way coherent

with what we have done up to now.

The case (c) is denoted by [∞;
(	 [|]; ∅3

)
] which means:

• the line at infinity is filled up with singular points;

• the reduced quadratic system has on one of the infinite local charts a non–isolated singular point on

the line at infinity due to the affine line of degeneracy;

• once the original system at infinity is reduced to a linear one by removing the common factor, the

infinity continues to be filled up with singular points;

• once the system on a local chart around the singularity which is common to both lines filled up with

singular points, is reduced by completely removing the degeneracy, there is no singular point on that

intersection;

• the cardinal number K is 3. This means that apart from the line of singularities and the line at

infinity, we have another characteristic direction pointing towards the affine plane.

The second case is denoted by [∞;
( 	 [|]; ∅2

)
], which means exactly the same items as above with the

exception that cardinal number K is 2. That is, beyond the line of singularities and the line at infinity, we

have no other characteristic direction.

6. Assembling multiplicities for global configurations

of singularities at infinity using divisors

The singular points at infinity belong to compactifications of planar polynomial differential systems, defined

on the affine plane. We begin this section by briefly recalling these compactifications.

6.1. Compactifications associated to planar polynomial differential systems.

6.1.1. Compactification on the sphere and on the Poincaré disk. Planar polynomial differential systems (1)

can be compactified on the sphere. For this we consider the affine plane of coordinates (x, y) as being the

plane Z = 1 in R3 with the origin located at (0, 0, 1), the x–axis parallel with the X–axis in R3, and the

y–axis parallel to the Y –axis. We use central projection to project this plane on the sphere as follows: for

each point (x, y, 1) we consider the line joining the origin with (x, y, 1). This line intersects the sphere in two

points P1 = (X,Y, Z) and P2 = (−X,−Y,−Z) where (X,Y, Z) = (1/
√
x2 + y2 + 1)(x, y, 1). The applications

(x, y) 7→ P1 and (x, y) 7→ P2 are bianalytic and associate to a vector field on the plane (x, y) an analytic vector

field Ψ on the upper hemisphere and also an analytic vector field Ψ′on the lower hemisphere. A theorem stated

by Poincaré and proved in [17] says that there exists an analytic vector field Θ on the whole sphere which

simultaneously extends the vector fields on the two hemispheres. By the Poincaré compactification on the

sphere of a planar polynomial vector field we mean the restriction Ψ̄ of the vector field Θ to the union of the

upper hemisphere with the equator. For more details we refer to [20]. The vertical projection of Ψ̄ on the

plane Z = 0 gives rise to an analytic vector field Φ on the unit disk of this plane. By the compactification on

the Poincaré disk of a planar polynomial vector field we understand the vector field Φ. By a singular point

at infinity of a planar polynomial vector field we mean a singular point of the vector field Ψ̄ which is located

on the equator of the sphere, respectively a singular point of the vector field Φ located on the circumference

of the Poincaré disk.

6.1.2. Compactification on the projective plane. To a polynomial system (1) we can associate a differential

equation ω1 = q(x, y)dx−p(x, y)dy = 0. Assuming the differential system (1) is with real coefficients, we may

associate to it a foliation with singularities on the real, respectively complex, projective plane as indicated

below. The equation ω1 = 0 defines a foliation with singularities on the real or complex plane depending if we

consider the equation as being defined over the real or complex affine plane. It is known that we can compactify

these foliations with singularities on the real respectively complex projective plane. In the study of real planar
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polynomial vector fields, their associated complex vector fields and their singularities play an important role.

In particular such a vector field could have complex, non-real singularities, by this meaning singularities of

the associated complex vector field. We briefly recall below how these foliations with singularities are defined.

The application Υ : K2 −→ P2(K) defined by (x, y) 7→ [x : y : 1] is an injection of the plane K2 over the

field K into the projective plane P2(K) whose image is the set of [X : Y : Z] with Z 6= 0. If K is R or C this

application is an analytic injection. If Z 6= 0 then (Υ)−1([X : Y : Z]) = (x, y) where (x, y) = (X/Z, Y/Z). We

obtain a map i : K3 − {Z = 0} −→ K2 defined by [X : Y : Z] 7→ (X/Z, Y/Z).

Considering that dx = d(X/Z) = (ZdX −XdZ)/Z2 and dy = (ZdY − Y dZ)/Z2, the pull-back of the form

ω1 via the map i yields the form i ∗ (ω1) = q(X/Z, Y/Z)(ZdX −XdZ)/Z2 − p(X/Z, Y/Z)(ZdY − Y dZ)/Z2

which has poles on Z = 0. Then the form ω = Zm+2i ∗ (ω1) on K
3 − {Z = 0}, K being R or C and m being

the degree of systems (1) yields the equation ω = 0:

A(X,Y, Z)dX +B(X,Y, Z)dY + C(X,Y, Z)dZ = 0

on K3 − {Z = 0} where A, B, C are homogeneous polynomials over K whith A(X,Y, Z) = ZQ(X,Y, Z),

Q(X,Y, Z) = Zmq(X/Z, Y/Z), B(X,Y, Z) = ZP (X,Y, Z), P (X,Y, Z) = Zmp(X/Z, Y/Z) and C(X,Y, Z) =

Y P (X,Y, Z)−XQ(X,Y, Z).

The equation AdX + BdY + CdZ = 0 defines a foliation F with singularities on the projective plane over

K with K either R or C. The points at infinity of the foliation defined by ω1 = 0 on the affine plane are the

points [X : Y : 0] and the line Z = 0 is called the line at infinity of the foliation with singularities generated

by ω1 = 0.

The singular points of the foliation F are the solutions of the three equations A = 0, B = 0, C = 0. In

view of the definitions of A,B,C it is clear that the singular points at infinity are the points of intersection

of Z = 0 with C = 0.

6.2. Assembling data on infinite singularities in divisors of the line at infinity. In the previous

sections we have seen that there are two types of multiplicities for a singular point p at infinity: one expresses

the maximum number m of infinite singularities which can split from p, in small perturbations of the system

and the other expresses the maximum number m′ of finite singularities which can split from p, in small

perturbations of the system. In Section 2 we mentioned that we shall use a column (m,m′)t to indicate this

situation.

We are interested in the global picture which includes all singularities at infinity. Therefore we need to

assemble the data for individual singularities in a convenient, precise way. To do this we use for this situation

the notion of cycle on an algebraic variety as indicated in [23] and which was used in [20] as well as in [29].

We briefly recall here the definition of this notion. Let V be an irreducible algebraic variety over a field

K. A cycle of dimension r or r − cycle on V is a formal sum
∑

W nWW , where W is a subvariety of V

of dimension r which is not contained in the singular locus of V , nW ∈ Z, and only a finite number of the

coefficients nW are non-zero. The degree deg(J) of a cycle J is defined by
∑

W nW . An (n− 1)-cycle is called

a divisor on V . These notions were used for classification purposes of planar quadratic differential systems in

[23, 20, 29].

To a system (1) we can associate two divisors on the line at infinity Z = 0 of the complex projective plane:

DS(P,Q;Z) =
∑

w Iw(P,Q)w and DS(C,Z) =
∑

w Iw(C,Z)w where w ∈ {Z = 0} and where by Iw(F,G)

we mean the intersection multiplicity at w of the curves F (X,Y, Z) = 0 and G(X,Y, Z) = 0, with F and G

homogeneous polynomials in X,Y, Z over C. For more details see [20].

Following [29] we assemble the above two divisors on the line at infinity into just one but with values in the

ring Z2:

DS =
∑

ω∈{Z=0}

(
Iw(P,Q)

Iw(C,Z)

)
w.
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This divisor encodes for us the total number of singularities at infinity of a system (1) as well as the two kinds

of multiplicities which each singularity has. The meaning of these two kinds of multiplicities are described in

the definition of the two divisors DS(P,Q;Z) and DS(C,Z) on the line at infinity.

7. Invariant polynomials and preliminary results

Consider real quadratic systems of the form:

(3)

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the coefficients of systems (3)

and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

7.1. Affine invariant polynomials associated to infinite singularities. It is known that on the set QS

of all quadratic differential systems (3) acts the group Aff (2,R) of the affine transformation on the plane

(cf. [29]). For every subgroup G ⊆ Aff (2,R) we have an induced action of G on QS. We can identify the

set QS of systems (3) with a subset of R12 via the map QS−→ R12 which associates to each system (3) the

12–tuple (a00, . . . , b02) of its coefficients.

For the definitions of a GL–comitant and invariant as well as for the definitions of a T –comitant and a

CT –comitant we refer the reader to the paper [29] (see also [35]). Here we shall only construct the necessary

T –comitants and CT –comitants associated to configurations of infinite singularities (including multiplicities)

of quadratic systems (3).

Consider the polynomial Φα,β = αP ∗ + βQ∗ ∈ R[ã, X, Y, Z, α, β] where P ∗ = Z2P (X/Z, Y/Z),

Q∗ = Z2Q(X/Z, Y/Z), P, Q ∈ R[ã, x, y] and max(deg(x,y)P, deg(x,y)Q) = 2. Then

Φα,β = s11(ã, α, β)X
2+2s12(ã, α, β)XY + s22(ã, α, β)Y

2+2s13(ã, α, β)XZ+2s23(ã, α, β)Y Z+ s33(ã, α, β)Z
2

and we denote

D̃(ã, x, y) =4 det ||sij(ã, y,−x)||i,j∈{1,2,3} ,

H̃(ã, x, y) =4 det ||sij(ã, y,−x)||i,j∈{1,2} .

We consider the polynomials

(4)

Ci(ã, x, y) = ypi(ã, x, y)− xqi(ã, x, y),

Di(ã, x, y) =
∂

∂x
pi(ã, x, y) +

∂

∂y
qi(ã, x, y),

in R[ã, x, y] for i = 0, 1, 2 and i = 1, 2 respectively. Using the so–called transvectant of order k (see [18], [21])

of two polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
,

we construct the following GL—comitants of the second degree with the coefficients of the initial system

(5)

T1 = (C0, C1)
(1)
, T2 = (C0, C2)

(1)
, T3 = (C0, D2)

(1)
,

T4 = (C1, C1)
(2)
, T5 = (C1, C2)

(1)
, T6 = (C1, C2)

(2)
,

T7 = (C1, D2)
(1)
, T8 = (C2, C2)

(2)
, T9 = (C2, D2)

(1)
.
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Using these GL—comitants as well as the polynomials (4) we construct the additional invariant polynomials

(see also [29])

M̃(ã, x, y) =(C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
;

η(ã) =(M̃, M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
;

K̃(ã, x, y) =Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
;

K1(ã, x, y) =p1(ã, x, y)q2(ã, x, y)− p2(ã, x, y)q1(ã, x, y);

K2(ã, x, y) =4(T2, M̃ − 2K̃)(1)+ 3D1(C1, M̃ − 2K̃)(1) − (M̃ − 2K̃)
(
16T3 − 3T4/2 + 3D2

1

)
;

K3(ã, x, y) =C
2
2 (4T3 + 3T4) + C2(3C0K̃ − 2C1T7) + 2K1(3K1 − C1D2);

L̃(ã, x, y) =4K̃ + 8H̃ − M̃ ;

L1(ã, x, y) =(C2, D̃)(2);

R̃(ã, x, y) =L̃+ 8K̃;

κ(ã) =(M̃, K̃)(2)/4;

κ1(ã) =(M̃, C1)
(2);

Ñ(ã, x, y) =K̃(ã, x, y) + H̃(ã, x, y);

θ6(ã, x, y) =C1T8 − 2C2T6.

The geometrical meaning of the invariant polynomials C2, M̃ and η is revealed in the next lemma (see [29]).

Lemma 1. The form of the divisor DS(C,Z) for systems (3) is determined by the corresponding conditions

indicated in Table 1, where we write wc
1 + wc

2 + w3 if two of the points, i.e. wc
1, w

c
2, are complex but not real.

Moreover, for each form of the divisor DS(C,Z) given in Table 1 the quadratic systems (3) can be brought via

a linear transformation to one of the following canonical systems (SI)− (SV ) corresponding to their behavior

at infinity.

Table 1

Case Form of DS(C,Z)
Necessary and

sufficient conditions

on the comitants

1 w1 + w2 + w3 η > 0

2 wc
1 + wc

2 + w3 η < 0

3 2w1 + w2 η = 0, M̃ 6= 0

4 3w M̃ = 0, C2 6= 0

5 DS(C,Z) undefined C2 = 0



CONFIGURATIONS OF SINGULARITES FOR QUADRATIC DIFFERENTIAL SYSTEMS 25

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2,
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

7.2. Affine invariant polynomials associated to finite singularities. Consider the differential operator

L = x · L2 − y · L1 acting on R[a, x, y] constructed in [9], where

L1 = 2a00
∂

∂a10
+ a10

∂
∂a20

+ 1
2a01

∂
∂a11

+ 2b00
∂

∂b10
+ b10

∂
∂b20

+ 1
2b01

∂
∂b11

,

L2 = 2a00
∂

∂a01
+ a01

∂
∂a02

+ 1
2a10

∂
∂a11

+ 2b00
∂

∂b01
+ b01

∂
∂b02

+ 1
2b10

∂
∂b11

.

Using this operator and the affine invariant µ0 = Res x

(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the following

polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4,

where L(i)(µ0) = L(L(i−1)(µ0)).

These polynomials are in fact comitants of systems (3) with respect to the group GL(2,R) (see [9]). Their

geometrical meaning is revealed in Lemmas 2 and 3 below.

Lemma 2. ([8]) The total multiplicity of all finite singularities of a quadratic system (3) equals k if and only

if for every i ∈ {0, 1, . . . , k − 1} we have µi(ã, x, y) = 0 in R[x, y] and µk(ã, x, y) 6= 0. Moreover a system (3)

is degenerate (i.e. gcd(P,Q) 6= constant) if and only if µi(ã, x, y) = 0 in R[x, y] for every i = 0, 1, 2, 3, 4.

Lemma 3. ([9]) The point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 4) for a quadratic system

(3) if and only if for every i ∈ {0, 1, . . . , k − 1} we have µ4−i(ã, x, y) = 0 in R[x, y] and µ4−k(ã, x, y) 6= 0.

We denote

σ(ã, x, y) =
∂P

∂x
+
∂Q

∂y
= σ0(ã) + σ1(ã, x, y) (≡ D1(ã) +D2(ã, x, y))

and observe that the polynomial σ(ã, x, y) is an affine comitant of systems (3). It is known, that if (xi, yi) is

a singular point of a system (3) then for the trace of its respective linear matrix we have ρi = σ(xi, yi).

Applying the differential operators L and (∗, ∗)(k) (i.e. transvectant of index k) we shall define the following
polynomial function which governs the values of the traces for finite singularities of systems (3).

Definition 3 ([36]). We call trace polynomial T(w) over the ring R[ã] the polynomial defined as follows:

(6) T(w) =
4∑

i=0

1

(i!)2

(
σi
1,

1

i!
L(i)(µ0)

)(i)

w4−i =
4∑

i=0

Gi(ã)w
4−i,

where the coefficients Gi(ã) =
1

(i!)2
(σi

1, µi)
(i) ∈ R[ã], i = 0, 1, 2, 3, 4

(
G0(ã) ≡ µ0(ã)

)
are GL–invariants.
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Using the polynomial T(w) we could construct the following four affine invariants T4, T3, T2, T1, which are

responsible for the weak singularities:

T4−i(ã)=
1

i!

diT

dwi

∣∣∣
w=σ0

,∈ R[ã] i = 0, 1, 2, 3
(
T4 ≡ T(σ0)

)
.

The geometric meaning of these invariants is revealed by the next lemma (see [36]).

Lemma 4. Consider a non-degenerate system (3) and let a ∈ R12 be its 12-tuple of coefficients. Denote by

ρs the trace of the linear part of this system at a finite singular point Ms, 1 ≤ s ≤ 4 (real or complex, simple

or multiple). Then the following relations hold, respectively:

(i) For µ0(a) 6= 0 (total multiplicity 4):

(7)

T4(a) = G0(a)ρ1ρ2ρ3ρ4,

T3(a) = G0(a)(ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4),

T2(a) = G0(a)(ρ1ρ2 + ρ1ρ3 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + ρ3ρ4),

T1(a) = G0(a)(ρ1 + ρ2 + ρ3 + ρ4);

(ii) For µ0(a) = 0, µ1(a, x, y) 6= 0 (total multiplicity 3):

(8)
T4(a) = G1(a)ρ1ρ2ρ3, T3(a) = G1(a)(ρ1ρ2 + ρ1ρ3 + ρ2ρ3),

T2(a) = G1(a)(ρ1 + ρ2 + ρ3), T1(a) = G1(a);

(iii) For µ0(a) = µ1(a, x, y) = 0, µ2(a, x, y) 6= 0 (total multiplicity 2):

(9)
T4(a) = G2(a)ρ1ρ2, T3(a) = G2(a)(ρ1 + ρ2),

T2(a) = G2(a), T1(a) = 0;

(iv) For µ0(a) = µ1(a, x, y) = µ2(a, x, y) = 0, µ3(a, x, y) 6= 0 (one singularity):

(10) T4(a) = G3(a)ρ1, T3(a) = G3(a), T2(a) = T1(a) = 0.

In order to be able to calculate the values of the needed invariant polynomials directly for every canonical

system we shall define here a family of T –comitants (see [29] for detailed definitions) expressed through Ci
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(i = 0, 1, 2) and Dj (j = 1, 2):

Â =
(
C1, T8 − 2T9 +D2

2

)(2)
/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1)

+ 6D1(C1D2 − T5)− 9D2
1C2

]
/36,

Ê =
[
D1(2T9 − T8)− 3 (C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ê

− 24
(
C2, D̂

)(2)
+120

(
D2, D̂

)(1)
−36C1 (D2, T7)

(1)
+8D1 (D2, T5)

(1)
]
/144,

B̂ =
{
16D1 (D2, T8)

(1)
(3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)

(1)
(3D1D2 − 5T6 + 9T7)

+ 2 (D2, T9)
(1) (

27C1T4 − 18C1D
2
1 −32D1T2 + 32 (C0, T5)

(1) )

+ 6 (D2, T7)
(1)

[8C0(T8 − 12T9) − 12C1(D1D2 + T7) +D1(26C2D1 + 32T5) +C2(9T4 + 96T3)]

+ 6 (D2, T6)
(1)

[32C0T9 − C1(12T7 + 52D1D2) −32C2D
2
1

]
+ 48D2 (D2, T1)

(1) (
2D2

2 − T8
)

− 32D1T8 (D2, T2)
(1)

+ 9D2
2T4 (T6 − 2T7)− 16D1 (C2, T8)

(1) (
D2

1 + 4T3
)

+ 12D1 (C1, T8)
(2)

(C1D2 − 2C2D1) + 6D1D2T4
(
T8 − 7D2

2 − 42T9
)

+ 12D1 (C1, T8)
(1)

(T7 + 2D1D2) + 96D2
2

[
D1 (C1, T6)

(1)
+D2 (C0, T6)

(1)
]

− 16D1D2T3
(
2D2

2 + 3T8
)
− 4D3

1D2

(
D2

2 + 3T8 + 6T9
)
+ 6D2

1D
2
2 (7T6 + 2T7)

−252D1D2T4T9} /(2833).
K̂ =(T8 + 4T9 + 4D2

2)/72 ≡ K̃/4,

Ĥ =(8T9 − T8 + 2D2
2)/72 ≡ −H̃/4,

M̂ =T8.

These polynomials in addition to (4) and (5) will serve as bricks in constructing affine invariant polynomials

for systems (3).

The following 42 affine invariants A1, . . . , A42 form the minimal polynomial basis of affine invariants up to

degree 12. This fact was proved in [11] by constructing A1, . . . , A42 using the above bricks.

A1 = Â, A22 = 1
1152

[
C2, D̂)(1), D2

)(1)
, D2

)(1)
, D2

)(1)
D2

)(1)
,

A2 = (C2, D̂)(3)/12, A23 =
[
F̂ , Ĥ)(1), K̂

)(2)
/8,

A3 =
[
C2, D2)

(1), D2

)(1)
, D2

)(1)
/48, A24 =

[
C2, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/32,

A4 = (Ĥ, Ĥ)(2), A25 =
[
D̂, D̂)(2), Ê

)(2)
/16,

A5 = (Ĥ, K̂)(2)/2, A26 = (B̂, D̂)(3)/36,

A6 = (Ê, Ĥ)(2)/2, A27 =
[
B̂,D2)

(1), Ĥ
)(2)

/24,

A7 =
[
C2, Ê)(2), D2

)(1)
/8, A28 =

[
C2, K̂)(2), D̂

)(1)
, Ê
)(2)

/16,

A8 =
[
D̂, Ĥ)(2), D2

)(1)
/8, A29 =

[
D̂, F̂ )(1), D̂

)(3)
/96,

A9 =
[
D̂,D2)

(1), D2

)(1)
, D2

)(1)
/48, A30 =

[
C2, D̂)(2), D̂

)(1)
, D̂
)(3)

/288,

A10 =
[
D̂, K̂)(2), D2

)(1)
/8, A31 =

[
D̂, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/64,
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A11 = (F̂ , K̂)(2)/4, A32 =
[
D̂, D̂)(2), D2

)(1)
, Ĥ
)(1)

, D2

)(1)
/64,

A12 = (F̂ , Ĥ)(2)/4, A33 =
[
D̂,D2)

(1), F̂
)(1)

, D2

)(1)
, D2

)(1)
/128,

A13 =
[
C2, Ĥ)(1), Ĥ

)(2)
, D2

)(1)
/24, A34 =

[
D̂, D̂)(2), D2

)(1)
, K̂
)(1)

, D2

)(1)
/64,

A14 = (B̂, C2)
(3)/36, A35 =

[
D̂, D̂)(2), Ê

)(1)
, D2

)(1)
, D2

)(1)
/128,

A15 = (Ê, F̂ )(2)/4, A36 =
[
D̂, Ê)(2), D̂

)(1)
, Ĥ
)(2)

/16,

A16 =
[
Ê,D2)

(1), C2

)(1)
, K̂
)(2)

/16, A37 =
[
D̂, D̂)(2), D̂

)(1)
, D̂
)(3)

/576,

A17 =
[
D̂, D̂)(2), D2

)(1)
, D2

)(1)
/64, A38 =

[
C2, D̂)(2), D̂

)(2)
, D̂
)(1)

, Ĥ
)(2)

/64,

A18 =
[
D̂, F̂ )(2), D2

)(1)
/16, A39 =

[
D̂, D̂)(2), F̂

)(1)
, Ĥ
)(2)

/64,

A19 =
[
D̂, D̂)(2), Ĥ

)(2)
/16, A40 =

[
D̂, D̂)(2), F̂

)(1)
, K̂
)(2)

/64,

A20 =
[
C2, D̂)(2), F̂

)(2)
/16, A41 =

[
C2, D̂)(2), D̂

)(2)
, F̂
)(1)

, D2

)(1)
/64,

A21 =
[
D̂, D̂)(2), K̂

)(2)
/16, A42 =

[
D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.

In the above list, the bracket “[” is used in order to avoid placing the otherwise necessary up to five

parenthesizes “(”.

Using the elements of the minimal polynomial basis given above we construct the affine invariants

F1(ã) =A2,

F2(ã) =− 2A2
1A3 + 2A5(5A8 + 3A9) +A3(A8 − 3A10 + 3A11 +A12)−

−A4(10A8 − 3A9 + 5A10 + 5A11 + 5A12),

F3(ã) =− 10A2
1A3 + 2A5(A8 −A9)−A4(2A8 +A9 +A10 +A11 +A12)+

+A3(5A8 +A10 −A11 + 5A12),

F4(ã) = 20A2
1A2 −A2(7A8 − 4A9 +A10 +A11 + 7A12) +A1(6A14 − 22A15)− 4A33 + 4A34,

F(ã) =A7,

B(ã) =− (3A8 + 2A9 +A10 +A11 +A12),

H(ã) =− (A4 + 2A5),

as well as the CT -comitants:

B1(ã) =
{(
T7, D2

)(1)[
12D1T3 + 2D3

1 + 9D1T4 + 36
(
T1, D2

)(1)]

− 2D1

(
T6, D2

)(1)[
D2

1+12T3]+D
2
1

[
D1

(
T8, C1

)(2)
+ 6
((
T6, C1

)(1)
,D2

)(1)]}
/144,

B2(ã) =
{(
T7, D2

)(1)[
8T3
(
T6, D2

)(1) −D2
1

(
T8, C1

)(2) − 4D1

((
T6, C1

)(1)
, D2

)(1)]
+

+
[(
T7, D2

)(1)]2
(8T3 − 3T4 + 2D2

1)
}
/384,

B3(ã, x, y) =−D2
1(4D

2
2 + T8 + 4T9) + 3D1D2(T6 + 4T7)− 24T3(D

2
2 − T9),

B4(ã, x, y) = D1(T5 + 2D2C1)− 3C2(D
2
1 + 2T3).

We note that the invariant polynomials Ti, Fi, Bi (i=1,2,3,4), and B, F , H and σ are responsible for weak

singularities of the family of quadratic systems (see [36, Main Theorem]).
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Now we need also the invariant polynomials which are responsible for the types of the finite singularities.

These were constructed in [4]. Here we need only the following ones (we keep the notations from [4]):

W4(ã) =
[
1512A2

1(A30 − 2A29)− 648A15A26 + 72A1A2(49A25 + 39A26)

+ 6A2
2(23A21 − 1093A19)− 87A4

2 + 4A2
2(61A17 + 52A18 + 11A20)

− 6A37(352A3 + 939A4 − 1578A5)− 36A8(396A29 + 265A30)

+ 72A29(17A12 − 38A9 − 109A11) + 12A30(76A9 − 189A10 − 273A11 − 651A12)

− 648A14(23A25 + 5A26)− 24A18(3A20 + 31A17) + 36A19(63A20 + 478A21)

+ 18A21(2A20 + 137A21)− 4A17(158A17 + 30A20 + 87A21)

− 18A19(238A17 + 669A19)
]
/81,

W7(ã) =12A26(A26 − 2A25) + (2A29 −A30)(A
2
2 − 20A17 − 12A18 + 6A19 + 6A21)

+ 48A37(A
2
1 −A8 −A12),

W8(ã) =64D1

[((
T6, C1

)(1)
, D2

)(1)]2[
16
(
C0, T6

)(1) − 37
(
D2, T1

)(1)
+ 12D1T3

]
+ 4(108D4

1 − 3T 2
4

− 128T3T4 + 42D2
1T4)

[((
T6, C1

)(1)
, D2

)(1)]2
+ 36D1

((
T6, C1

)(1)
, D2

)(1)[
4D1

(
C0, T6

)(1)

−D2
1(4T3 + T4) + +24T 2

3

](
C1, T8

)(2)
+ 64

[((
T6, C1

)(1)
, D2

)(1)]2[
27T 2

3+

+ 16
((
T6, C1

)(1)
, C0

)(1)]− 54
[
8D4

1 +D2
1T4 − 8D1

(
C0, T6

)(1)
+ 8D2

1T3 + 8T 2
3

]

×
((
T6, C1

)(1)
, T6
)(1)(

C1, T8
)(2)

+ 108D1T3
[(
C1, T8

)(2)]2[
D1T3 − 2

(
C0, T6

)(1)]

+ 576
((
T6, C1

)(1)
, D2

)(1)((
T6, C1

)(1)
, T6
)(1)[

2
(
D2, T1

)(1) − 5D1T3
]

− 27
[(
C1, T8

)(2)]2[
T 4
4 /8 +

(
C0, T1

)(1)]
,

F4(ã, x, y) = µ3(ã, x, y),

F5(ã, x, y) = T5 + 2C1D2 − 3C2D1,

G3(ã) = A2.

Finally we need the invariant polynomials which are responsible for the existence of one (or two) star node(s)

arbitrarily located on the phase plane of a system (3). We have the following lemma (see [39]):

Lemma 5. A quadratic system (3) possesses one star node if and only if one of the following set of conditions

hold:
(i) U1 6= 0, U2 6= 0, U3 = Y1 = 0;

(ii) U1 = U4 = U5 = U6 = 0, Y2 6= 0;

and it possesses two star nodes if and only if

(iii) U1 = U4 = U5 = 0, U6 6= 0, Y2 > 0,

where
U1 = Ñ, U2 = (C1, H̃ − K̃)(1) − 2D1Ñ,

U3 = 3D̃(D2
2 − 16K̃) + C2

[
(C2, D̃)(2) − 5(D2, D̃)(1) + 6 F̃

]
,

U4 = 2T5 + C1D2, U5 = 3C1D1 + 4T2 − 2C0D1,

U6 = H̃, Y1 = A1, Y2 = 2D2
1 + 8T3 − T4.

We base our work here on results obtained in [3] and [4].

8. The proof of the Main Theorem

8.1. The family of systems without finite singularities. The total multiplicity mf of finite singularities

of every system in this family is zero. In [3] we gave the full global geometric classification of the whole class



30 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

of quadratic systems according to their singularities at infinity. Since only infinite singularities occur in this

family (mf = 0), we can extract from [3] the classification of the configurations of singularities of this family.

In fact from [3] we obtain more. Indeed, we extract from [3] the part of the global bifurcation diagram of

configurations of singularities at infinity of QS, the fragment covering the case we need here, i.e. mf = 0.

We obtain the bifurcation diagram (see Diagram 1) of configurations of singularities of this class, done in

the 12-parameter space of coefficients and obtained with the help of invariant polynomials. The proof for

this diagram is completely covered in [3] and thus there is no need for a proof here. We shall only give here

examples, one for each kind of distinct geometric configurations occurring in this family.

1) Systems with η < 0;

•
(
4
1

)
N, c©, c© : Example ⇒ (ẋ = 1 + xy; ẏ = −x2);

• N∗,
(
2
1

)
c©,
(
2
1

)
c© : Example ⇒ (ẋ = 1; ẏ = −x2 − y2).

2) Systems with η > 0;

•
(
4
1

)
N, S, N∞ : Example ⇒ (ẋ = −1 + xy; ẏ = 1− xy + 2y2);

•
(
4
1

)
S, Nf , Nf : Example ⇒ (ẋ = 1− xy; ẏ = 2− 2xy + y2);

•
(
3
1

)
SN,

(
1
1

)
SN, Nd : Example ⇒ (ẋ = 1 + x− xy; ẏ = 1− xy);

•
(
3
1

)
SN,

(
1
1

)
NS, Nd : Example ⇒ (ẋ = 1− x+ xy; ẏ = 1 + xy);

•
(
2
1

)
S,
(
2
1

)
N, N∗ : Example ⇒ (ẋ = 1− xy; ẏ = −xy).

3) Systems with η = 0, M̃ 6= 0;

•
(
0
2

)
SN,

(
4
1

)
N : Example ⇒ (ẋ = 1 + xy; ẏ = −1− xy + y2);

•
(
4
2

) y
P Hf

x
P −

y
P Hf

x
P , Nf : Example ⇒ (ẋ = x2/4; ẏ = 1− 3xy/4);

•
(
4
2

) y
P

x
PfH−H

y
Pf

x
P , Nf : Example ⇒ (ẋ = 2x2/3; ẏ = 1− xy/3);

•
(
4
2

) y
P H−H

x
P , Nf : Example ⇒ (ẋ = x2/2; ẏ = 1− xy/2);

•
(
4
2

) x
P

y
PfE−E

x
Pf

y
P , S : Example ⇒ (ẋ = −x2; ẏ = 1− 2xy);

•
(
4
2

) y
P

x
PfH−H

y
Pf

x
P , N∞ : Example ⇒ (ẋ = 2x2; ẏ = 1 + xy);

•
(̂
4
2

) y
Pf

x
P Hf−H, N∗ : Example ⇒ (ẋ = y + x2; ẏ = 1);

•
(
4
2

)
H−H, Nd : Example ⇒ (ẋ = 1 + x2; ẏ = x);

•
(
4
2

)
H−H, N∗ : Example ⇒ (ẋ = 1 + x2; ẏ = 1);

•
(
4
2

) y
PE

x
P −HHH, Nd : Example ⇒ (ẋ = −2 + x2; ẏ = 1 + x);

•
(
4
2

) y
P

x
PH−H

y
P

x
P , Nd : Example ⇒ (ẋ = −1 + x2; ẏ = 2 + x);

•
(
4
2

) y
P

x
PH−H

y
P

x
P , N∗ : Example ⇒ (ẋ = −1 + x2; ẏ = 1);

•
(
4
2

) y
P

x
PfH−H

y
Pf

x
P , Nd : Example ⇒ (ẋ = x2; ẏ = 1 + x);

•
(
4
2

) y
P

x
PfH−H

y
Pf

x
P , N∗ : Example ⇒ (ẋ = x2; ẏ = 1);

•
(̂
1
2

) y
PfE

x
Pf−H,

(
3
1

)
SN : Example ⇒ (ẋ = y; ẏ = 1− xy);

•
(
3
2

)
E

x
P −

x
P H,

(
1
1

)
SN : Example ⇒ (ẋ = x; ẏ = 1− xy);

•
(
2
2

)
E−E,

(
2
1

)
S : Example ⇒ (ẋ = −1; ẏ = 1− xy);
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•
(
2
2

)
H−H,

(
2
1

)
N : Example ⇒ (ẋ = 1; ẏ = 1− xy);

4) Systems with η = M̃ = 0;

•
(
4
3

)
E

x
PfH−H

y
PfE : Example ⇒ (ẋ = x2; ẏ = 1− x2 + xy);

•
(
4
3

) x
P

y
Pf

x
P −

y
P

x
Pf

y
P : Example ⇒ (ẋ = x2; ẏ = −1− x2 + xy);

•
(
4
3

) y
PfEE

x
Pf−HH : Example ⇒ (ẋ = x; ẏ = 1− x2);

•
(
4
3

) y
Pf

x
P

y
P

x
Pf−

y
P

x
P : Example ⇒ (ẋ = 1 + x; ẏ = −x2);

•
(
4
3

) y
PfEHf−

y
P : Example ⇒ (ẋ = 1; ẏ = y − x2);

•
(
4
3

) y
Pf

x
P −

y
P

x
Pf : Example ⇒ (ẋ = 1; ẏ = −x2);

•
[
∞;

(̂
3
0

)
ES

]
: Example ⇒ (ẋ = x2; ẏ = 1 + xy).

8.2. The family of quadratic differential systems with only one finite singularity which in addition

is elemental. In this subsection we consider all quadratic vector fields with total multiplicity mf of finite

singularities equal to 1. Since we have only one finite singular point, this point is of course real. To obtain the

full global classification of configurations of singularities with respect to the geometric equivalence relation for

this family, we need to: i) deepen the topological classification of all configurations of finite singularities done

in [2] by using the finer geometric equivalence relation; ii) to integrate this with the geometric classification

of infinite singularities done in [3] and iii) to search for a minimal set of invariants allowing us to obtain for

this family the bifurcation diagram with respect to the geometric equivalence relation of configurations of

singularities, finite and infinite, in the 12-dimensional space of parameters.

According to [36] in this case the conditions µ0 = µ1 = µ2 = 0 and µ3 6= 0 must be satisfied and according

to [3] the following lemma is valid.

Lemma 6. The configurations of singularities at infinity of the family of quadratic systems possessing one

elemental (real) finite singularity (i.e. µ0 = µ1 = µ2 = 0 and µ3 6= 0) are classified in Diagram 3 according

to the geometric equivalence relation. Necessary and sufficient conditions for each one of the 22 different

equivalence classes can be assembled from this diagrams in terms of 14 invariant polynomials with respect to

the action of the affine group and time rescaling, given in Section 7.

According to [36] the family of quadratic systems with one elemental finite singularity could be brought via

an affine transformation to one of the two canonical forms in [36], governed by invariant polynomial K̃ 6= 0.

In what follows we consider two cases: K̃ 6= 0 and K̃ = 0.

8.2.1. Systems with K̃ 6= 0. In this case by [36] via an affine transformation quadratic systems in this family

could be brought to the systems

(11)
ẋ = cx+ dy + (2c+ d)x2 + 2dxy,

ẏ = ex+ fy + (2e+ f)x2 + 2fxy

possessing the singular points M1(0, 0). For these systems calculations yield

(12) µ0 = µ1 = µ2 = 0, µ3 = (cf − de)2x3, κ = 256d2(de − cf).

We remark that for the systems above we have µ3 6= 0 and therefore in what follows we assume that the

condition cf − de 6= 0 holds (i.e. the singular point M1(0, 0) is elemental).



32 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

Diagram 3. The case µ0 = µ1 = µ2 = 0, µ3 6= 0

8.2.1.1. The case κ 6= 0. Then d 6= 0 and due to a time rescaling we may assume d = 1. So we consider the

3-parameter family of systems:

(13)
ẋ = cx+ y + (2c+ 1)x2 + 2xy,

ẏ = ex+ fy + (2e+ f)x2 + 2fxy, cf − e 6= 0,
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for which calculations yield

(14)

µ0 = µ1 = µ2 = 0, µ3 = (cf − e)2x3, K̃ = 8(cf − e)x2,

η = 4
[
(2c+ 1 + 2f)2 + 16(e− cf)

]
, κ = 256(e− cf),

T4 = −8(c+ f)(cf − e)2, T3 = −8(cf − e)2, F1 = 6(e− cf),

W4 = 64(cf − e)4
[
(c− f)2 + 4e

]
= 64(cf − e)4

[
(c+ f)2 + 4(e− cf)

]
,

M̃ = −8
[
(1 + 2c− 2f)2 + 6(2e+ f)

]
x2 − 16(1 + 2c− 2f)xy − 32y2.

Considering (14) we make the remark:

Remark 1. Assume that the condition κ 6= 0 holds. Then

(i) T3F1 6= 0 and sign (K̃) = −sign (κ);

(ii) the condition κ > 0 implies η > 0 and W4 > 0;

(iii) in the case T4 = 0 we have W4 6= 0 and sign (W4) = sign (κ).

The first two statements follow obviously from (14). In the case T4 = 0 we get f = −c and then κ =

256(c2 + e), W4 = 256(c2 + e)5 and this proves the last assertion.

8.2.1.1.1. The subcase κ < 0. Then by the Remark above we obtain K̃ > 0.

1) The possibility W4 < 0. In this case considering the condition K̃ > 0, according to [4] (see Table 1, line

184) the finite singularity is a focus.

a) Assume first T4 6= 0. Then by [36] the focus is strong. As κ < 0 according to Lemma 6 we get the

following three global configurations of singularities:

• f ;
(
3
1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1, f = 1) (if η < 0);

• f ;
(
3
1

)
SN, S,N∞: Example ⇒ (c = 0, e = −1, f = 7/4) (if η > 0);

• f ;
(
0
2

)
SN,

(
3
1

)
SN : Example ⇒ (c = 0, e = −1, f = 3/2) (if η = 0).

b) Suppose now T4 = 0. Then f = −c and since by Remark 1 we have T3F1 6= 0, then by [36] the finite

singularity is a first order weak focus. Considering the types of the infinite singularities mentioned above we

obtain the following three configurations:

• f (1);
(
3
1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1, f = 0) (if η < 0);

• f (1);
(
3
1

)
SN, S,N∞: Example ⇒ (c = 0, e = −1/18, f = 0) (if η > 0);

• f (1);
(
0
2

)
SN,

(
3
1

)
SN : Example ⇒ (c = 0, e = −1/16, f = 0) (if η = 0).

2)The possibility W4 > 0. Since K̃ > 0, according to [4] systems (13) possess a node which is generic (due

to W4 6= 0). So considering Lemma 6 we have the configurations

• n;
(
3
1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1, f = −9/4) (if η < 0);

• n;
(
3
1

)
SN, S,N∞: Example ⇒ (c = 0, e = −1, f = −3) (if η > 0);

• n;
(
0
2

)
SN,

(
3
1

)
SN : Example ⇒ (c = 0, e = −1, f = −5/2) (if η = 0).

3)The possibility W4 = 0. Then the singular point M1(0, 0) of systems (13) is a node with coinciding

eigenvalues which could not be a star node (due to the respective linear matrix). Considering the types of the

infinite singularities given by Lemma 6 we get the next three configurations:

• nd;
(
3
1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1/4, f = −1) (if η < 0);

• nd;
(
3
1

)
SN, S,N∞: Example ⇒ (c = 0, e = −1/4, f = 1) (if η > 0);

• nd;
(
0
2

)
SN,

(
3
1

)
SN : Example ⇒ (c = 0, e = −1/64, f = −1/4) (if η = 0).
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8.2.1.1.2. The subcase κ > 0. According to Remark 1 we obtain K̃ < 0 and according to [4] (see Table 1,

line 178) the finite singularity is a saddle. By Remark 1, in this case we have η > 0 and considering Lemma

6 we have the unique configuration of infinite singularities:
(
3
1

)
SN, Nf , Nf .

1) Assume first T4 6= 0. In this case by [36] the saddle is strong and we arrive at the configuration

• s;
(
3
1

)
SN, Nf , Nf : Example ⇒ (c = 0, e = 1, f = 1).

2) Suppose now T4 = 0. Then f = −c and as by Remark 1, we have T3F1 6= 0. Considering [36] we deduce

that the finite singularity is a weak saddle of the first order. So we obtain the configuration

• s(1);
(
3
1

)
SN, Nf , Nf : Example ⇒ (c = 0, e = 1, f = 0).

8.2.1.2. The case κ = 0. Then by (13) we have d = 0 and considering the condition µ3 = c2f2x3 6= 0 we

obtain cf 6= 0. So doing a time rescaling we may assume f = 1 and we consider the 2-parameter family of

systems:

(15) ẋ = cx+ 2cx2, ẏ = ex+ y + (2e+ 1)x2 + 2xy, c 6= 0,

for which calculations yield

(16)

µ0 = µ1 = µ2 = 0, µ3 = c2x3, K̃ = 8cx2, η = κ = 0, M̃ = −32(c− 1)2x2,

C2 = −(1 + 2e)x3 + 2(c− 1)x2y, σ = 1 + c+ 2(1 + 2c)x,

Ti = 0, i = 1, 2, 3, 4, F1 = H = B = B1 = B2 = 0,

B3 = −288c3(1 + c)x2 W4 = 0, L̃ = 32c(c− 1)x2.

Remark 2. We observe that the corresponding matrix for the singular point M1(0, 0) is

(
c 0

e 1

)
and hence

this singular point is i) a saddle if c < 0; ii) a node with two direction if c > 0 and c 6= 1; iii) a node with one

direction if c = 1 and e 6= 0; iv) a star node if c = 1 and e = 0.

8.2.1.2.1. The subcase K̃ < 0. Then c < 0 and by the remark above the finite singularity is a saddle.

Considering (16) according to [36] the saddle is weak if and only if B3 = 0 (see the statement e3[γ] of Main

Theorem. Moreover in this case we have an integrable saddle.

Since c < 0 we have M̃ 6= 0. Then according to Lemma 6 at infinity we get the unique configuration of

singularities given by
(
3
2

) y
P E

x
P−

y
P

x
P H, Nf . So we arrive at the next two global configurations of singularities

• s ;
(
3
2

) y
P E

x
P −

y
P

x
P H, Nf : Example ⇒ (c = −2, e = 0) (if B3 6= 0);

• $ ;
(
3
2

) y
P E

x
P −

y
P

x
P H, Nf : Example ⇒ (c = −1, e = 0) (if B3 = 0).

8.2.1.2.2. The subcase K̃ > 0. Then c > 0 and by Remark 2 the finite singularity is a node. We observe

that due to µ3 6= 0 the condition c = 1 is equivalent to L̃ = 0.

1) The possibility L̃ 6= 0. Then M̃ 6= 0 and by Remark 2 we have a generic node. On the other hand as

K̃ > 0 we obtain sign (L̃) = sign (c− 1) and considering Lemma 6 we get the following two configurations:

• n ;
(
3
2

) x
P H

y
P −

x
P

y
P E, S: Example ⇒ (c = 1/2, e = 0) (if L̃ < 0);

• n ;
(
3
2

)
H

y
P

x
P −HHH, N∞: Example ⇒ (c = 2, e = 0) (if L̃ > 0).

2) The possibility L̃ = 0. Then c = 1 and this implies M̃ = 0. By Remark 2 we have a node with coinciding

eigenvalues. On the other hand for c = 1 we obtain C2 = −(1 + 2e)x3, U3 = −24ex5.

a) Assume first C2 6= 0. Then we have a single real infinite singularity of multiplicity six and according

to Lemma 6 the type of this singularity depends on the sign of the invariant polynomial K3 = 6(1 + 2e)x6,

which is nonzero due to C2 6= 0.

Thus taking into consideration Remark 2 and Lemma 6 we arrive at the next configurations
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• nd ;
(
3
3

)
H

y
P E−

x
P HH : Example ⇒ (c = 1, e = −1) (if K3 < 0);

• nd ;
(
3
3

)
HH

y
P −

x
P

y
P

x
P : Example ⇒ (c = 1, e = 1) (if K3 > 0, U3 6= 0);

• n∗ ;
(
3
3

)
HH

y
P −

x
P

y
P

x
P : Example ⇒ (c = 1, e = 0) (if K3 > 0, U3 = 0).

b) Suppose now C2 = 0. Then e = −1/2 and we get the system

ẋ = x(1 + 2x), ẏ = −x/2 + y + 2xy

possessing a node nd and the infinite line filled up with singularities. Considering Lemma 6 we obtain the

configuration

• nd ;
[
∞;
(
2
0

)
SN

]
: Example ⇒ (c = 1, e = −1/2).

8.2.2. Systems with K̃ = 0. In this case, according to [36] we consider the following family of systems

(17)
ẋ = x+ dy,

ẏ = ex+ fy + lx2 + 2mxy − d(dl − 2m)y2

possessing the singular points M1(0, 0). For these systems calculations yield

(18) η = 4d2(dl −m)2(dl − 2m)2, L̃ = 8d(2m− dl)(x+ dy)
[
lx− (dl − 2m)y

]
.

We consider two cases: η 6= 0 and η = 0.

8.2.2.1. The case η 6= 0. Then d(dl −m)(dl − 2m) 6= 0 and we may assume d = l = 1 and m = 0 due to the

transformation

x1 = (dl − 2m)x, y1 = − (dl − 2m)m

dl −m
x+

d(dl − 2m)2

dl −m
y, t1 =

dl −m

dl − 2m
t.

So we consider the 2-parameter family of systems

(19) ẋ = x+ y, ẏ = ex+ fy + x2 − y2

for which calculations yield

(20)

µ0 = µ1 = µ2 = 0, µ3 = (f − e)(x− y)(x+ y)2, K̃ = κ = 0,

η = 4, K1 = (x− y)(x+ y)2, F4F5 = 6(f − e)(x − y)2(x+ y)4,

G3 = 2(e− f), W4 = 64(e− f)2
[
(f − 1)2 + 4e

]
,

T4 = 8(f − e)(1 + f), T3 = 8(f − e), F1 = 2(e− f).

Remark 3. In the case η 6= 0 the condition µ3 6= 0 implies T3F1F4F5G3 6= 0 and sign (µ3K1) = sign (F4F5).

8.2.2.1.1. The subcase µ3K1 < 0. By the remark above we have F4F5 < 0 and according to [4] (see Table

1, line 179) the finite singularity is a saddle. Clearly this saddle is weak if and only if f = −1 and this is

equivalent to T4 = 0. On the other hand by Remark 3 we have T3F1 6= 0 and according to [36] the weak

saddle could be only of the first order. So considering Lemma 6 we get the following two global configurations

of singularities:

• s ;
(
2
1

)
N,
(
1
1

)
SN, Nd: Example ⇒ (e = 2, f = 1) (if T4 6= 0);

• s(1) ;
(
2
1

)
N,
(
1
1

)
SN, Nd: Example ⇒ (e = 2, f = −1) (if T4 = 0).
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8.2.2.1.2. The subcase µ3K1 > 0. In this case we have F4F5 > 0 and as G3 6= 0 by [4] we have a focus or a

center if W4 < 0 and a node if W4 ≥ 0.

1) The possibility W4 < 0. Than we have a focus which is strong if T4 6= 0 and it is weak of the first

order if T4 = 0 (due to [36] and T3F1 6= 0, see Remark 3). Considering Lemma 6 we arrive at the next two

configurations:

• f ;
(
2
1

)
S,
(
1
1

)
SN, Nd: Example ⇒ (e = −2, f = 1) (if T4 6= 0);

• f (1) ;
(
2
1

)
S,
(
1
1

)
SN, Nd: Example ⇒ (e = −2, f = −1) (if T4 = 0).

2) The possibility W4 > 0. In this case we have a generic node (as W4 6= 0) and hence we get

• n ;
(
2
1

)
S,
(
1
1

)
SN, Nd: Example ⇒ (e = 0, f = 2).

3) The possibility W4 = 0. Then we have a node with coinciding eigenvalues and due to the linearization

matrix at the singularity M1(0, 0) this is a one-direction node:

• nd ;
(
2
1

)
S,
(
1
1

)
SN, Nd: Example ⇒ (e = −1/4, f = 0).

8.2.2.2. The case η = 0. Then d(dl −m)(dl − 2m) 6= 0 and we consider two subcases: L̃ 6= 0 and L̃ = 0.

8.2.2.2.1. The subcase L̃ 6= 0. Considering (18) we obtain d(dl−2m) 6= 0 and then the condition η = 0 gives

m = dl. In this case we have L̃ = 8d2l2(x+ dy)2 6= 0 and then via the rescaling (x, y) 7→
(
x/(dl), y/(d2l)

)
we

obtain the following 2-parameter family of systems:

(21) ẋ = x+ y, ẏ = ex+ fy + (x + y)2.

For these systems calculations yield

(22)

µ0 = µ1 = µ2 = η = 0, µ3 = (f − e)(x+ y)3, L̃ = 8(x+ y)2 = −M̃,

K̃ = Ñ = κ = 0, K1 = (x+ y)3, F4F5 = 6(f − e)(x+ y)6,

G3 = 0, W8 = 21433(e− f)4
[
(f − 1)2 + 4e

]
, Ti = 0, i = 1, 2, 3, 4,

σ = 1 + f + 2x+ 2y, F1 = H = 0, B1 = 4(e− f)2(1 + f), B2 = 4(e− f)3

and we again have sign (µ3K1) = sign (F4F5).

1) The possibility µ3K1 < 0. Then we have F4F5 < 0 and according to [4] (see Table 1, line 179) the finite

singularity is a saddle. Clearly this saddle is weak if and only if f = −1 and this is equivalent to B1 = 0. On

the other hand considering (22) we obtain B2 > 0 and according to [36] the weak saddle is an integrable one.

So considering Lemma 6 we get the following two configurations:

• s ;
(̂
3
2

) y
PfE

x
Pf−H, Nd: Example ⇒ (e = 2, f = 1) (if B1 6= 0);

• $ ;
(̂
3
2

) y
PfE

x
Pf−H, Nd: Example ⇒ (e = 2, f = −1) (if B1 = 0).

2) The possibility µ3K1 > 0 In this case we have F4F5 > 0 and as G3 = Ñ = 0 by [4] we have a focus or a

center if W8 < 0 and a node if W8 ≥ 0.

a) The case W8 < 0. Than we have a focus which is strong if B1 6= 0. Considering (22) we have B2 < 0 and

according to [36] in the case B1 = 0 we have a center. So considering Lemma 6 we arrive at the configurations

• f ;
(̂
3
2

)
HfHHf−H, Nd: Example ⇒ (e = −2, f = 1) (if B1 6= 0);

• c ;
(̂
3
2

)
HfHHf−H, Nd: Example ⇒ (e = −2, f = −1) (if B1 = 0).

b) The caseW8 > 0. In this case we have a generic node (as the conditionW8 6= 0 implies δ1 = (f−1)2+4e 6=
0) and hence we get

• n ;
(̂
3
2

)
HfHHf−H, Nd: Example ⇒ (e = 0, f = 2).
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c) The case W8 = 0. Then we have a node with coinciding eigenvalues and due to the matrix of the

linearization of the system at the singularity M1(0, 0), this is a one-direction node:

• nd ;
(̂
3
2

)
HfHHf−H, Nd: Example ⇒ (e = −1/4, f = 0).

8.2.2.2.2. The subcase L̃ = 0. Considering (18) we obtain d(dl − 2m) = 0 and as for systems (17) we have

M̃ = −32m2x2 − 8d(dl − 2m)(3lx2 − 2mxy + d2ly2 − 2dmy2)

the condition above gives M̃ = −32m2x2. We consider two possibilities: M̃ 6= 0 and M̃ = 0.

1) The possibility M̃ 6= 0. Then m 6= 0 and as the condition d(dl − 2m) = 0 holds, applying the transfor-

mation

x1 = dlx, y1 = dl(x+ dy)

when d 6= 0 (then m = dl/2 6= 0 due to M̃ 6= 0), or the transformation

x1 = 2mx, y1 = lx/(2m) + y

when d = 0, we arrive at the following family of systems

(23)
ẋ = ε1x+ ε2y, ε1ε2 = 0,

ẏ = ex+ fy + xy, ε1 + ε2 = 1.

For these systems calculations yield

(24)

µ0 = µ1 = µ2 = 0, µ3 = (ε1f − ε2e)xy(ε1x+ ε2y), K̃ = κ = L̃ = 0, Ñ = −x2,

η = 0, M̃ = −8x2, κ1 = −32ε2, K1 = xy(ε1x+ ε2y), G3 = 0,

F4F5 = 6(ε1f − ε2e)x
2y2(ε1x+ ε2y)

2, W7 = 3ε2e
2(4ε2e+ f2)/16,

Ti = 0, i = 1, 2, 3, 4, σ = ε1 + f + x, F1 = H = 0, B1 = −ε2ef, B2 = ε2e/4.

So we obtain again sign (µ3K1) = sign (F4F5) and we consider two cases: µ3K1 < 0 and µ3K1 > 0.

a) Assume first µ3K1 < 0. Then we have F4F5 < 0 and according to [4] (see Table 1, line 179) the finite

singularity is a saddle. Clearly this saddle is weak if and only if ε1 + f = 0.

α) The case κ1 6= 0. Then by (24) we have ε2 = 1, ε1 = 0 and the condition µ3K1 < 0 yields e > 0. So

B2 > 0 and we have B1 = 0 if and only if f = 0. In this case according to [36] we have an integrable saddle.

Therefore considering the condition κ1 6= 0 and Lemma 6 we get the following two global configurations of

singularities:

• s ;
(̂
1
2

) y
PfE

x
Pf−H,

(
2
1

)
N : Example ⇒ (ε2 = 1, e = 1, f = 1) (if B1 6= 0);

• $ ;
(̂
1
2

) y
PfE

x
Pf−H,

(
2
1

)
N : Example ⇒ (ε2 = 1, e = 1, f = 0) (if B1 = 0).

β) The case κ1 = 0. Then we have ε2 = 0, ε1 = 1 and the condition µ3K1 < 0 yields f < 0. We observe

that in this case the saddle is a weak one if and only if f + 1 = 0. On the other hand calculations yield

(25) F1 = H = B1 = B2 = B3 = 0, B4 = 6(1 + f)x2y.

So according to [36] in the case of weak saddle (i.e. f = −1) we have an integrable saddle. Therefore

considering the condition κ1 = 0 and Lemma 6 we obtain the configurations

• s ;
(
2
2

) y
P E−

y
P E,

(
1
1

)
SN : Example ⇒ (ε2 = 0, e = 0, f = −2) (if B4 6= 0);

• $ ;
(
2
2

) y
P E−

y
P E,

(
1
1

)
SN : Example ⇒ (ε2 = 0, e = 0, f = −1) (if B4 = 0).

b) Suppose now µ3K1 > 0. In this case we have F4F5 > 0 and as G3 = 0 and Ñ 6= 0, according to [4] (see

Table 1, lines 182, 186, 188) we have a focus or a center if W7 < 0 and a node if W7 ≥ 0.
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α) The case W7 < 0. Then we have have ε2 = 1, ε1 = 0 (i.e. κ1 6= 0) and e < 0. So the finite singularity is

a focus and according to [36] we have a strong focus if B1 6= 0 and we have a center if B1 = 0.

Thus considering Lemma 6 we arrive at the following two configurations:

• f ;
(̂
1
2

) y
PfE

x
Pf−H,

(
2
1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 1) (if κ1 6= 0, B1 6= 0);

• c ;
(̂
1
2

) y
PfE

x
Pf−H,

(
2
1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 0) (if κ1 6= 0, B1 = 0).

β) The case W7 > 0. Then we again have ε2 = 1, ε1 = 0 and hence κ1 6= 0. So the singular point is a

generic node and by Lemma 6 we get the configuration

• n ;
(̂
1
2

) y
PfE

x
Pf−H,

(
2
1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 3).

γ) The case W7 = 0. Then by (24) we have ε2e(4ε2e + f2) = 0 and we consider two subcases: κ1 6= 0 and

κ1 = 0.

γ1) The subcase κ1 6= 0. Then we have ε2 = 1, ε1 = 0 and the condition W7 = 0 gives e = −f2/4.

Considering the linearization matrix of the singularity M1(0, 0) we conclude that systems (23) possess a node

nd. So by Lemma 6 we have the configuration

• nd ;
(̂
1
2

) y
PfE

x
Pf−H,

(
2
1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 2).

γ2) The subcase κ1 = 0. In this case we have ε2 = 0, ε1 = 1 and the linearization matrix of the singularity

M1(0, 0) is

(
1 0

e f

)
with f > 0 due to µ3K1 > 0. So the systems (23) possess i) a generic node if f 6= 1; ii)

an one-direction node if f = 1 and e 6= 0, and iii) a star node if f = 1 and e = 0. On the other hand for these

systems in the considered case we have

U7 = 12(f − 1)x4, U3 = −3x4
[
efx+ (1− f)y

]

and clearly these invariant polynomials govern the possibilities mentioned above. So considering the condition

κ1 = 0 and Lemma 6 we get the following three configurations:

• n ;
(
2
2

) x
P H−

x
P H,

(
1
1

)
SN : Example ⇒ (ε2 = 0, e = 1, f = 2) (if U7 6= 0);

• nd ;
(
2
2

) x
P H−

x
P H,

(
1
1

)
SN : Example ⇒ (ε2 = 0, e = 1, f = 1) (if U7 = 0, U3 6= 0);

• n∗ ;
(
2
2

) x
P H−

x
P H,

(
1
1

)
SN : Example ⇒ (ε2 = 0, e = 0, f = 1) (if U7 = 0, U3 = 0).

2) The possibility M̃ = 0. In this case m = 0 and then the condition M̃ = 0 yields dl = 0. As l 6= 0 (due

to µ3 6= 0) we get d = 0 and then via the rescaling (x, y) 7→ (x/l, y/l) we may assume l = 1. Therefore we

obtain the family of systems

(26) ẋ = x, ẏ = ex+ fy + x2,

for which calculations yield

(27)

µ0 = µ1 = µ2 = 0, µ3 = fx3, η = M̃ = 0, C2 = −x3, K1 = x3,

K̃ = κ = L̃ = Ñ = 0, G3 =W8 = 0, K3 = 6(2− f)fx6,

F4F5 = 6fx6, Ti = 0, i = 1, 2, 3, 4, σ = 1 + f.

a) The case µ3K1 < 0. Then we have F4F5 < 0 and according to [4] (see Table 1, line 179) the finite

singularity is a saddle. Clearly this saddle is weak if and only if f = −1 and this is equivalent to σ = 0.

However in the last case we get Hamiltonian systems and hence the weak saddle is an integrable one. So

considering Lemma 6 we arrive at the configurations

• s ;
(
3
3

) y
PfEE

x
Pf−

y
P

x
P : Example ⇒ (e = 0, f = −2) (if σ 6= 0);
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• $ ;
(
3
3

) y
PfEE

x
Pf−

y
P

x
P : Example ⇒ (e = 0, f = −1) (if σ = 0).

b) The case µ3K1 > 0. In this case we have F4F5 > 0 (i.e. f > 0) and considering the matrix of the

linearization at the singular point, we conclude that the singular point M1(0, 0) is a node. Moreover, this

node is: i) generic if f 6= 1; ii) one-direction node if f = 1 and e 6= 0, and iii) it is a star node if f = 1 and

e = 0. On the other hand for these systems in the considered case we have

U4 = −6(f − 1)x3, U5

∣∣
f=1

= −6ex2.

On the other hand the behavior of the trajectories in the vicinity of the infinite singularity (which is of

multiplicity six) according to Lemma 6 is governed by the invariant polynomial K3. By (27) as f > 0 we have

sign (K3) = sign (2− f).

Thus we arrive at the following five geometrically distinct global configurations of singularities:

• n ;
(
3
3

)
Hf

x
P

y
P Hf−

x
P

y
P : Example ⇒ (e = 0, f = 3) (if K3 < 0);

• n ;
(
3
3

)
HH−

x
P

y
P : Example ⇒ (e = 0, f = 2) (if K3 = 0);

• n ;
(
3
3

) y
Pf

x
P

y
P

x
Pf−HH : Example ⇒ (e = 0, f = 1/2) (if K3 > 0, U4 6= 0);

• nd ;
(
3
3

) y
Pf

x
P

y
P

x
Pf−HH : Example ⇒ (e = 1, f = 1) (if K3 > 0, U4 = 0, U5 6= 0);

• n∗ ;
(
3
3

) y
Pf

x
P

y
P

x
Pf−HH : Example ⇒ (e = 0, f = 1) (if K3 > 0, U4 = 0, U5 = 0).

As all the cases are considered we have got all 52 possible geometrically distinct global configurations of

singularities of the family of quadratic systems with only one finite singularity which in addition is elemental.
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