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Nomenclature

r̃ = (x, y, z) = spacecraft position vector in body-fixed, Vesta centered frame

(r, φ, λ) = radius, latitude and longitude of spacecraft in the Vesta centered, body-fixed frame

ω, ω = angular velocity vector of Vesta (relative to inertial space) and associated magnitude

U, µ = Vesta gravitational field force potential and parameter

RV = radius of the reference sphere associated with the spherical harmonic gravity field

C̄nm, S̄nm = normalized spherical harmonic coefficients of the gravitational field

Pn = Legendre polynomials

Pnm, P̄nm = associated Legendre and normalized associated Legendre functions

p̃ = (px, py, pz) = orbiter momenta in rotating, body-fixed Vesta centered frame

H(r̃, p̃) = orbiter Hamiltonian, also referred to as energy

h = arbitrary fixed value of the Hamiltonian (energy)

X = (r̃, p̃) = spacecraft position and momenta in rotating, body-fixed Vesta centered frame

F (X) = associated (Hamiltonian) vector field

J(r̃, ˙̃r) = first integral of motion for the Vesta orbiter dynamics in terms of position and velocity

P1, P2, P3, P4 = relative equilibria of the orbiter dynamics

SpecA = set of eigenvalues of matrix A

λj = real part of jth eigenvalue

ωj
p = imaginary part of jth “in-plane” eigenvalue (with small z, pz components)

ωj
v = imaginary part of jth “out-of-plane” eigenvalue (with large z, pz components)

Z(h) = zero velocity surface

κ(~r, h) = implicit function defining the zero velocity surfaces and allowable region of motion

φt, θ = t-advance mapping along a trajectory and phase along a periodic orbit

DφT (X0) = monodromy matrix (state transition matrix after one period) of a T –periodic orbit with

initial conditionX0

V s,V u = stable and unstable eigenvectors, respectively

ξs, ξu = displacements along the stable and unstable eigenvectors, respectively

ψ(θ, ξu, ξs) = parametrization of a stable-unstable manifold

i, j, k, k1, k2,m, n = arbitrary integers
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I. Introduction

As of September 2011, NASA’s Dawn mission has successfully inserted into orbit around the asteroid

Vesta. Dawn’s Vesta exploration plan calls for eventual transfer to the Low-Altitude Mapping orbit (LAMO)

at ∼ 460 km radius [1, 2]. The LAMO has an orbital period smaller than Vesta’s rotation period, so the

spacecraft must cross the 1:1 resonance between the spacecraft orbit period and Vesta’s rotation period using

its low-thrust propulsion system. This transfer presents a mission risk because chaotic dynamics in the region

around the resonance could cause unplanned trajectory excursions that would negatively impact the mission.

This study is motivated by this challenge; not to design Dawn’s trajectory, but to develop a general transfer

design strategy for crossing this potentially–hazardous region during future missions.

The chaotic motion associated with resonant orbit dynamics results from a repeating system configu-

ration that allows small or unmodelled perturbations to be amplified through repeated application. If the

resonant frequency and strength are large enough, unpredictable and significant trajectory changes can occur

over short time scales. The clearing away of asteroids near certain resonances with Jupiter’s orbit period is a

classic example of chaotic dynamics near resonance in celestial mechanics ([3], chapter 12). When the Dawn

spacecraft is in a 1:1 resonance with Vesta, the irregular and largely–unknown gravitational potential of Vesta

will repeat its influence on the Dawn spacecraft every 5.342 hr [4]. Small variations in spacecraft state and

gravitational potential can make the difference between the orbit being pushed to higher or lower altitudes,

or even different orbit planes within a few days to a week [22]. It may not be possible or practical to directly

counter these effects using Dawn’s low-thrust engine. Tricarico and Sykes [5] have indeed shown through the

numerical propagation of an assumed Vesta gravity field that a spacecraft with low thrust engines equivalent

to Dawn could be delayed and miss its encounter with Ceres. The resonant nature of these phenomena has

been further clarified and globally analyzed using averaging techniques in Delsate [6]. However, the periodic

orbits and invariant manifolds associated with these resonances has not been analyzed. Such a viewpoint

complements these approaches (point integration and semi-analytical) by providing finer details and control

on the orbit structure in a particular region of phase space. This paper focuses on this approach for the case

of the 1:1 resonance.

The strategy presented here is thus to follow the stable (on ingress) and unstable manifolds (on egress)

of unstable, near-synchronous, periodic orbits across the chaotic region near the 1:1 resonance with Vesta’s
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rotation. The manifold structure of these periodic orbits defines the boundaries (locally) between approaching

ballistic trajectories that successfully cross the resonance and those that do not. The stable manifolds allow

definition of a set of approach states and the unstable manifolds are used to predict the post-transfer states.

This approach is similar to the widely-studied use of invariant manifolds of the unstable libration orbits

in the three-body problem to achieve low-energy transfers between primaries [7–9] and the use of stable

manifolds to approach a desirable science orbit in the strongly perturbed environment near planetary moons

[10]. Here, unstable periodic orbits in the surface-fixed rotating frame of an asteroid provide the manifold

structure for the transfer design. The first family of transfers discussed arises from horizontal and vertical

libration orbits near the unstable equilibrium points of Vesta. The second family of transfer opportunities

presented uses near-polar unstable orbits to provide high-inclination transfers across the resonant region.

Though stable-unstable manifolds are used here to design transfers across the 1:1 resonance, the approach

is also applicable to designing other types of transfers throughout the gravity-dominated regime around any

body with a non-spherical gravitational potential.

In this way, this paper contributes to the study of small body orbiter mission design and demonstrates

that the known results about the structure of the 1:1 resonance near planets (such as the geostationary belt,

e.g. [11] p. 54), persist in the largely perturbed gravity field of a particular asteroid of interest. It is shown

notably that the analysis of these dynamics through the notion of periodic orbit family and associated stability

analysis allows for the inclusion of higher order terms, which is in contrast with previous semi-analytical

studies, which generally provide qualitative understanding based on averaging methods. The results in this

paper also complement previous studies in ideal gravity fields [12] that showed the generic existence of

equilibria in the 1:1 resonance region for orbiters around ellipsoid-shaped small bodies.

This paper proceeds as follows: after a review of the basic modeling and a brief elaboration on the

relevant dynamical notions, the equilibria in the surface-fixed frame of Vesta and the energy constraints

associated with motion near the 1:1 resonance region are described. The dynamics near the two unstable

equilibria has two oscillatory components plus a hyperbolic one, which implies the existence of two nearby

families of periodic libration orbits that have invariant stable and unstable manifolds. These orbits and their

invariant manifolds are described, which shows that low-inclination, low-energy, transit orbits across the

1:1 resonance can be achieved ballistically by a proper approach along the stable manifold. Next, a family
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of near-polar unstable orbits and their manifolds are similarly developed to show the possibilities for high-

inclination transfers that may be more appropriate for a mapping mission like Dawn. The paper concludes

with a discussion on how to create an end-to-end transfer trajectory using this theoretical framework and

presents a few examples of transfers.

II. Dynamic Background

This section reviews the dynamical model used for this study and the underlying simplifications. Also,

a review of the notion of resonance and associated rotating frames are provided for completeness. Further

discussion of resonant motion can be found in Reference [3] chapters 4,6,9,10,12 or in the research papers

indicated in the introduction.

A. Vesta Environment Modeling

The results given in this paper assume a spacecraft in orbit around the asteroid Vesta. Figure 1 provides

various views of Vesta and its relative size as compared to the Moon and Ceres. Vesta is one of the largest

objects in the main asteroid belt. Its principal radii measure roughly 289×280×229km [13] with departures

of 15 to 20km from a smooth ellipsoidal shape at a large crater near the south pole [14]. Because Vesta

represents a large asteroid, this paper’s focus is on orbit dynamics in the gravity-dominated region near a

massive small body with an arbitrary gravitational potential. The two-body equations of motion in a surface-

fixed, rotating coordinate frame are appropriate for the study of these dynamics, since third-body forces and

solar radiation pressure (assuming typical spacecraft mass-to-area ratios) have minimal effect on motion in

close-proximity to Vesta over the time scales considered. When applying this type of analysis to motion near

other asteroids, it is important to verify that third-body effects are indeed small enough to ignore.

Table 1 gives the values of the parameters used here to define spacecraft motion near Vesta. In particular,

Vesta is assumed to be rotating uniformly around a constant direction in inertial space and the gravitational

field is modeled via spherical harmonics, as described in the Appendix. Note that fairly large gravitational

field coefficients are found even at higher degree and order, which reflect the highly perturbed gravity field

expected at Vesta, and distinguish this study from the classic planet orbiter case.
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Fig. 1 Left: image of Vesta as taken from Hubble space telescope; Middle: elevation map of Vesta showing the

large southern crater and strong asymmetry of the mass distribution (elevation ranges from −12 km –black/blue

color– to +12 km –red/white color) ; Right: size comparison of Vesta with Ceres and the Moon. While significantly

smaller than these larger bodies, Vesta is among the largest of the asteroids (photos courtesy of NASA/ESA).

Table 1 Parameters for the Vesta model.

Parameter Vesta units

Gravitational parameter 17.8 km3/s2

Rotational period 5.342 hrs

Spherical Harmonic Gravity Coefficients 8×8 (See Appendix)

B. Orbiter Equations of Motion

Consider a coordinate frame with origin at the small-body center of mass, with z-axis along Vesta’s poles

in the direction of positive rotation, and rotating at a uniform rate ω around this axis. Denote by r̃ = (x, y, z)

the rectangular coordinates of a massless spacecraft S (or particle) in this coordinate frame. If S is subject

only to accelerations arising from the gravitational force potential of the small body, denoted as U and fully

developed in the Appendix, then Eqn. (1) can be used to describe the motion of S,

¨̃r+ 2
(
ω × ˙̃r

)
+ ω × (ω × r̃) = ∇U, (1)

where ω = (0, 0, ω)⊤ and ∇ denotes gradient with respect to (x, y, z). In coordinates,

ẍ− 2ωẏ = ∂xUeff ; ÿ + 2ωẋ = ∂yUeff ; z̈ = ∂zUeff , (2)

where Ueff = U + 1
2ω

2(x2 + y2) represents the effective potential.
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The above equations of motion can be stated in Hamiltonian form, which is used for the numerical

integrations performed in this paper. These first–order differential equations of motion are

ẋ = dH/dpx, ẏ = dH/dpy, ż = dH/dpz,

ṗx = −dH/dx, ṗy = −dH/dy, ṗz = −dH/dz,

(3)

where the Hamiltonian is

H(r̃, p̃) =
1

2
(p2x + p2y + p2z) + ω(ypx − xpy)− U, (4)

and momenta p̃ = (px, py, pz) are related to velocities through

px = ẋ− ωy, py = ẏ + ωx, pz = ż. (5)

The Hamiltonian is an integral of motion of Eqn. (3), hence through the relations in Eqn. (5) is also an integral

of Eqn. (1). In analogy with the Jacobi constant of the circular restricted three–body problem, an integral of

motion for Eqn. (1) can be deduced directly in terms of positions and velocities as

J(r̃, ˙̃r) =
1

2
(ẋ2 + ẏ2 + ż2)− Ueff . (6)

Actually, H(r̃, p̃) = J(r̃, ˙̃r), and because of this fact it is customary to denote the value of the Hamiltonian

as “energy”. This convention will be followed in the remaining of the paper. The J(r̃, ˙̃r) notation is kept

in order to make explicit the dependence in the velocity vector for the zero-velocity discussion of the next

section.

Denoting X = (x, y, z, px, py, pz)
⊤, the system of differential equations given in Eqn. (3) can then be

written in compact form as

Ẋ = F (X). (7)

C. Resonant Dynamics

Resonance occurs whenever two frequencies associated with the dynamics are linearly dependent over

the set of integers. In our case, the basic frequencies of the equations of motion are the angular velocity

of the frame, ω and the mean motion of the orbiter, n. Thus, if the initial conditions of the spacecraft

are such that k1ω − k2n = 0 (where k1 and k2 are non-zero integers), k1 : k2 resonant motion results.

Since the mean motion of the spacecraft is not constant here because of the high-order gravity terms, one
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has to understand this relation in an approximate sense (i.e., for initial conditions close to exactly resonant

conditions). Physically, when an orbiter is near a k1 : k2 resonance, the spacecraft performs k1 orbits in

inertial space while the body rotates (about) k2 times around its pole.

In the case of a 1 : 1 resonance, the orbital period of the spacecraft is nearly equal to that of the pole

rotation. In the case of an Earth orbiter, this is a geosynchronous satellite. In the unperturbed two-body

case, the geostationary belt is a continuous set of equilibria relative to the Earth surface, which correspond to

circular orbits with zero inclination and periods of one sidereal day. This fact comes from axial symmetry,

and would also apply e.g. to a zonal mode. Back in the point-mass Earth orbiter case, deviation in inclination

leads to closed “figure-eight” ground tracks and periodic orbits in an Earth-centered-fixed frame. Similarly,

changes in eccentricity lead to in-plane periodic orbits centered at the geostationary equilibria. Finally, small

changes in period lead to small drifts of the ground track.

In the case of a non-pointmass gravitational potential, this idealized picture is modified, so that small

changes in semi-major axis do not necessarily lead to drift from the equilibria. In fact, several types of motion

can be observed, ranging from small librations about the ideal geostationary location to small constant drifts

in the along-track direction moving away from the desired geostationary point. As Kaula reviewed in [11],

section 3.6, these motions are due to the presence of stable and unstable equilibria, mostly dominated by the

C22 term. For more irregular bodies like Vesta and other asteroids, the types of motion near the 1:1 resonance

are similar, but more pronounced and potentially occurring over a much shorter timescale [12].

Because of all this rich dynamical structure (that, in the following sections, will be found magnified with

respect to Earth’s geostationary belt) it is difficult to give a precise mathematical definition of the “resonant

region” as a particular set of states. In this paper, a simple geometrical convention will be followed. The

resonant region will be considered as the set of states with r̃ within a few km of the two–body point-mass

resonant radius, (µ/ω2)1/3.

III. Relative Equilibria and Energy Constraints

Following the general comments of the previous section, the equilibria associated with 1:1 resonant

dynamics are computed in the particular case of Vesta. This section follows the approach of Scheeres [12],

which identified relative equilibria near an ellipsoid model of Vesta, noted the existence of nearby orbits,
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and discussed the local zero-velocity surfaces. The presentation given here emphasizes the features relevant

to transfers that use the manifolds of the unstable resonant orbits with an 8 × 8 gravity model of Vesta. As

mentioned in the introduction, the demonstration of the applicability of dynamical systems theory to analyze

these dynamics with a given complex gravity field is one of the contributions of this paper.

A. Relative Equilibria Solutions

Relative equilibria, that is, equilibrium solutions for the equations of motion expressed in the rotating

frame, are a special case of 1:1 synchronous orbits where the orbiting spacecraft presents a fixed location

relative to the body surface at all times. They generally lie near the equatorial plane, because the z component

of ∇U must be zero (see Eqn. 2), and roughly
(
µ/ω2

)1/3
away from the center of mass. If the gravitational

potential is axially-symmetric about ẑ, a continuum of equilibria encircle the body. In the case of an irregular

gravitational potential, there are usually 4 equilibria [11, 12], though for certain body shapes there may exist

more [15].

Equilibria near Vesta are computed by solving ∇Ueff = 0. This can be done using a standard Newton-

Raphson iteration scheme, with initial guesses down-selected from a grid survey of the function value in

the resonance region, as shown in Fig. 2. The location of the computed equilibria are given in Table 2.

For increasing longitudes, these solutions are labeled as P1, P2, P3, P4. They are found to lie in different

horizontal planes within a few km of the equator.

Table 2 Coordinates of the fixed points in rotating coordinates

Point x (km) y (km) z (km) λ (deg) φ (deg) Stability Energy (km2/s2)

P1 499.979 247.022 −1.464 26.29 −0.15 unstable −0.048933

P2 −202.948 515.982 0.170 111.47 0.02 stable −0.048745

P3 −521.602 −196.344 −1.001 200.63 −0.10 unstable −0.048917

P4 198.838 −517.908 −1.381 291.00 −0.14 stable −0.048758

Of these 4 points, the linear behavior around P2 and P4 is completely oscillatory, whereas P1 and P3

have hyperbolic parts. Using the nomenclature of Scheeres [12], Vesta can be considered a “Type 1” body.

9



Fig. 2 Left: For the values of radius and longitude represented, minimization of ‖∇Ueff ‖ for latitude between −10

and 10 degrees. Right: Gravitational force potential value on 260 km sphere with location of the relative equilib-

ria; darker colors represent lower effective potential Ueff values, illustrating the asymmetry of Vesta gravitational

field.

Namely, the sets of eigenvalues (denoted Spec) of the linearized dynamics DF are given as:

j = 1, 3, SpecDF (Pj) = {±λj ,±iωj
p,±iωj

v},

k = 2, 4, SpecDF (Pk) = {±iωk
1 ,±iωk

2 ,±iωk
3}.

(8)

In the unstable equilibria cases of P1 and P3, there are eigenplanes that are close to planar (z, pz components

small compared to x, y, px, py) and close to vertical (x, y, px, py components small compared to z, pz). The

corresponding pairs of complex conjugate eigenvalues have been denoted as ±iωj
p and ±iωj

v, respectively.

Numerical values are given in Table 3.

Table 3 Eigenvalues of the fixed points in Eqn. (8)

j λj ωj
p ωj

v k ωk
1 ωk

2 ωk
3

1 6.27114 × 10−5 3.21174 × 10−4 3.38038 × 10−4 2 6.53482 × 10−5 3.10428 × 10−4 3.35938 × 10−4

3 5.91673 × 10−5 3.21221 × 10−4 3.37354 × 10−4 4 5.56534 × 10−5 3.11893 × 10−4 3.36326 × 10−4

In order to give an idea about how all the dynamical structure that will be computed in the following sec-

tion relates to simpler models, Tables 4,5 show the location of the four fixed points P1, . . . , P4 for truncation

to order and degree 2 and 3, respectively, of the spherical harmonic expansion described in the Appendix.

Since the difference in radius with respect to the full 8 × 8 model is under 1 km, a reasonable guess is that

the whole structure would be displaced in longitude in values similar to the ones shown in these Tables.
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Table 4 Coordinates of the fixed points in rotating coordinates for the truncation of the spherical harmonic model

to degree and order 2. The difference in radius, longitude and latitude with respect to the full 8× 8 model is also

shown. The units are km for x, y, z, r, and deg for λ, φ.

Point x y z r − r8×8 λ− λ8×8 λ− λ8×8

P1 513.037 217.356 0.120 −0.494 −3.33 0.16

P2 −216.249 510.422 0.651 −0.118 1.49 0.05

P3 −513.037 −217.356 −0.120 −0.152 2.33 0.09

P4 216.249 −510.422 −0.651 −0.426 1.96 0.08

Table 5 Coordinates of the fixed points in rotating coordinates for the truncation of the spherical harmonic model

to degree and order 3.

Point x y z r − r8×8 λ− λ8×8 λ− λ8×8

P1 503.268 239.534 −0.918 −0.309 −0.84 0.06

P2 −217.165 509.888 0.260 −0.252 1.60 0.01

P3 −523.025 −191.621 −1.174 −0.310 −0.51 −0.02

P4 214.976 −511.106 −1.040 −0.291 1.81 0.04

B. Zero-velocity surfaces

Additional insight into the dynamics near the 1:1 resonance of Vesta is gained by studying the zero-

velocity surfaces near the equilibria. Using the integrals of the dynamics given in the previous section

(Eqns. (4), (6)), a surface in position space can be defined for a given energy level J(r̃, ˙̃r) = h which a

spacecraft with this energy cannot cross without achieving a complex velocity vector (impossible). More

formally, the zero-velocity surface Z (h) is defined as Z (h) =
{
r̃ ∈ ℜ3 | κ (̃r, h) = J

(
r̃, 0̃

)
− h = 0

}

where h = H(r̃, p̃) = J(r̃, ˙̃r) is the energy of the spacecraft. Motion is energetically permitted at r̃ when

κ (r̃, h) < 0 and is not otherwise.

By computing the value of J
(
r̃, 0̃

)
on a grid of positions near the equilibria, the structure of the local

zero–velocity surfaces for different energies can be visualized. Figures 3(a)-(c) show contours of J
(
r̃, 0̃

)
on
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various surfaces in position space. For a spacecraft with a particular energy value, positions having lighter

colors are inaccessible, while darker colored regions are not restricted energetically. The projection of the

equilibrium locations are shown on the plots as well.

(a) (b)

(c) (d)

Fig. 3 Contours of zero–velocity surfaces J(r̃, 0̃), with units km2/s2, in (a) the equatorial plane (latitude fixed

at 0 deg), (b) out of plane near the 1:1 resonance at Vesta (radius fixed at 555 km) and (c) in the vertical plane

(longitude fixed at 0 deg). The projected locations of the stable equilibria are shown as small white disks, while the

unstable equilibria are represented as small crosses. Given an initial energy value, future motion is only allowed

in the regions with smaller values of J(r̃,0) (darker colors). Plot (d) shows a 3-dimensional, cut-out view of the

zero velocity surfaces near the equatorial plane at J = −0.0489, to illustrate the topology of the opening near the

unstable equilibria, P1 and P3.

In Figure 3(a), the two stable equilibria,P2 andP4, reside at local maxima of J
(
r̃, 0̃

)
. Thus, a spacecraft
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starting with zero velocity at P2 or P4 is not restricted energetically from moving anywhere in the equatorial

plane. However, as indicated in the previous section, these equilibria are stable and the motion is actually

dynamically constrained to stay within the neighborhood of the these points (over very long times scales).

Conversely, the unstable equilibria, P1 and P3, are at saddle points of the zero velocity surface. For

energies slightly larger than these critical values, a spacecraft starting at one of these points is constrained

to move mostly radially inward or outward. These energies are the minimum ones at which transit through

the resonance is possible. Figure 3(d) illustrates this situation in a 3-dimensional representation of a sec-

tion of the zero-velocity surface. It is in essence similar to low energy ballistic transfers between the two

primaries in the circular restricted three-body problem [7]. Note, in particular, that the energy value at

P1 is smaller than P3, implying that transit through the 1:1 resonance is possible first through P1, when

J > −4.8932× 10−2 km2/s2.

The energy constraints can also give rough estimates of some properties of the transfers at low energies.

For example, it can be observed that the radius along a given zero velocity surface decreases (resp. increases)

when moving toward P2 and P4 along the side of the surface closer to (resp. farther from) Vesta. The

difference between the extrema in radius along the zero velocity surface provide a good estimate of the

change in semi-major axis to be expected when crossing the resonance at these low energies. From Fig. 3(a),

this change can thus be expected to be greater than 60 km. As we will see, these estimates provide good

lower bounds on the results based on invariant manifold computations presented in the next section at these

energies. For larger energy values, however, the constraint is not energetic, but rather dynamic in nature, and

the manifold computations are then necessary.

From Figure 3(b), one can notice also that J
(
r̃, 0̃

)
increases as latitude moves away from zero, showing

that ballistic crossing with low energies must occur near the equatorial plane, with low inclinations (the

inclination of a state on a zero velocity surface is equal to the latitude at that position). Fig. 3(c), however,

indicates that inclination is not constrained as one gets closer to Vesta. There again, dynamical constraints

represented by the manifolds associated with transit trajectories provide the dynamical barriers that keep, in

actuality, the motion near to equatorial orbits at these energies. A good estimate of the range of inclinations

of these transit orbits at low energies is given by the size of the opening in latitude at P1 and P3. In any case,

for highly inclined resonant crossing transfers, as desirable for a global-mapping mission like Dawn, one
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requires larger energies and the computation of dynamical constraints as captured by the notion of manifolds

associated with unstable periodic orbits.

IV. Resonant Periodic Orbits and Associated Manifolds

Lyapunov’s center theorem ensures that, for a fixed point of a Hamiltonian vectorfield, and under suit-

able non–resonance conditions among eigenvalues, the families of periodic orbits of the linear approxima-

tion that lie in the eigenplanes corresonding to conjugated, purely imaginary eiganvalues become (in the

full, non–linear system) families of p.o. with varying periods that span 2D manifolds tangent to the corre-

sponding eigenplane of the fixed point (see e.g. [16] p. 156). In our case, for each pair of purely imaginary,

complex conjugated eigenvalues of DF (Pi), i = 1, 3, a family of periodic orbits is generated that fills a two–

dimensional manifold tangent to the corresponding eigenplane at the fixed point. The families generated from

the ±iωp eigenplanes will be denoted as planar Lyapunov families, whereas the ones corresponding to the

±iωv will be denoted as vertical Lyapunov families. Their study is the subject of the following section, to-

gether with some families of near-circular, near-polar orbits that, in the case of Vesta, appear as disconnected

from the Lyapunov families.

In all the descriptions of families of periodic orbits that will follow, energy will be used as the parameter

identifying a particular orbit of the family. Linear stability will be described in terms of the stability index

introduced by Hénon[17]. Namely, given an initial conditionX0 of a periodic orbit of period T , denote the

eigenvalues of its monodromy matrix (state transition matrix after one period) as

SpecDφT (X0) = {1, 1,Λ1, 1/Λ1,Λ2, 1/Λ2}

(the fact that the eigenvalues appear as above is a consequence of the fact that the differential equations are

Hamiltonian, see e.g. [16] page 48 Theorem 3.1.3, page 57 Proposition 3.3.1, and page 200 Lemma 8.5.5).

The stability index associated to a pair of inverse eigenvalues Λj , 1/Λj is defined as

sj = Λj + 1/Λj.

Denote eigenvectors of SpecDφT (X0) of eigenvalues Λj, 1/Λj by Uj ,Vj respectively. For real sj with

|sj | > 2, the p.o. has stable and unstable manifolds tangent to Uj ,Vj (it is customary to speak of a “saddle”

component of the normal behavior to the periodic orbit). For real sj with |sj | < 2, the p.o. has invariant tori
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around it that can be approximated linearly from the real and imaginary parts of Uj (it is usual to speak of a

“center” component in this case). The case in which sj is complex is known as “complex saddle”, and does

not take place in any of the families of p.o. computed in this paper. See e.g. [18] for additional details and

formulae.

All the numerical integrations performed for the results presented in the remaining of the paper have

been done in double precision and physical units (space in km, time in s). The integration method used has

been a variable-step RKF78 one with a relative tolerance of 10−14. In the evaluation of the vectorfield of

Eqn. (3), Cunningham’s recurrences [19] are used in the computation of ∇U and HessU . All the periodic

orbits computed are numerically periodic within an absolute tolerance of 10−10.

A. Families originating from relative equilibria

The planar and vertical Lyapunov families around the points P1 and P3 have been numerically continued,

starting from the linear approximation in the corresponding eigenspaces of DF (P1) and DF (P3). For all

the families, the continuations have been stopped at collision with the reference sphere of the Vesta spherical

harmonic gravity model at 258km radius. Some sample orbits of each family are displayed in Fig. 4. The

motion in all of them is retrograde (clockwise) when projected in the equatorial plane as seen from above.
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Fig. 4 Sample orbits of the planar Lyapunov family (Left) and vertical family (Right) around P1. At the scale of

the figure, the P3 orbits appear as symmetric relative to the origin of the frame.

The resulting characteristic curves (energy-period and energy-linear stability index) are shown in Fig. 5.

Observe that the normal behavior to all of these orbits is of center × saddle type. For the vertical families, the

center stability index closely approaches the value 2 (which would imply a 1:1 bifurcation) but never reaches
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it. The other stability index is always smaller than 4. This mild instability along the families indicates that

ballistic transfers can be expected to be slow relative to the orbit period. In as much as these orbits are near

to the 1:1 resonance with Vesta, one can expect transfers to require at least a few days to cross the resonance

(that is, at least, an order of magnitude longer than the 5.342 hr orbit period of Vesta).
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Fig. 5 Characteristic curves (energy-period and energy-stability index) of the planar (first column) and vertical

(second column) families of Lyapunov orbits around P1 (first row) and P3 (second row).

Fig. 6 indicates further interesting measures of the behavior of these families. Notably, longitudinal

oscillations of almost 70 deg can be observed for the planar Laypunov families, while extrema in latitude

close to 60 deg can be observed for the near-collision vertical orbits. The sizes of these oscillations are

observed in the associated manifold branches and resulting ballistic transfers computed later, as we will see

in the following paragraphs. In particular, the manifold branches at large energies (and the resulting transfers)

present a small eastward or westward drift superimposed on large longitudinal oscillations. The maximum

latitude reached by the manifold branches is also of the same order of magnitude as the associated periodic

orbits, showing that the vertical family cannot lead to truly polar orbits.

The invariant manifolds of both the vertical and planar Lyapunov families of P1, P3 reproduce qualita-

tively the behavior in the geostationary belt described in standard references (e.g. [11] p. 54). This fact is

illustrated in Fig. 7 left, in which the manifolds of the planar orbit act as separatrices between libration mo-
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Fig. 6 First row: Longitudinal amplitudes and extrema in radii reached along the planar Lyapunov families. Sec-

ond row: Maximum latitude and extrema in radii reached along the vertical families. The left column corresponds

to the families originating from the P1 equilibrium solution, while the right one corresponds to the P3 case.

tion around the points P1, P3, and circulation motion around Vesta both inside and outside the 1:1 resonant

zone. Since both the planar and vertical Lyapunov families grow in size up to collision with Vesta’s reference

sphere, the qualitative behavior of the geostationary belt is reproduced here on a larger scale (relative to body

size), and involves orbits of relatively high inclination (see Fig. 7, right).

Similarly to the case of the L1 libration points for transit between the two primaries in the circular re-

stricted three-body problem, the manifolds associated with P1 and P3 can be used to construct 1:1 resonance

crossing ballistic transfers. For either a planar or a vertical Lyapunov orbit around P1 or P3, by choosing a

branch of the unstable manifold growing outwards and a branch of the stable one going inwards, a transfer

from the exterior region to the interior region of the 1:1 resonance can be constructed, as will be demonstrated

in the next section. A transfer from the inside to the outside region can also be constructed by choosing the

suitable branches. Indeed, by combining manifolds of different points, a trajectory traversing the resonant

region in both directions could be constructed. Near planar transfers can be obtained from planar Lyapunov

orbits. Vertical transfers of different inclinations can be obtained by considering vertical Lyapunov orbits of
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Fig. 7 Stable (red) and unstable (green) manifold branches associated with sample Lyapunov orbits. Left: Planar

family. Right: Vertical family. These plots illustrate the concept of a resonant belt bounded by the manifolds

(dynamical constraints).

different sizes. Fig. 8 illlustrates this point by displaying the branches of vertical Lyapunov orbits of different

sizes allowing to construct transfers from the exterior to the interior region. In this figure, the manifold tubes

have been grown up to its intersection with a meridian plane with longitude equal to the longitude of the

fixed point plus 90 degrees, at which the change in semi-major axis of the trajectories on these manifolds are

close to local extrema. After traversing this plane, the manifold tubes approach again (in a geostationary–like

behavior as in Fig. 7) and interact with P3[23]

Fig. 8 Unstable (red) and stable (green) manifold branches of sample orbits of the vertical Lyapunov families (blue

curves) around P1 up to a meridian plane orthogonal to the equatorial projection of the P1 radius vector, at two

different energies: h = −0.048664 km2/s2 (left) and h = −0.035637 km2/s2 (right). Observe the increase in

inclination reached by the manifold branches as energy increases. The case of P3 manifolds is symmetric relative

to the origin of the frame at this scale.
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In fact, the computation of the closest/farthest approaches of the manifold tubes on these meridian planes

provides a characterization of the ranges of altitude changes to be expected when crossing the 1:1 resonance

using these dynamics. Fig. 9 displays the evolution of these maximum and minimum distances along the

whole families (i.e. as a function of the energy value) of planar and vertical families at P1 and P3. Note

in particular that, as the transit routes open at P1 and P3 near the critical energy values, the differences in

periapsis and apoapsis along one manifold branch are close to zero, thus indicating that these low energy

transit orbits are nearly circular. As can be seen from Fig. 9, the estimated change in semi-major axis for

a 1:1 transit at these low energies appears to be on the order of 150 km, showing the conservative nature

of the lower bounds from the energy estimates (indicated in the previous section) when compared with the

manifold computations.

At higher energies, the changes between the maximum and minimum altitudes between the two branches

of the manifold (inner and outer) increase significantly, reaching values greater than 550 km and altitudes

lower than 300 km for the planar Lyapunov orbits. While these orbits are no longer circular, they may be

more interesting for space mission applications, notably as the the range of feasible transfers is larger, with

options for smaller transit times, and higher inclination ranges when following manifolds of the vertical

family. It should be noted, however, that the maximum range in inclination along the vertical family is

still restricted and truly polar orbits cannot be reached using these manifolds. This is in constrast to nearly

symmetric gravitational fields, such as the Earth. In the two-body problem, polar orbits can be continued

from a family of vertical orbits. In the case of Vesta’s full gravity field, the families collide with Vesta’s

surface before reaching polar inclinations.

B. Families originating from polar, near-circular orbits

Given the interest of reaching polar inclination for mapping small bodies (as indicated by the Dawn

mission trajectory), two distinct families of unstable resonant polar orbits were found using a differential

corrector scheme with an initial guess from the two-body dynamics. One family crosses the equator near

P1 and the other near P3 [24]. Fig. 10 provides sample orbits in these families, while Fig. 11 describes the

corresponding characteristic curves and stability indices. As with the Lyapunov families, these orbits present

mild instability, thus indicating time scales of several days to complete a transit.
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Fig. 9 For the points P1 (first row), P3 (second row), and for the planar Lyapunov families (first column) and

the vertical ones (second column), pericenter (red) and apocenter (blue) distances of the sections of the manifold

branches allowing to construct a transfer from the exterior to the interior region of the 1:1 resonance.
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Fig. 10 Left: 1:1 resonant unstable polar periodic orbits found from two-body initial guesses and differential

correction. Right: sample orbits in the P1 polar family.
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Fig. 11 Characteristic curves and stability indices of the polar families of unstable periodic orbits wrapping around

P1 (left) and P3 (right).

The continuation of these families in the two possible directions ends with surface-impacting orbits, as

shown in Fig. 10 (right). While the overall shape, orientation, and the corresponding situation of these orbits

in a weakly perturbed two–body problem suggests that these families could be a continuation of the vertical

families, these connections cannot be made in practice in this problem, and these orbits are thus considered

as separate families, referred to as the “polar families”[25].

However, as for the case of the Lyapunov families, the manifolds of these orbits can be computed to

provide transfer routes across the 1:1 resonance. Fig. 12 shows two manifold branches associated with a

sample periodic orbit in these families, while Fig. 13 describes the extrema and changes in distance of these

manifolds. These characteristics have been here computed using simultaneous crossings with the equatorial

plane and the meridian plane lying +90 deg from the equilibriaP1 andP3, respectively, due to the geometry of

these orbits. Indeed, several members of the polar orbit families cross the meridian plane themselves, making

the intersection of this plane with the manifold tubes rather ill-defined. As can be observed, reductions

in altitude of over 100 km can be obtained from the manifold tubes associated with the orbits of smaller

energies.

V. Ballistic Resonance Crossing

In this section, the notion of transit orbit is reviewed and applied to create sample 1:1 resonance crossing,

ballistic trajectories near Vesta.
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Fig. 12 From two different viewpoints, unstable (red) and stable (green) manifold tubes of an orbit of the polar

family around P1. The meridian plane has been rendered as opaque to aid visualization. The thick blue curve is

the p.o. The blue round points are P3 (left plot) and P1 (right plot). The blue square points are the first equatorial

crossings of trajectories in the manifold tubes after traversing the meridial plane of the longitude of P1 plus 90

deg.
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Fig. 13 Maximum and minimum distances in an equatorial section, for the inner (red) and outer (green) manifold

tubes associated with the two polar families.

A. Transit Orbits

In the context of the planar, restricted three–body problem, transit orbits are defined as those that traverse

the orbit of the secondary around the primary from the exterior to the interior of the region of possible motion,

or vice-versa. Classical works by Conley and McGehee[7, 8] have characterized them in terms of the relative

position of an initial condition on a Poincaré section with respect to the section of a manifold tube of a

Lyapunov orbit. By combining these characterizations with homoclinic and heteroclinic connections, later
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works have been able to construct resonance transitions[9, 20].

In our case, transit trajectories will be considered as those traversing the 1:1 resonance from the outside

region to the inside one. More precisely, when looking at the ground track of non-resonant orbits, the

successive equatorial crossings will circulate eastward or westward. A resonant crossing trajectory will thus

present a ground track that transitions between westward and eastward drifts, with a temporary turning point

when crossing the resonance.

Due to the fact that we are working with a 3D gravity field, we need to consider the 4D tubes filled by

the manifolds of all the periodic orbits and invariant tori at a particular energy level in order to characterize

transit trajectories in terms of manifolds [20]. Although they can be computed, there is still the difficulty of

the determination of the interior and exterior of the 3D intersection of these manifold tubes with a Poincaré

section.

A way to produce transit trajectories from the families of periodic orbits computed in this paper is to

take initial conditions in a specific quadrant of the stable/unstable eigenplane of the monodromy matrix of

the periodic orbit. This quadrant has to be chosen such that, when integrating both forward and backward in

time, the resulting trajectory closely follows the manifold branches of Fig. 8. To do this, assume that X0 is

an initial condition of a planar or vertical Lyapunov periodic orbit with

SpecDφT (X0) = {1, 1,Λ, 1/Λ, eiω, e−iω}

for Λ > 1, where DφT (X0) is the monodromy matrix of the periodic orbit (state transition matrix after one

period). Denote Λu = Λ, Λs = 1/Λ, consider V u a unitary eigenvector of eigenvalue Λu of DTφ(X0), and

V s a unitary eigenvector of eigenvalue Λs. Then,

ψ(θ, ξu, ξs) = φ θ
2π T (X0) +

(
(Λu)−θ/(2π)Dφ θ

2πT (X0)V
u
)
ξu +

(
(Λs)−θ/(2π)Dφ θ

2πT (X0)V
s
)
ξs (9)

is a parametrization of the linear approximation of the 3D stable–unstable manifold of the periodic orbit,

since:

• If ξu = ξs = 0, it describes the periodic orbit as 0 ≤ θ ≤ 2π.

• For ξs = 0, ξu 6= 0, if θ = 0 then ψ(θ, ξu, ξs) is on the V u eigenvector of the monodromy matrix.

For θ 6= 0, ψ(θ, ξu, ξs) is on the vector transported from V u through the differential of the flow, and
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thus on the linear approximation of the unstable manifold of the p.o. The (Λu)−θ/(2π) factor prevents

stretching of the transported eigenvector, and keeps ψ(θ, ξu, ξs) 2π–periodic in θ.

• For ξu = 0, ξs 6= 0, a symmetric argument applies.

A more formal way to see that Eqn. (9) parametrizes the linear approximation of the stable–unstable manifold

of the periodic orbit is to check that, using the flow property (φs(φt(X)) = φt+s(X)) and the chain rule,

φt

(
ψ(θ, ξu, ξs)

)
= ψ

(
θ +

2π

T
t, (Λu)t/T ξu, (Λs)t/T ξs)

)
+O

(
(ξu)2 + (ξs)2

)
, (10)

which would be an invariance equation for ψ were not for the O((ξu)2 + (ξs)2) term.

If we take the precaution of choosing both V u, and V s pointing towards increasing longitudes of Vesta,

due to the saddle dynamics of the linear approximation (from Eqn. (10), trajectories describe hyperbolae

in (ξu, ξs) parameter space, that have V u, V s as asymptotic directions in X space), and according to our

previous definition of transit orbit, for fixed ξ > 0 small enough (for the linear approximation to be valid) and

varying θ, the initial conditionsψ(θ, ξ, ξ) will produce transit orbits when integrated forward and backward

in time.

B. Sample 1:1 Resonance Crossing Ballistic Trajectories

For all the planar and vertical periodic orbits represented in Fig. 5, the values ξ = 0.1, 1, 10 km are

considered and the 50 trajectories given by ψ(θ, ξ, ξ) in Eqn. (9) for θ = j2π/50 have been computed,

integrating both forward and backward in time up to the vertical plane of the longitude of the fixed point

plus 90 degrees. Of all these trajectories, we have discarded those not being transit, that is, the ones not

following the manifold branches of increasing longitudes of Vesta (as displayed in Fig. 8). Initial conditions

for one such trajectory are provided in Table 6. For the given values ofX0, θ,V
u,V s, ψ(θ, ξu, ξs) provides

a transit trajectory if ξu = ξs = 1, whereas it does not for ξu = ξs = 10 (the linear approximation is no

longer valid). The corresponding trajectories are shown in Fig. 14.

After discarding the non–transit trajectories in the exploration just described, for each initial condition of

each family and each value of ξ, we have plotted in Fig. 15 the difference between the maximum and min-

imum distance to the center of Vesta along the trajectories for varying θ, as well as the minimum time of

flight from the vertical plane of the longitude of the fixed point plus 90 degrees to itself.
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Table 6 Initial conditions for a sample planar Lyapunov transfer, to be used in Eqn. (9). The values φ θ
2π

T (X0),

Dφ θ
2π

T (X0))V
u, Dφ θ

2π
T (X0))V

s, that require numerical integration with the first variationals, are provided

for convenience.

Variables Values

X0 ( 615.043543697725 , 169.512115103641 , 3.195465328012,

−0.055382713039651 , 0.147098530261093 , −0.001861017053890 )⊤

T 19617.67604385

V u ( −0.483564088822 , 0.875282662944 , −0.006778552267,

−0.000282281870382 , −0.000059016629411 , −0.000003748156386 )⊤

V s ( −0.197006162278 , 0.980287095338 , −0.015023323741,

−0.000270703760181 , −0.000095925750484 , −0.000000523838148 )⊤

Λu,Λs, θ 3.26466249952519 , 0.30631037669140 , 4π/5

φ θ
2π

T (X0) ( 414.503169532761 , 207.206280139795 , −6.689909407586,

−0.095972567216418 , 0.194814529248627 , 0.001499981796764 )⊤

φ θ
2π

T (X0)V
u ( −0.690401152398 , 1.135695900648 , 0.006090577340,

−0.000502791172036 , −0.000217205538570 , 0.000006766171830 )⊤

φ θ
2π

T (X0)V
s ( −0.459465868763 , 1.203211296360 , 0.016189252132,

−0.000464134492025 , −0.000265523893358 , 0.000004245491819 )⊤
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Fig. 14 Trajectories with initial condition ψ(θ, ξu, ξs) according to the values of Table 6, for ξu = ξs = 1 (left)

and ξu = ξs = 10 (right).
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Fig. 15 Some data on transit orbits approaching the planar (first column) and vertical (second column) families

of Lyapunov orbits around P1 (first row) and P3 (second row). The red, green, and blue curves correspond to

ξ = 0.1, 1 and 10 km, respectively, and give the minimum time of flight (left y-axis) from the vertical plane of the

longitude of the fixed point plus 90 degrees to itself. The black curves give the difference between the maximum

and minimum distance to the center of Vesta, i.e., the potential ballistic transfer distance. At the scale of the plots,

they are the same for the three values of ξ.

In Fig. 15 it can be observed how, as the distance to the periodic orbit is increased, the time of flight

decreases, because the trajectories perform fewer revolutions around the base periodic orbit as they approach

and depart it. A side-effect to increasing ξ is that the ψ(θ, ξ, ξ) initial conditions stop providing transit

trajectories sooner, which indicates that the linear approximation of the manifold is not accurate enough

for these values of ξ. The difference between the maximum and minimum distances to the center of Vesta

increase with the energy of the base periodic orbit, which is consistent with the constraints derived from

the zero-velocity surface analysis. Figs. 16,17,18 display spatial views of a sample transfer of each family,
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together with the time evolution of some orbital elements.
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Fig. 16 Sample resonance crossing transfer using the manifolds of a planar Lyapunov orbit. The top axes are

plotted in the rotating body-fixed frame and the elements in the lower axes are computed in an inertial frame.

In the rotating frame, the trajectory evolves clockwise initially (the period is sub-synchronous with the body

rotation), then counter clockwise in the interior region.

VI. Conclusion

The stable and unstable manifolds of near-synchronous, unstable orbits in the body-fixed frame of an

irregularly shaped body can be followed to achieve ballistic transfers across the 1:1 resonance. For low-thrust

spacecraft, which must necessarily pass through a 1:1 resonant orbit en route to a super-synchronous orbit,

the methodology presented herein identifies orbit targets that ensure passage across this region of chaotic
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Fig. 17 Sample resonance crossing transfer using the manifolds of a vertical Lyapunov orbit. The top axes are

plotted in the rotating body-fixed frame and the elements in the lower axes are computed in an inertial frame.

This middle inclination transfer results in significant variation in the node crossing longitude.

dynamics. For the specific case of orbiting Vesta, these transfers have been shown to allow for a significant

change in orbit altitude (on the order of 100 km) without a change in orbit energy (i.e., without thrust)

because of the relatively large deviation of Vesta’s gravity from a pointmass. This transfer design strategy is

well-suited for future low-thrust missions to asteroids and small planetary moons where the irregular gravity

field similarly allows for large ballistic changes in an orbit near resonance, but requires careful targeting to

ensure the desired change is achieved.

The sensitivity of this type of transfer to gravity field and other uncertainties remains to be studied.

While hyperbolic equilibria and their associated dynamics are known theoretically to persist under small
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Fig. 18 Sample resonance crossing transfer using the manifolds of a polar orbit. The top axes are plotted in the

rotating body-fixed frame and the elements in the lower axes are computed in an inertial frame. Variations in the

initial state can change the time for the transfer to complete.

perturbations, the extent of their actual robustness is a question of significant practical importance.

Appendix: Vesta Gravitational Field Model

As mentioned in the section “Dynamical Background”, an 8×8 spherical harmonic gravity field has

been used to model Vesta’s gravitational potential. The coefficients for this model were generated by Alex

Konopliv at the Jet Propulsion Laboratory at the California Institute of Technology using the Thomas shape

model [14] with a constant density assumption[26]. This appendix provides a summary of the conventions

and coefficients used.
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Table 7 Normalized spherical harmonic coefficients used to define the gravitational potential of Vesta.

C0,0 1.00000000000e+00 S0,0 0.00000000000e+00 C6,2 –1.56976008416e–04 S6,2 –3.26673192977e–05

C1,0 0.00000000000e+00 S1,0 0.00000000000e+00 C6,3 –3.99739451316e–05 S6,3 4.56863652413e–04

C1,1 0.00000000000e+00 S1,1 0.00000000000e+00 C6,4 3.77321609708e–04 S6,4 1.22025762333e–04

C2,0 –4.07805507010e–02 S2,0 0.00000000000e+00 C6,5 –2.02585801195e–04 S6,5 –1.73238620246e–04

C2,1 –3.25010390544e–04 S2,1 1.49720853708e–03 C6,6 6.77387913531e–05 S6,6 7.48949709186e–05

C2,2 4.46821319973e–03 S2,2 4.61382771891e–03 C7,0 5.70293656227e–04 S7,0 0.00000000000e+00

C3,0 3.64651747993e–03 S3,0 0.00000000000e+00 C7,1 3.98235640002e–04 S7,1 7.24405013000e–04

C3,1 –1.12409582062e–03 S3,1 –3.89500727795e–04 C7,2 3.56046364969e–04 S7,2 3.87838248289e–04

C3,2 –1.16408456814e–03 S3,2 –7.62581870322e–04 C7,3 –3.33397472073e–04 S7,3 3.20233884344e–05

C3,3 –6.72307486207e–04 S3,3 5.48451210418e–04 C7,4 –8.02300909991e–05 S7,4 4.54688133019e–05

C4,0 5.65283691159e–03 S4,0 0.00000000000e+00 C7,5 –8.70846159655e–05 S7,5 2.17960394084e–04

C4,1 1.27115944748e–03 S4,1 –1.61833763492e–04 C7,6 2.10488488560e–04 S7,6 9.74422338716e–05

C4,2 –5.69178351863e–04 S4,2 8.92221404608e–05 C7,7 1.62511871062e–04 S7,7 1.34280339470e–04

C4,3 –2.51263799636e–04 S4,3 –8.05756564163e–04 C8,0 –9.93386709112e–05 S8,0 0.00000000000e+00

C4,4 –4.74265577836e–04 S4,4 2.74536736864e–04 C8,1 3.64907867445e–06 S8,1 1.42310868220e–04

C5,0 –2.09370174402e–03 S5,0 0.00000000000e+00 C8,2 –1.06843394510e–04 S8,2 –1.89336591209e–04

C5,1 2.44608680997e–05 S5,1 1.27062948281e–04 C8,3 1.26356875251e–04 S8,3 1.02541745679e–04

C5,2 3.90449578804e–04 S5,2 –2.60096374968e–04 C8,4 –1.65491066823e–04 S8,4 5.96662177612e–05

C5,3 4.44827891684e–04 S5,3 –2.66156245454e–04 C8,5 1.27714821210e–04 S8,5 5.13750623888e–05

C5,4 1.69785526541e–04 S5,4 –7.68917712397e–04 C8,6 –2.12747942358e–04 S8,6 7.84398845706e–05

C5,5 –3.02983473394e–05 S5,5 –8.97643036386e–05 C8,7 1.29147008848e–04 S8,7 –7.63161885204e–05

C6,0 –5.07091621859e–04 S6,0 0.00000000000e+00 C8,8 3.61889312604e–05 S8,8 7.24673054196e–05

C6,1 –6.72234557467e–04 S6,1 –6.49425559362e–04

In all the results reported in this paper, the gravitational potential of Vesta at a point r̃ = (x, y, z) has

been expressed in the body fixed frame defined in the “Dynamic background” section. Its expression in that

frame is given by:

U(r̃) =
µ

r

8∑

n=0

n∑

m=0

(RV

r

)n

Pn,m(sinφ)
(
Cn,m cos(mλ) + Sn,m sin(mλ)

)
, (11)

where µ denotes the gravitational parameter of Vesta (17.8 km3/s2) and RV corresponds to the radius of the

reference sphere of the expansion in spherical harmonics (258 km). The spherical coordinates used (r, φ, λ)
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are defined as x = r cosφ cosλ, y = r cosφ sinλ, z = r sinφ, and the various Cn,m and Sn,m used are

given in Table 7.

Note that the normalized spherical harmonics and coefficients are used, following the convention in

reference [21] p. 58. In particular, the normalized Legendre associated functions are defined by:

Pn,m(u) =

√
(2 − δ0,m)(2n+ 1)(n−m)!

(n+m)!
Pn,m(u) (12)

with Pn,m(u) = (1 − u2)m/2 dm

dumPn(u) and Pn(u) =
1

2nn!
dn

dun (u
2 − 1)n.
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