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Abstract. We provide for a class of Hamiltonian systems in the action–
angle variables sufficient conditions for showing the existence of periodic
orbits. We expand this result to the study of the existence of periodic orbits
of perturbed spatial Keplerian Hamiltonians with axial symmetry. Finally,
we apply these general results for finding periodic orbits of the Matese–
Whitman Hamiltonian, of the spatial anisotropic Hamiltonian and of the
spatial generalized van der Waals Hamiltonian.

1. Introduction and statement of the main results

We consider the following class of Hamiltonians in the action–angle variables

(1) H(I1, ..., In, θ1, ..., θn) = H0(I1) + εH1(I1, ..., In, θ1, ..., θn),

where ε is a small parameter.
As usual the Poisson bracket of the functions f(I1, ..., In, θ1, ..., θn) and

g(I1, ..., In, θ1, ..., θn) is

{f, g} =

n∑

i=1

(
∂f

∂θi

∂g

∂Ii
− ∂f

∂Ii

∂g

∂θi

)
.

The next result provides sufficient conditions for computing periodic orbits
of the Hamiltonian system associated to the Hamiltonian (1).
Theorem 1. We define

⟨H1⟩ =
1

2π

2π∫

0

H1(I1, ..., In, θ1, ..., θn)dθ1,

and we consider the differential system

(2)

dIi

dθ1
= ε

{Ii, ⟨H1⟩}
H′

0(H−1
0 (h∗))

= εfi−1(I2, ..., In, θ2, ..., θn) i = 2, ..., n,

dθi

dθ1
= ε

{θi, ⟨H1⟩}
H′

0(H−1
0 (h∗))

= εfi+n−2(I2, ..., In, θ2, ..., θn) i = 2, ..., n,
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restricted to the energy level H = h∗ with h∗ ∈ R. The value h∗ is such
that the function H−1

0 in a neighborhood of h∗ is a diffeomorphism. System
(2) is a Hamiltonian system with Hamiltonian ε ⟨H1⟩. If ε ̸= 0 is sufficiently
small then for every equilibrium point p = (I0

2 , ..., I0
n, θ0

2, ..., θ
0
n) of system (2)

satisfying that

det

(
∂(f1, ..., f2n−2)

∂(I2, ..., In, θ2, ..., θn)

∣∣∣∣
(I2,...,In,θ2,...,θn)=(I0

2 ,...,I0
n,θ0

2 ,...,θ0
n)

)
̸= 0,

there exists a 2π–periodic solution γε(θ1) = (I1(θ1, ε), ..., In(θ1, ε), θ2(θ1, ε), ...,
θn(θ1, ε)) of the Hamiltonian system associated to the Hamiltonian (1) taking
as independent variable the angle θ1 such that γε(0) → (H−1

0 (h∗), I0
2 , ..., I0

n, θ0
2,

..., θ0
n) when ε → 0. The stability or instability of the periodic solution γε(θ1)

is given by the stability or instability of the equilibrium point p of system (2).
In fact, the equilibrium point p has the stability behavior of the Poincaré map
associated to the periodic solution γε(θ1).

Now we clarify some of the notations used in the statement of Theorem 1.
We have that the function H0 is only function of the variable I1, i.e. H0 :
J → R where J is an open subset of R (the domain of definition of H0), and
consequently H0(I1) ∈ R. Therefore H′

0 means derivative with respect to the
variable I1.

The differential system (2) is defined on the energy level H(I1, ..., In, θ1, ..., θn)
= h∗ with h∗ ∈ R, and we assume that the value h∗ is such that the function
H−1

0 in a neighborhood of h∗ is a diffeomorphism. Therefore the expression
H′

0(H−1
0 (h∗)) is well defined.

On the other hand, every periodic solution of a differential system has de-
fined in its neighborhood a return map F usually called the Poincaré map.
The periodic solution provides a fixed point of the map F . The stability or
instability of this fixed point for the map F is what we call the stability behav-
ior of the Poincaré map associated to the periodic solution in the statement of
Theorem 1. For more details on the Poincaré map see for instance [15].

Theorem 1 will be proved in section 2.
The next objective of the present work is to study the periodic orbits of the

Hamiltonian system with the perturbed Keplerian Hamiltonian of the form

(3) H =
1

2

(
P 2

1 + P 2
2 + P 2

3

)
− 1√

Q2
1 + Q2

2 + Q2
3

+ εP1(Q
2
1 + Q2

2, Q3).

Note that the perturbation is symmetric with respect to the Q3–axis. It is easy
to check that the third component K = Q1P2−Q2P1 of the angular momentum
is a first integral of the Hamiltonian system associated to the Hamiltonian (3).
We use this second first integral to simplify the analysis of the given axially
symmetric Keplerian perturbed system.

In the following we use the Delaunay variables for studying easily the peri-
odic orbits of the Hamiltonian system associated to the Hamiltonian (3), see
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[4, 13] for more details on the Delaunay variables. Thus, in Delaunay variables
the Hamiltonian (3) has the form

(4) H = − 1

2L2
+ εP(l, g, k, L, G,K) = − 1

2L2
+ εP(l, g, L,G, K),

where l is the mean anomaly, g is the argument of the perigee of the unper-
turbed elliptic orbit measured in the invariant plane, k is the longitude of
the node, L is the square root of the semi-major axis of the unperturbed el-
liptic orbit, G is the modulus of the total angular momentum and K is the
third component of the angular momentum. Moreover, P is the perturbation
obtained from the perturbation P1 using the transformation to Delaunay vari-
ables, namely

(5)

Q1 = r (cos(f + g) cos k − c sin(f + g) sin k) ,

Q2 = r (cos(f + g) sin k + c sin(f + g) cos k) ,

Q3 = rs sin(f + g),

with

c =
K

G
, s2 = 1 − K2

G2
.

The true anomaly f and the eccentric anomaly E are auxiliary quantities
defined by the relations

√
1 − e2 =

G

L
, r = a(1 − e cosE), l = E − e sinE.

sin f =
a
√

1 − e2 sinE

r
, cos f =

a(cos E − e)

r
,

where e is the eccentricity of the unperturbed elliptic orbit.

Note that the angular variable k is a cyclic variable for the Hamiltonian
(4), and consenquently K is a first integral of the Hamiltonian system as we
already knew.

The family of Hamiltonians (4) is a particular subclass of the Hamiltonians
(1) with H1 = P. We denote by ⟨P⟩ the averaged map of P with respect to
the mean anomaly l, i.e.,

⟨P⟩ =
1

2π

2π∫

0

P(l, g, L, G,K)dl =
1

2π

2π∫

0

P(E−e sinE, g, L, G, K)(1−e cosE)dE.

We remark that the map ⟨P⟩ only depends on the angle g and the three
action variables L,G, K. We claim that H′

0(H−1
0 (h∗)) = (−2h∗)3/2. Indeed

H0(L) = −1/(2L2) = h∗, so H−1
0 (h∗) = (−2h∗)1/2. Since H′

0(L) = 1/L3, the
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claim follows. We also have from the definition of Poisson parenthesis that

{G, ⟨P⟩} = −∂G

∂G

∂ ⟨P⟩
∂g

= −∂ ⟨P⟩
∂g

,

{g, ⟨P⟩} =
∂g

∂g

∂ ⟨P⟩
∂G

=
∂ ⟨P⟩
∂G

,

{k, ⟨P⟩} =
∂k

∂k

∂ ⟨P⟩
∂K

=
∂ ⟨P⟩
∂K

.

Then, by Theorem 1 at the energy level H = h∗ with h∗ < 0 (because H0(L) =
−1/(2L2)) and with angular momentum K = k∗, the differential system (2)
with respect to the mean anomaly l is

(6)

dG

dl
= ε

{G, ⟨P⟩}
H′

0(H−1
0 (h∗))

= −ε(−2h∗)3/2 ∂ ⟨P⟩
∂g

= −εf1(g,G, K),

dg

dl
= ε

{g, ⟨P⟩}
H′

0(H−1
0 (h∗))

= ε(−2h∗)3/2 ∂ ⟨P⟩
∂G

= εf2(g,G, K),

dk

dl
= ε

{k, ⟨P⟩}
H′

0(H−1
0 (h∗))

= ε(−2h∗)3/2 ∂ ⟨P⟩
∂K

= εf3(g,G, K).

Note that we do not write the differential equation dK/dt = 0 because we are
working in the invariant set H = h∗ and K = k∗.

Now we are ready to state a corollary of Theorem 1 which provides sufficient
conditions for the existence and the kind of stability of the periodic orbits in
the perturbed Kepler problems with axial symmetry.

Corollary 2. System (6) is the Hamiltonian system taking as independent
variable the mean anomaly l of the Hamiltonian (3) written in Delaunay vari-
ables on the fixed energy level H = h∗ < 0 and on the fixed third component of
the angular momentum K = k∗. If ε ̸= 0 is sufficiently small then for every
solution p = (g0, G0, k

∗) of the system fi(g,G, K) = 0 for i = 1, 2, 3 satisfying
that

(7) det

(
∂(f1, f2, f3)

∂(g, G, K)

∣∣∣∣
(g,G,K)=(g0,G0,k∗)

)
̸= 0,

and all k0 ∈ [0, 2π) there exists a 2π–periodic solution γε(l) = (g(l, ε), k(l, ε),
L(l, ε), G(l, ε),K(l, ε) = k∗) such that γε(0) → (g0, k0,

√
−2h∗, G0, k

∗) when
ε → 0. The stability or instability of the periodic solution γε(l) is given by
the stability or instability of the equilibrium point p of system (6). In fact, the
equilibrium point p has the stability behavior of the Poincaré map associated to
the periodic solution γε(l).

We remark that the fact that we have a periodic solution for every k0 ∈
[0, 2π) with the same initial conditions for all the other variables, means that
we really have a 2–dimensional torus foliated by periodic solutions.

There are many articles studying the periodic orbits of different perturbed
Keplerian problems, see for instance [8, 9, 16] and the papers quoted therein.
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In what follows we shall study three Hamiltonian systems with Hamiltonian
of the form (4). The first one will be the Matese–Whitman Hamiltonian system
modeling the galactic tidal interaction with the Oort comet cloud. The second
one is the spatial anisotropic Kepler problem which analyzes the isotropy of the
space. Finally, we consider the spatial generalized van der Waals Hamiltonian
system modeling the dynamical symmetries of the perturbed hydrogen atom.

The Hamiltonian system associated to the Hamiltonian

(8) H =
1

2

(
P 2

1 + P 2
2 + P 2

3

)
− 1√

Q2
1 + Q2

2 + Q2
3

+ εQ2
3

was proposed in the seminal papers of Matese and Whitman [11, 12] for study-
ing the dynamics of the Oort cloud [14], see also [10]. In fact it is a simple
dynamical system which consider the heliocentric Kepler problem perturbed
by the quadratic tidal potential of the Galaxy. Note that the Hamiltonian (8)
is a particular case of the Hamiltonian (3).

We have the following result on the periodic orbits and their kind of stability
for the Hamiltonian system associated to the Hamiltonian (8).

Theorem 3. On every energy level H = h∗ < 0 and for the third component
of the angular momentum K = k∗ = 0, the Matese–Whitman Hamiltonian
system associated to the Hamiltonian (8) for ε ̸= 0 sufficiently small has two
2π–periodic solution γ±

ε (l) = (g(l, ε), k(l, ε)), L(l, ε), G(l, ε),K(l, ε)) such that

γ±
ε (0) →

(
±1

2
arccos

(
3

5

)
, k0,

1√
−2h∗ ,

1√
−2h∗ , 0

)
when ε → 0,

for each k0 ∈ [0, 2π). These periodic orbits have a stable manifold of dimension
2 and an unstable of dimension 1, and consequently are unstable.

As we have mention after the statement of Corollary 2 the fact that we have a
periodic orbit for each k0 ∈ [0, 2π) means that we have two 2–dimensional torus
foliated by periodic solutions for each value of g0 = ±1

2 arccos
(

3
5

)
. Putting

together the invariant manifolds of each of these periodic orbits, we obtain
that these 2–dimensional tori have a stable manifold of dimension 3 and an
unstable of dimension 2.

Theorem 3 is proved in section 3.
We note that the values ±26.6... = ± arccos(3/5)/2 also appear in the paper

[11], being there a boundary for the argument of the perigee of the periodic
orbits of the Hamiltonian system with Hamiltonian (8).

Now we shall analyze the so called anisotropic spatial Kepler problem given
by the Hamiltonian

(9) H =
1

2

(
P 2

1 + P 2
2 + P 2

3

)
− 1√

µ(Q2
1 + Q2

2) + Q2
3

where µ is a positive real parameter. This problem originally comes from the
quantum mechanic, see for instance [7, 2, 3].
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We want to study its periodic orbits for values of the parameter µ close to
1. Therefore define ε = 1 − µ, expanding in Taylor series in ε we obtain

H =
1

2

(
P 2

1 + P 2
2 + P 2

3

)
− 1√

Q2
1 + Q2

2 + Q2
3

− ε
Q2

1 + Q2
2

2
(
Q2

1 + Q2
2 + Q2

3

)3/2
+ O(ε2).

Note that this Hamiltonian is of the form (3).

Theorem 4. On every energy level H = h∗ < 0 and for the third component of
the angular momentum K = k∗ = 0, the spatial anisotropic Kepler Hamilton-
ian system associated to the Hamiltonian (9) for ε ̸= 0 sufficiently small has
two 2π–periodic solution γ±

ε (l) = (g(l, ε), k(l, ε)), L(l, ε), G(l, ε),K(l, ε)) such
that

γ±
ε (0) →

(
±π

4
, k0,

1√
−2h∗ ,

1√
−2h∗ , 0

)
when ε → 0,

for each k0 ∈ [0, 2π). These periodic orbits have a stable manifold of dimension
2 and an unstable of dimension 1, and consequently are unstable.

Theorem 4 is proved in section 4.
The generalized van der Waals Hamiltonian system was proposed in the

paper [1] via the following Hamiltonian with β ∈ R

(10) H =
1

2

(
P 2

1 + P 2
2 + P 2

3

)
− 1√

Q2
1 + Q2

2 + Q2
3

+ ε
(
Q2

1 + Q2
2 + β2Q2

3

)
.

Note that this Hamiltonian is of the form (3). For more references on this
Hamiltonian system see the ones quoted in [6].

Theorem 5. On every energy level H = h∗ < 0 and for the third component of
the angular momentum K = k∗, the spatial van der Waals Hamiltonian system
associated to the Hamiltonian (10) for ε ̸= 0 sufficiently small has:

(a) For K = k∗ = 0 two 2π–periodic solution γ±
ε (l) = (g(l, ε), k(l, ε)), L(l, ε),

G(l, ε),K(l, ε)) such that

γ±
ε (l)(0) →

(
±1

2
arccos

(
3(β2 + 1)

5(β2 − 1)

)
, k0,

1√
−2h∗ ,

1√
−2h∗ , 0

)
when ε → 0,

for each k0 ∈ [0, 2π) if β ∈ (−∞, −2) ∪ (−1/2, 1/2) ∪ (2, ∞). These
periodic orbits have a stable manifold of dimension 2 and an unstable
of dimension 1 if β ∈ (−1/2, 1/2), and have a stable manifold of di-
mension 1 and an unstable of dimension 2 if β ∈ (−∞, −2) ∪ (2,∞).
Consequently these periodic orbits are unstable.

(b) For K = k∗ ̸= 0 four 2π–periodic solutions γ±,±
ε (l) = (g(l, ε), k(l, ε)),

L(l, ε), G(l, ε), K(l, ε)) such that

γ±,±
ε (0) →


±π

2
, k0,

1√
−2h∗ ,

1

2

√
5

−2h∗ , ±1

4

√
5(1 − 4β2)

−2h∗(1 − β2)


 when ε → 0,

for each k0 ∈ [0, 2π) if β ∈ (−1, −1/2) ∪ (1/2, 1).
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Theorem 5 is proved in section 5.
The result of statement (a) of Theorem 5 was already obtained using cylin-

drical coordinates in [6].
The stability or instability of the four periodic orbits of statement (b) of

Theorem 5 can be determined analyzing the eigenvalues of the corresponding
Jacobian matrices, but since the expression of these eigenvalues are huge and
depend on the two parameters h∗ and β, this study is a long task that we do
not do here.

We remark that when (β2 −1)(β2 −4)(β2 −1/4) = 0, i.e. for the values that
the averaging theory for finding periodic orbits do not provide any information,
it is known that for those values of β the van der Waals Hamiltonian system is
integrable, see [5]. Therefore, the averaging method when cannot be applied
for finding periodic orbits provides a suspicion that for such values of the
parameter the system could be integrable.

Remark 6. The periodic orbits which persist for ε ̸= 0 sufficiently small in
Theorems 3, 4 and 5(a) bifurcate from elliptic periodic orbits of the unperturbed
Kepler problem contained in the plane defined by the orbit of the two bodies of
the Kepler problem. The periodic orbits of Theorem 5(b) bifurcate from elliptic
periodic orbits of the unperturbed Kepler problem not contained in the plane
defined by the orbit of the two bodies of the Kepler problem

Remark 6 is proved inside the proofs of Theorems 3, 4 and 5.

2. Averaged Hamiltonian in action–angle variables

The Hamiltonian system associated to the Hamiltonian (1) can be written
as

(11)

dIi

dt
= ε{Ii, H1} = −ε

∂H1

∂θi
i = 1, ..., n,

dθi

dt
= ε{θi, H1} = ε

∂H1

∂Ii
i = 2, ..., n,

dθ1

dt
= H′

0(I1) + ε{θ1, H1} = H′
0(I1) + ε

∂H1

∂I1
.

Lemma 7. Taking as new independent variable the variable θ1 we have in the
fixed energy level H = h∗ < 0 that the differential system (11) becomes

(12)

dIi

dθ1
= ε

{Ii, H1}
H′

0(H−1
0 (h∗))

+ O(ε2), i = 2, ..., n

dθi

dθ1
= ε

{θi, H1}
H′

0(H−1
0 (h∗))

+ O(ε2), i = 2, ..., n

with I1 = H−1
0 (h∗) + O(ε) if H′

0(H−1
0 (h∗)) ̸= 0.
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Proof. Taking as new independent variable θ1, the equations (11) become

dIi

dθ1
=

ε{Ii, H1}
H′

0(I1) + ε{θ1,H1}
= ε

{Ii, H1}
H′

0(I1)
+ O(ε2) i = 1, ..., n,

dθi

dθ1
=

ε{θi,H1}
H′

0(I1) + ε{θ1,H1}
= ε

{θi,H1}
H′

0(I1)
+ O(ε2) i = 2, ..., n.

Fixing the energy level of H = h∗ < 0 we obtain h∗ = H0(I1)+εH1(I1, ..., In, θ1,

..., θn). Using the Implicit Function Theorem and the fact that H′
0(H−1

0 (h∗)) ̸=
0, for ε sufficiently small, we get I1 = H−1

0 (h∗) + O(ε), and the equations are
reduced to (12). �

Proof of Theorem 1. The averaged system in the angle θ1 obtained from (12)
is

(13)

dIi

dθ1
= − 1

2π

ε

H′
0(H−1

0 (h))

2π∫

0

∂H1

∂θi
dθ1 i = 2, ..., n,

dθi

dθ1
=

1

2π
ε

{θi, H1}
H′

0(H−1
0 (h))

2π∫

0

∂H1

∂Ii
dθ1 i = 2, ..., n.

See the Appendix for a short introduction to the averaging theory used in this
paper.

Since,

∂ ⟨H1⟩
∂θi

=
1

2π

2π∫

0

∂H1

∂θi
dθ1 i = 2, ..., n,

∂ ⟨H1⟩
∂Ii

=
1

2π

2π∫

0

∂H1

∂Ii
dθ1 i = 2, ..., n,

the differential system (13) becomes

dIi

dθ1
= − ε

H′
0(H−1

0 (h))

∂ ⟨H1⟩
∂θi

= ε
{Ii, ⟨H1⟩}

H′
0(H−1

0 (h))
i = 2, ..., n,

dθi

dθ1
=

ε

H′
0(H−1

0 (h))

∂ ⟨H1⟩
∂Ii

= ε
{θi, ⟨H1⟩}

H′
0(H−1

0 (h))
i = 2, ..., n,

which coincides with the system (2).
Once we have obtained the averaged system (2) it is immediate to check that

it satisfies the assumptions of Theorem 8 of the Appendix, then applying the
conclusions of Theorem 8 to our averaged system (2) the rest of the statement
of Theorem 1 follows immediately. �
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3. The Matese–Whitman problem

For the Matese–Whitman Hamiltonian the function P(E, g, L, G, K) given
in (4) is

(G2 − K2)(e cosE − 1)2L4

2G2
− L4(G2 − K2)(e − cosE)2 cos2 g

2G2

+
L4(G2 − K2)(e − cosE)2 sin2 g

2G2

−2L3(G2 − K2)(e − cosE) cos g sin E sin g

G

+
1

2
L2(G2 − K2) cos2 g sin2 E − 1

2
L2(G2 − K2) sin2 E sin2 g.

Its averaged function ⟨P⟩ with respect the mean anomaly l is

⟨P⟩ =
1

2π

2π∫

0

P(E, g, L, G,K)(1 − e cos E)dE

=
L2(G2 − K2)

(
5L2 − 3G2 + 5(G2 − L2) cos(2g)

)

4G2
.

The equations (6) for our system are the averaged equations of the Hamiltonian
system with Hamiltonian (8)

dG

dl
= ε

5(1 + 2h∗G2)(G2 − K2) sin(2g)

2
√

−2h∗G2
= −εf1(g,G, K),

dg

dl
= −ε

6G4h∗ + 5K2 − 5
(
2G4h∗ + K2

)
cos(2g)

2
√

−2h∗G3
= εf2(g,G, K),

dk

dl
= ε

K(5(1 + 2h∗G2) cos(2g) − 5 − 6h∗G2)

2
√

−2h∗G2
= εf3(g,G, K),

here L = 1/
√

−2h∗ + O(ε), see for more details the proof of Theorem 1. The
equilibrium solutions (g0, G0, k

∗) of this averaged system satisfying (7) give
rise to periodic orbits of the Hamiltonian system with Hamiltonian (8) for
each H = h∗ < 0 and K = k∗, see Theorem 8. There are only two of such
equilibria, namely

(g0, G0, k
∗) =

(
±1

2
arccos

(
3

5

)
,

1√
−2h∗ , 0

)
.

The Jacobian (7) at these equilibra is equal to 16
√

−2h∗ ̸= 0. So each one
of these equilibria provides for each value of k ∈ [0, 2π) one periodic orbit
of the Hamiltonian system with Hamiltonian (8) for each H = h∗ < 0 and
K = k∗ = 0.

Since the third component of the angular momentum K of these periodic
orbits is zero, these periodic orbits bifurcate from elliptic periodic orbits (note
that the argument of the perigee g0 ̸= 0) of the Kepler problem contained in
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the plane of motion of the two bodies defining the Kepler problem. Moreover,
since the eigenvalues of the matrix

(14)

(
∂(f1, f2, f3)

∂(g, G, K)

∣∣∣∣
(g,G,K)=(g0,G0,k∗)

)

at these equilibria are ±4 and −
√

−2h∗, these periodic orbits have a stable
manifold of dimension 2 and an unstable of dimension 1. This completes the
proof of Theorem 3.

4. The Anisotropic Kepler problem

For the anisotropic Kepler problem the function P(E, g, h, G,K) is equal to

−(G2 − K2) sin2 E cos2 g

4L4(e cos E − 1)3
+

(G2 − K2)(e − cosE)2 cos2 g

4G2L2(e cosE − 1)3

+
(G2 − K2)(e − cos E) sin E sin g cos g

GL3(e cosE − 1)3
+

(G2 − K2) sin2 E sin2 g

4L4(e cos E − 1)3

−(G2 − K2)(e − cos E)2 sin2 g

4G2L2(e cosE − 1)3
+

G2 + K2

4G2L2(e cos E − 1)

Its averaged function with respect to the mean anomaly is

⟨P⟩ =
1

2π

2π∫

0

P(E, g, h, G,K)(1 − e cos E)dE

= −
(
G2 + K2

)
(G + L) − (G2 − K2)(G − L) cos(2g)

4G2L2(G + L)
.

The equations (6) are the averaged equations of the Hamiltonian system
with Hamiltonian (9)

dG

dl
= ε

4(1 − G
√

−2h∗)(−h∗)5/2(G2 − K2) sin(2g)√
2G2(1 + G

√
−2h∗)

= −εf1(g, G, K),

dg

dl
= ε

A

G3(1 + G
√

−2h∗)2
= εf2(g, G, K),

dk

dl
= ε

2(h∗)2K
(
2h∗G −

√
−2h∗ + (

√
−2h∗ + 2h∗G) cos(2g)

)

G2(1 + G
√

−2h∗)
= εf3(g, G, K),

where

A = 4(−h∗)5/2
(
(−1 − 2G

√
−2h∗ + 2G2h∗)K2)+

(−G3
√

−2h∗ + K2 + G
√

−2h∗K2 + 2h∗G2K2) cos(2g)
)
,

here L = 1/
√

−2h∗ + O(ε). The equilibrium solutions (g0, G0, k
∗) of this

averaged system satisfying (7) give rise to periodic orbits of the Hamiltonian
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system with Hamiltonian (9) for each H = h∗ < 0 and K = k∗, see Theorem
8. There are two of such equilibria, namely

(g0, G0, k
∗) =

(
±π

4
,

1√
−2h∗ , 0

)
.

The Jacobian (7) at these equilibra is equal to 16
√

2(−h∗)19/2 ̸= 0. So each
of these equilibria provide one periodic orbit for each value of k ∈ [0, 2π) of the
Hamiltonian system with Hamiltonian (9) for each H = h∗ < 0 and K = k∗ =
0. Since the third component of the angular momentum is zero, these periodic
orbits bifurcate from elliptic orbits (g0 ̸= 0) of the Kepler problem contained in
the plane of motion of the two bodies. Moreover, since the eigenvalues of the
matrix (14) at these equilibra are ±2(h∗)3 and −4

√
2(−h∗)7/2, these periodic

orbits have a stable manifold of dimension 2 and an unstable of dimension 1.
This completes the proof of Theorem 4.

5. The generalized van der Waals Hamiltonian

For the generalized van der Waals Hamiltonian system the function P(E, g, h, G, K)
is equal to

(
β2G2 + G2 + K2 − K2β2

)
(e cosE − 1)2L4

2G2
−

L4(G2 − K2)(β2 − 1)(e − cosE)2 cos2 g

2G2
+

L4(G2 − K2)(β2 − 1)(e − cosE)2 sin2 g

2G2

−2L3(G2 − K2)(β2 − 1)(e − cosE) cos g sinE sin g

G

+
1

2
L2(G2 − K2)(β2 − 1) cos2 g sin2 E

−1

2
L2(G2 − K2)(β2 − 1) sin2 E sin2 g

Its averaged function with respect to the mean anomaly is

⟨P⟩ =
1

2π

2π∫

0

P(E, g, h,G, K)(1 − e cos E)dE =
B

4G2
,

where B = L2
(
5(G2 −K2)(G2 −L2)(β2 − 1) cos(2g)− (3G2 − 5L2)(G2 +K2 +

(G2 − K2)β2)
)
.
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The equations (6) are the averaged equations of the Hamiltonian system
with Hamiltonian (10)

dG

dl
= ε

5(1 + 2h∗G2)(G2 − K2)(β2 − 1) sin(2g)

2G2
√

−2h∗ = −εf1(g, G,K),

dg

dl
= −ε

C

2G3
√

−2h∗ = εf2(g,G, K),

dk

dl
= ε

K(β2 − 1)(−5 − 6h∗G2 + 5(1 + 2h∗G2) cos(2g))

2G2
√

−2h∗ = εf3(g, G, K),

where C = 5K2(β2 −1)+6h∗G4(β2 +1)−5(2h∗G4 +K2)(β2 − 1) cos(2g) here
L = 1/

√
−2h∗ + O(ε). The equilibrium solutions (g0, G0, k

∗) of this averaged
system satisfying (7) give rise to periodic orbits of the Hamiltonian system
with Hamiltonian (10) for each H = h∗ < 0 and K = k∗, see Theorem 8.
These equilibria (g0, G0, k

∗) are

(
±1

2
arccos

(
3(β2 + 1)

5(β2 − 1)

)
,

1√
−2h∗ , 0

)
,


±π

2
,
1

2

√
5

−2h∗ , ±1

4

√
5(1 − 4β2)

−2h∗(1 − β2)


 .

The first two equilibria exist if 3(β2 + 1)/(5(β2 − 1)) ∈ [−1, 1], i.e. if β ∈
(−∞, −2] ∪ [−1/2, 1/2] ∪ [2,∞).

The Jacobian (7) of the first equilibrium is equal to J = 16
√

−2h∗(β2 −
1)(β2 − 4)(β2 − 1/4). So each of these equilibria when β ∈ (−∞, −2) ∪
(−1/2, 1/2) ∪ (2, ∞) provides one periodic orbit of the Hamiltonian system
with Hamiltonian (10) for each H = h∗ < 0 and K = k∗ = 0. Since k∗ = 0
these periodic orbits bifurcate from an elliptic orbit (g0 ̸= 0) of the Kepler
problem living in the plane of motion of the two bodies of the Kepler prob-
lem. Moreover, since the eigenvalues of the matrix (14) at these equilibra are
±2
√

(β2 − 4)(4β2 − 1) and
√

−2h∗(β2 −1), these periodic orbits have a stable
manifold of dimension 2 and an unstable of dimension 1 if β ∈ (−1/2, 1/2),
and have a stable manifold of dimension 1 and an unstable of dimension 2 if
β ∈ (−∞, −2) ∪ (2, ∞). This proves statement (a) of the theorem.

The last four equilibria exist if β ∈ (−1, −1/2] ∪ [1/2, 1) and have Jacobian
equal to J = −15

√
−2h∗(β2 − 1)(4β2 − 1). So, for each value of k ∈ [0, 2π)

these four equilibria when β ∈ (−1, −1/2) ∪ (1/2, 1) provide four periodic
orbits of the Hamiltonian system with Hamiltonian (10) for each H = h∗ < 0

and K = k∗ = ±1

4

√
5(1 − 4β2)

−2h∗(1 − β2)
̸= 0. Since k∗ ̸= 0 these periodic orbits

bifurcate from elliptic orbits (g0 ̸= 0) of the Kepler problem which are not in
the plane of motion defined by the two bodies. This proves statement (b) of
the theorem.
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Appendix

Now we shall present the basic results from averaging theory that we need
for proving the results of this paper.

The next theorem provides a first order approximation for the periodic so-
lutions of a periodic differential system, for the proof see Theorems 11.5 and
11.6 of Verhulst [17].

Consider the differential equation

(15) ẋ = εF (t, x) + ε2R(t, x, ε), x(0) = x0,

with x ∈ D where D is an open subset of Rn, and t ≥ 0. Moreover we assume
that F (t, x) is T periodic in t. Separately we consider in D the averaged
differential equation

(16) ẏ = εf(y), y(0) = x0,

where

f(y) =
1

T

∫ T

0
F (t, y)dt.

Under certain conditions, see the next theorem, equilibrium solutions of the
averaged equation turn out to correspond with T–periodic solutions of equation
(16).

Theorem 8. Consider the two initial value problems (15) and (16). Suppose:
(i) F , its Jacobian ∂F/∂x, its Hessian ∂2F/∂x2 are defined, continuous

and bounded by an independent constant ε in [0, ∞)×D and ε ∈ (0, ε0].
(ii) F is T–periodic in t (T independent of ε).
(iii) y(t) belongs to D on the interval of time [0, 1/ε].
Then the following statements hold.
(a) For t ∈ [0, 1/ε] we have that x(t) − y(t) = O(ε), as ε → 0.
(b) If p is a equilibrium point of the averaged equation (16) and

(17) det

(
∂f

∂y

)∣∣∣∣
y=p

̸= 0,

then there exists a T–periodic solution φ(t, ε) of equation (15) such that
φ(0, ε) → p as ε → 0.

(c) The stability or instability of the periodic solution φ(t, ε) is given by the
stability or instability of the equilibrium point p of the averaged system
(16). In fact, the equilibrium point p has the stability behavior of the
Poincaré map associated to the periodic solution φ(t, ε).
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