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Abstract

We study the orbital stability of solitary traveling wave solutions of an equa-
tion for surface water waves of moderate amplitude in the shallow water
regime. Our approach is based on a method proposed by Grillakis, Shatah
and Strauss in 1987 [1], and relies on a reformulation of the evolution equa-
tion in Hamiltonian form. We deduce stability of solitary waves by proving
the convexity of a scalar function, which is based on two nonlinear functionals
that are preserved under the flow.

Keywords: solitary waves, nonlinear stability.
2000 MSC: 35Q35, 35Q51

1. Introduction

This paper is concerned with an equation for surface waves of moderate
amplitude in the shallow water regime which arises as an approximation to
the Euler equations. Since the exact governing equations for water waves
have proven to be nearly intractable (Gerstner waves being the only known
explicit solutions to the full equations [2, 3, 4, 5]), the quest for suitable sim-
plified model equations was initiated at the earliest stages of the development
of hydrodynamics. Evolving from an analysis confined to linear theory which
dominated most studies until the early twentieth century [6], many compet-
ing nonlinear models are being proposed to this day to gain insight into
phenomena like wave breaking or solitary waves. One of the most prominent
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examples is the Camassa–Holm equation [7], which is an integrable infinite-
dimensional Hamiltonian system [8, 9, 10] whose solitary waves are solitons
[11, 12]. Some classical solutions of the Camassa–Holm equation develop sin-
gularities in finite time in the form of wave breaking, i.e. the solution remains
bounded but its slope becomes unbounded [13]. After blow-up, the solutions
recover in the sense of global weak solutions [14, 15]. With the objective
of showing the relevance of this equation as a model for the propagation of
shallow water waves, Johnson [16] demonstrates that the horizontal compo-
nent of the velocity field at a certain depth within the fluid is described by
a Camassa–Holm equation; see also the discussion in [17]. In search of a
corresponding equation for the free surface, Constantin and Lannes follow
up on earlier considerations by Johnson and derive an evolution equation for
surface waves of moderate amplitude in the shallow water regime,

ut + ux + 6uux − 6u2ux + 12u3ux + uxxx − uxxt + 14uuxxx + 28uxuxx = 0,
(1)

which approximates the governing equations to the same order as the Ca-
massa–Holm equation [18]. Local well-posedness for the initial value problem
associated to (1) was first established by Constantin and Lannes [18], and
recently improved using semigroup theory for quasi-linear equations and an
approach due to Kato [19]. Not much is known concerning the existence of
global solutions of (1), unless one passes to a moving frame and studies waves
traveling at constant speed c > 0 without changing their shape. For these so
called traveling wave solutions, equation (1) takes the form

ϕx(1−c)+6ϕϕx−6ϕ2ϕx+12ϕ3ϕx+(1+c)ϕxxx+14ϕϕxxx+28ϕxϕxx = 0, (2)

where x now denotes the independent variable in the moving frame. The ex-
istence of solitary wave solutions of (2), which have the additional property of
decay at infinity, was proved using methods of dynamical systems [20]. More-
over, it was shown that solitary wave solutions of (2) are positive, symmetric
with respect to the crest line and have a unique maximum which increases
with the wave speed, i.e. faster waves are taller. In the present paper, we are
concerned with the orbital stability of solitary waves of (2), cf. Definition 2.1
below. Our approach is inspired by a paper of Constantin and Strauss [11],
which shows that solitary waves of the Camassa–Holm equation are solitons
and that they are orbitally stable. In a similar vein, we employ an approach
proposed by Grillakis, Shatah and Strauss [1] and prove the convexity of a
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scalar function, which is based on two nonlinear functionals preserved under
the flow (1), to deduce stability of solitary traveling wave solutions.

2. Preliminaries

We are interested in the nonlinear stability with respect to arbitrary per-
turbations of the initial data of solitary traveling wave solutions of the model
equation (1). More precisely:

Definition 2.1 (Orbital stability). A solitary traveling wave solution ϕ of (1)
is called stable if for every ε > 0 there exists γ > 0 such that the following
holds: If u ∈ C([0, T );H2) is a solution of (1) for some T ∈ (0,∞) with
‖u(0)− ϕ‖H2 ≤ γ, then for every t ∈ [0, T ) we have

inf
r∈R

‖u(., t)− ϕ(.− r)‖H2 ≤ ε.

Otherwise, the solution is called unstable.

The verification of this type of stability relies strongly on a method intro-
duced by Grillakis, Shatah and Strauss [1] and essentially follows from a
theorem presented therein. To this end, we state the following assumptions:

(A1) For every u0 ∈ Hs(R), s > 3
2
, there exists a solution u of (1) in [0, T )

such that u(0) = u0 where u ∈ C([0, T );Hs(R)) ∩ C1([0, T );L2(R)).
Furthermore, there exist functionals E(u) and F (u) which are con-
served for solutions of (1).

(A2) For every c ∈ (1,∞), there exists a traveling wave solution ϕ ∈ H2

of (1), where ϕ > 0 and ϕx 6≡ 0. The mapping c 7→ ϕ(x − ct) is
C1((1,∞);H2). Moreover cE ′(ϕ)−F ′(ϕ) = 0, where E ′ and F ′ are the
variational derivatives of E and F , respectively.

(A3) For every c ∈ (1,∞), the linearized Hamiltonian operator around ϕ
defined by

Hc : H
1(R) → H−1(R), Hc = cE ′′(ϕ)− F ′′(ϕ), (3)

has exactly one negative simple eigenvalue, its kernel is spanned by ϕx

and the rest of its spectrum is positive and bounded away from zero.
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Theorem 2.2 (Grillakis, Shatah & Strauss, 1987). Under the assumptions
(A1), (A2) and (A3), a solitary wave solution ϕ(x − ct) of (1) is stable if
and only if the scalar function

d(c) = cE(ϕ)− F (ϕ) (4)

is convex in a neighborhood of c.

3. Hamiltonian formulation and conservation laws

In order to show that the assumptions (A1)-(A3) of Theorem 2.2 hold, we
need to find conserved quantities of (1). To this end, we define the nonlinear
functionals

E(u) =
1

2

∫

R

(
u2 + u2

x

)
dx, (5)

which can be interpreted as the kinetic energy of the waves, and

F (u) =

∫

R

(u2

2
+ u3 − u4

2
+

3

5
u5 − u2

x

2
− 7uu2

x

)
dx. (6)

While proving the conservation of energy E(u) is straightforward, showing
that the second quantity is conserved requires more attention. In the follow-
ing, we prove that the evolution equation (1) has a Hamiltonian structure
which will aid in showing that F (u) is also preserved by the flow (cf. 6 for
some definitions).

Theorem 3.1. The evolution equation for surface waves of moderate ampli-
tude in shallow water (1) can be expressed in Hamiltonian form, i.e.

mt = −∂x(I − ∂2
x)δF (m), (7)

where m is the momentum defined as

m = u− uxx. (8)

Proof. Using (8) the evolution equation (1) can be rewritten as

mt = −∂x

(
u+ 3u2 − 2u3 + 3u4 + uxx + 14uuxx + 7u2

x

)
.

We compute the variational derivative of F (u) and find that

δF (u) = u+ 3u2 − 2u3 + 3u4 + uxx + 14uuxx + 7u2
x.
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Hence, the evolution equation takes the form

mt = −∂xδF (u).

Using the fact that for any functional F we have δF (u) = (I − ∂2
x)δF (m),

cf. Lemma 3.1 in [21], we obtain that

mt = −∂x(I − ∂2
x)δF (m).

Along the lines of a proof which shows that the Camassa-Holm equation
has a bi-Hamiltonian structure [21], it is straightforward to verify that the
operator

D = −∂x(I − ∂2
x) (9)

is Hamiltonian, i.e. its Lie-Poisson bracket is skew-symmetric and satisfies
the Jacobi identity [27]. Hence, the proof is complete.

Lemma 3.2. The nonlinear functionals E(u) and F (u) defined in (5) and
(6) above are conserved quantities under the flow (1).

Proof. Multiplying (1) by u and integrating over R we obtain

d

dt

(1
2

∫

R
(u2 + u2

x)dx
)
=

d

dt
E(u) = 0.

To show that F (u) is conserved, we use the Hamiltonian structure of (1). For
any solution u of (1), the momentum m = u−uxx satisfies the corresponding
evolution equation (7). It follows that

d

dt
G(m(t)) = (δG(m),mt) = (δG(m),−∂x(I − ∂2

x) δF (m)) = [G,F ](m),

in view of (7) and the fact that the operator D = −∂x(I−∂2
x) is Hamiltonian,

cf. 6.2. Using skew-symmetry, we conclude that

d

dt
F (m(t)) = [F, F ] = 0.
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4. Stability

The main goal of this paper is to prove that solitary traveling wave solu-
tions of (1) are orbitally stable. To this end, we will verify the assumptions
of Theorem 2.2 and show that the function d(c) defined in (4) is convex.
Assumption (A1) holds in view of Lemma 3.2 and the existence results pre-
sented in [19]. Regarding (A2), recall the existence of solitary wave solutions
[20] and compute the first and second variational derivatives of the conserved
quantities E and F , which are given by

E ′(u)v = (u− ∂xux, v), E ′′(u)v = (I − ∂2
x, v),

F ′(u)v = (u+ 3u2 − 2u3 + 3u4 + uxx + 14uuxx + 7u2
x, v),

and

F ′′(u)v = (I + 6u− 6u2 + 12u3 + 14uxx + 14u∂2
x + 14ux∂x + ∂2

x, v).

It follows that equation (2) may be written as

cE ′(ϕ)− F ′(ϕ) = 0, (10)

which ensures (A2). To show the validity of (A3), we study the spectral
problem associated to the linearized Hamiltonian operator Hc defined in (3).
We claim that for every c > 1, the operator Hc has exactly one negative
simple eigenvalue while the rest of the spectrum is positive and bounded
away from zero. Furthermore, Hc(ϕx) = 0. Indeed, observe that

Hc = −(1 + c+ 14ϕ)∂2
x − 14ϕxx − 14ϕx∂x − I − 6ϕ+ 6ϕ2 − 12ϕ3 + c

= −∂x((1 + c+ 14ϕ)∂x) + c− I − 6ϕ+ 6ϕ2 − 12ϕ3 − 14ϕxx.

Therefore, we can write the spectral equation Hcv = λv as the Sturm-
Liouville problem

−(p vx)x + (q − λ) v = 0,

where

p(x) = 1 + c+ 14ϕ, q(x) = c− 1− 6ϕ+ 6ϕ2 − 12ϕ3 − 14ϕxx.

Recall that any regular Sturm-Liouville system has an infinite sequence of
real eigenvalues λ0 < λ1 < λ2 < . . . with limn→∞ λn = ∞ (cf. [22], The-
orem 5, p. 320). The eigenfunction vn(x) belonging to the eigenvalue λn is
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uniquely determined up to a constant factor and has exactly n zeros. Fur-
thermore, observe that Hc is a self-adjoint, second order differential operator.
Therefore its eigenvalues λ are real and simple, and its essential spectrum is
given by [c− 1,∞) in view of the fact that lim infx→∞ q(x) = c− 1 (cf. [23],
Theorem 18, p. 1450). It is straightforward to verify that (2) is equivalent to
Hc(ϕx) = 0. Furthermore, ϕx has exactly one zero on R in view of the fact
that the solitary wave solutions of (2) have a unique maximum. We conclude
that there is exactly one negative eigenvalue, and the rest of the spectrum is
positive and bounded away from zero, which proves the claim.

Under the assumptions (A1)–(A3), Theorem 2.2 ensures that a solitary wave
ϕ is stable if and only if the scalar function

d(c) = cE(ϕ)− F (ϕ),

is convex in a neighborhood of c. In view of (10) we find that

d′(c) = E(ϕ) + (cE ′(ϕ)− F ′(ϕ), ∂cϕ) = E(ϕ).

In the following theorem, we prove that d′′(c) ≥ 0 to infer stability of ϕ.

Theorem 4.1. The kinetic energy E = d′(c) is an increasing function of
the wave speed c. Therefore, all solitary traveling wave solutions of (1) are
stable.

Proof. Let ϕ be a solitary traveling wave solution of (1). In [20] it was shown
that ϕ satisfies

ϕ2
x = ϕ2 c− 1− 2ϕ+ ϕ2 − 6/5ϕ3

1 + c+ 14ϕ
,

and that it is symmetric with respect to the crest. Therefore, ϕx < 0 on
(0,∞) and

ϕ = −ϕx

√
S(ϕ, c)

T (ϕ, c)
,

if we denote T (ϕ, c) := c− 1− 2ϕ+ ϕ2 − 6/5ϕ3 and S(ϕ, c) := 1 + c+ 14ϕ.
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Thus, the kinetic energy can be rewritten as

d′(c) =
1

2

∫

R
(ϕ2 + ϕ2

x)dx =

∫ ∞

0

ϕ2
(
1 +

T

S
(ϕ, c)

)
dx

= −
∫ ∞

0

ϕϕx

(S + T√
S T

(ϕ, c)
)
dx

=

∫ h(c)

0

y

(
S + T√
S T

(y, c)

)
dy. (11)

In the last equality we have performed the change of variables ϕ(x) = y and
used the fact that ϕ has a unique maximum h(c), which corresponds to the
unique real root of T (ϕ, c). To motivate the subsequent calculations showing
that d(c) is convex in a neighborhood of c, we first perform numerical inte-
gration in MATLAB using the trapezoidal rule1 to compute the integral in
(11). If we plot the resulting approximation of d′(c), cf. Figure 1, it becomes
apparent immediately that the kinetic energy is increasing with c, which im-
plies that all solitary traveling wave solutions of (1) are stable.
We will now give a rigorous proof of this result. Observe that the integrand
in (11) has a singularity in h(c), which precludes a straightforward differenti-
ation of d′(c). To overcome this problem, we take advantage of the fact that
the function h : [1,∞) → [0,∞) is bijective, since it was shown in [20] that
h(c) is strictly monotonically increasing, h(1) = 0 and limc→∞ h(c) = ∞.
Denoting H = h(c), we find that c = h−1(H) = 1+ 2H −H2 +6/5H3 which

1The trapezoidal rule of integration is an example of the Newton-Cotes formula, cf. [24],
based on the discretization of the integration domain and approximation of the integral
by trapezoids. The error can be estimated in terms of the interval of integration and the
number of discretization points N by the formula

ErrN = − h(c)3

12N2
∂2
y

(
y
S + T√
S T

(y, c)
)
(ξ),

where ξ ∈ [0, h(c)], cf. [24]. For every c > 1 and N sufficiently large, this error can be
made arbitrarily small.
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E(ϕ)

c

Figure 1: The kinetic energy of solitary traveling waves of (1) is increasing with the wave
speed, which implies that the waves are orbitally stable.

allows us to rewrite (11) as

e(H) =

∫ H

0

y

(
S + T√
S T

(y, h−1(H))

)
dy

=

∫ 1

0

H2z

(
S + T√
S T

(Hz, h−1(H))

)
dz,

where we have performed the change of variables y = Hz. This improper
integral is well defined on (0, 1) since the polynomials in the square root are
positive in this interval, and the integrand becomes singular only when z = 1.
Now, denote the integrand by f(z,H) and let I = [H1, H2] with H1 > 0, so

that we can view e(H) =
∫ 1

0
f(z,H)dz as a parameter integral. Observe

that f(., H) ∈ L1(0, 1) for all H ∈ I, and f(z, .) ∈ C1(I) for all z ∈ (0, 1).
Furthermore, we claim that there exists a function g ∈ L1(0, 1) such that
|∂Hf(z,H)| ≤ g(z) for all (z,H) ∈ (0, 1)× I. Indeed,

f(z,H) = H2z

(
S + T√
S T

(Hz, h−1(H))

)
,

where
S(Hz, h−1(H)) = 2 + 2H −H2 + 6/5H3 + 14Hz
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and

T (Hz, h−1(H)) = H(1− z)(2−H(1 + z) + 6/5H2(1 + z + z2)).

Differentiating f(z,H) with respect to H, we can find a positive constant K
depending only on I such that

|∂Hf(z,H)| ≤ K
1√
1− z

,

for z ∈ (0, 1) and H ∈ I. We let g(z) := K(1−z)−1/2 and observe that g(z) ∈
L1(0, 1) which proves the claim. In view of the theorem on differentiation of
parameter integrals (cf. [25], p.111), we obtain that

∂He(H) =

∫ 1

0

∂Hf(z,H)dz

for all H ∈ I and z ∈ (0, 1). Since the choice of I was arbitrary, we can
extend this result to all H ∈ (0,∞). Recall that H = h(c), so that

d′′(c) = ∂He(H)h′(c).

Since h is an increasing function of c, it remains to show that ∂He(H) ≥ 0.
To this end, consider the integrand of this expression and notice that it may
be rewritten as

∂Hf(z,H) =
H2z(z − 1)N(z,H)

(S T )
3
2

,

where

N(z,H) =
1

125
(−1500− 5500H + 1700H2 − 2700H3−

6600H4 + 5540H5 − 6120H6 + 2160H7 − 864H8 − 21500Hz−
30300H2z + 33300H3z − 58800H4z + 27140H5z−
19080H6z + 2160H7z − 864H8z − 78300H2z2+

38550H3z2 − 46800H4z2 + 22790H5z2 − 17280H6z2+

1080H7z2 − 864H8z2 + 19050H3z3 − 31750H4z3+

3410H5z3 − 12060H6z3 − 1080H7z3 + 432H8z3−
5975H4z4 − 11940H5z4 + 9315H6z4 − 1080H7z4+

432H8z4 − 10290H5z5 + 8640H6z5 − 450H7z5+

432H8z5 + 7560H6z6).
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In view of the fact that z ∈ (0, 1) and H ∈ (0,∞), we have to prove that
N(z,H) ≤ 0. We will use a result for one-parameter families of polynomials
in one variable (cf. Lemma 8.1 in [26]) which ensures that the polynomials do
not change sign. To verify the assumptions of the Lemma, we first perform
the change of variables z = x2/(1 + x2) and H = b2, which maps the strip
(0, 1)× (0,∞) into the whole plane. Since the denominator of the resulting
expression is everywhere positive, we only consider the numerator which is
of the form

Gb(x) = g12(b)x
12 + g11(b)x

11 + · · ·+ g1(b)x+ g0(b),

where the gi depend polynomially on the real parameter b. Using the Sturm
method one can check that G1(x) < 0 on R. Next, we compute the discrim-
inant of Gb(x) and find that it is non zero, since all coefficients are positive.
Finally, we use the Sturm method once more to show that g12(b) 6= 0 for
all b ∈ R. Having verified the assumptions of the Lemma, we may conclude
that Gb(x) < 0 on R for all b ∈ R. This proves that N(z,H) ≤ 0, and
consequently d′′(c) ≥ 0 which implies stability of ϕ.
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6. Appendix

Let X be a linear function space over R and let F,G and H be functionals
on X. The following definitions may be found in [27].

Definition 6.1. The variational derivative of F with respect to u is denoted
by δF (u) and defined as

(δF (u), v) =
d

dε
F (u+ εv)|ε=0,

where (. , .) is the inner product on L2(R).
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Definition 6.2. A linear operator D on X is called Hamiltonian if its Lie-
Poisson bracket defined by

[F,H](u) = (δF (u),DδH(u))

satisfies the conditions of skew-symmetry

[F,H] = −[H,F ]

and the Jacobi identity

[[F,G], H] + [[G,H], F ] + [[H,F ], G] = 0.

Definition 6.3. Let A : X → X be a (nonlinear) operator. We say that
the evolution equation ut = A(u) is expressible in Hamiltonian form if there
exists a Hamiltonian operatorD and a functionalH(u) such that the equation
can be rewritten as

ut = DδH(u).

We say that F (u) is a conserved functional for this equation if the functional
is independent of t for every solution u.

Lemma 6.4. The Hamiltonian operator D = −∂x(I − ∂2
x) defined in (9) is

Hamiltonian.

Proof. We follow the proof presented by Constantin in [21]. To prove skew-
symmetry, we use integration by parts and the symmetry of the L2-inner
product to show that

[F,H](m) = (δF (m),DδH(m))

=

∫
δF (m)DδH(m)dx

=

∫
∂x(δF (m))(I − ∂2

x)δH(m)dx

=

∫
(∂x(δF (m))δH(m)− ∂3

x(δF (m))δH(m)dx

= −
∫

DδF (m)δH(m)dx = −(δH(m),DδF (m))

= −[H,F ](m).

12



In order to prove the Jacobi identity, we define

MH(m)[v] =
d

dε
δH(m+ εv)|ε=0

and find that it is symmetric, i.e. (MH(m)[v], w) = (MH(m)[w], v). Observe
that

[[F,G], H](m) =

∫
δ[F,G](m)DδH(m)dx

=

∫
MF (m)[DδG(m)](DδH(m))

−MG(m)[DδF (m)](DδH(m))dx.

Similar calculations for [[G,H], F ] and [[H,F ], G] show that

[[F ,G], H](m) + [[G,H], F ](m) + [[H,F ], G](m)

=

∫
(MF (m)[DδG(m)](DδH(m))−MG(m)[DδF (m)](DδH(m)))dx

+

∫
(MG(m)[DδH(m)](DδF (m))−MH(m)[DδG(m)](DδF (m)))dx

+

∫
(MH(m)[DδF (m)](DδG(m))−MF (m)[DδH(m)](DδG(m)))dx

= 0

by the symmetry property. Hence, (9) is a Hamiltonian operator.
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