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Chemical reactions at ultrasmall volumes are becoming increasingly necessary to study

biological processes, to synthesize homogenous nanostructures and to perform high-

throughput assays and combinatorial screening. Here we show that a femtolitre reaction can

be realized on a surface by handling and mixing femtolitre volumes of reagents using a

microfluidic stylus. This method, named microfluidic pen lithography, allows mixing reagents

in isolated femtolitre droplets that can be used as reactors to conduct independent reactions

and crystallization processes. This strategy overcomes the high-throughput limitations of

vesicles and micelles and obviates the usually costly step of fabricating microdevices and

wells. We anticipate that this process enables performing distinct reactions (acid-base,

enzymatic recognition and metal-organic framework synthesis), creating multiplexed

nanoscale metal-organic framework arrays, and screening combinatorial reactions to evaluate

the crystallization of novel peptide-based materials.
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C
hemical reactions at volumes from femtolitres (10� 15

litres) to attolitres (10� 18 litres) are becoming increas-
ingly necessary to study biological processes that occur in

small volumes of cellular compartments1–4 and liquid-phase
reactions5, to synthesize homogenous nanostructures6 and to
perform high-throughput assays and combinatorial screening7,8.
To perform reactions on surfaces and at such dimensions, it is
critical to manipulate and confine ultrasmall volumes of reagents
and control their mixing into well-defined compartments. It is
also important to control the dimensions and monodispersity of
these reactors, their positioning to facilitate monitoring and the
evaporation rate of all solvents used. To date, methods to conduct
reactions at these ultrasmall dimensions can be classified into two
types based on the use of micromachining techniques (mainly
microfluidics and femtolitre wells9–12) and self-enclosed volume
elements, including vesicles, micelles and oil/water-dispersed
droplets13–18.

We propose here an alternative approach to realize femtolitre
reactions on a surface by handling and mixing femtolitre volumes
of reagents using a microfluidic stylus. This approach, named
microfluidic pen lithography (MPL), overcomes the high-through-
put limitations of vesicles and micelles and obviates the usually
costly step of fabricating microdevices and wells: it can be
employed to mix reagents in isolated femtolitre droplets that can
be used as reactors to conduct independent reactions and/or
crystallization processes over centimetre-scale regions with high
registration accuracy. In particular, we have found that conven-
tional pen lithography technologies and tools19–22, commonly used
for molecular and material printing, and now available to many
researchers, are ideal for running such reactions on surfaces.
Microfluidic pens (BioForce, USA; see Supplementary Fig. S1) offer
high levels of uniformity and reproducibility for depositing
femtolitre volumes of liquids onto surfaces. Dip-Pen
Nanolithography19 NLP-2000 platform (NanoInk Inc., USA),
equipped with a five-axis stage system and commercial
lithography software, guarantees the control of the dwell time
and the vertical and translational motion of the surface relative to
the microfluidic pens (±75 nm z precision and ±100 nm
positional precision over areas as large as 16 cm2). This high
accuracy enables the programmable positioning of microfluidic
pens on top of selected, pre-patterned femtolitre droplets, followed
by their precise approach up to the surface contact area. This
straightforward MPL method comprises two steps: femtolitre
droplet generation, and femtolitre volume delivery into these
droplets (Fig. 1a; also see Supplementary Movie 1). It enables
mixture of femtolitre volumes containing reagents directly on
surfaces, thus forming well-defined mixture droplets in which
individual femtolitre reactions can be conducted. Finally, an
environmental humidity chamber included in the lithographic
platform enables such reactions to be run under controlled
atmospheres (that is, humidity or organic solvent vapour levels)
and reduces droplet evaporation. This latter factor is crucial, as the
second reagent must be delivered into the patterned droplets before
they evaporate, and the resulting mixture droplet requires sufficient
time to react and crystallize. Droplet evaporation can be also
minimized by using reagent solutions containing high-boiling
point, low-volatility solvents that do not affect the desired reaction.
In this study, we demonstrate that MPL enables performing
distinct reactions (acid-base, enzymatic recognition and metal-
organic framework (MOF) synthesis), creating multiplexed
nanoscale MOF arrays, and screening combinatorial reactions to
evaluate the crystallization of novel peptide-based materials. We
believe that this method could be adopted by researchers as a
desktop tool to synthesize and crystallize nanomaterials at desired
locations, fabricate arrays and devices, perform combinatorial
screening and/or study reactions at the femtolitre scale.

Results
Patterning and mixing capabilities at the femtolitre scale. We
evaluated the first step of this method—including, creation of
femtolitre droplet arrays, reproducibility and homogenous
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Figure 1 | Femtolitre delivery and mixing capabilities of MPL.

(a) Schematic illustration of the two-step MPL method, showing the

patterning of an array of SoF droplets (step 1), followed by precise delivery

of different volumes of a solution into them (step 2). (b) Bright-field optical

and corresponding confocal fluorescence microscopy images

(lexc¼488 nm; lem¼ 500–575 nm) of an array of SoF droplets (droplet

distance¼ 28 mm) created by using different DT1. (c,d) DT1 dependence of

d1 and of I/A measured for each droplet series. (e) Confocal fluorescence

microscopy image of an array of SoF droplets (droplet distance¼ 35mm), in

which femtolitre volumes of an H2O/glycerol solution were added at

different DT2. Note that the top row corresponds to bare SoF droplets.

(f) DT2 dependence of d2. (g) Dilution factor dependence of I/AN. The line

represents the expected behaviour of a bulk SoF solution (assuming that

the decrease in fluorescence intensity is due only to dilution).

(h–j) Confocal fluorescence microscopy images (lexc¼488 nm;

lem¼ 500–575 nm (h); lexc¼ 633 nm; lem¼600–785 nm (i); and

superimposed previous images (j)) of an array of SoF droplets (droplet

separation¼ 28mm), in which femtolitre volumes of a solution of Nile Blue

were added at different DT2. Note that the left and right columns

correspond to pure SoF and Nile Blue droplets, respectively, whereas the

gradient of colours from yellow/orange to red (left to right) denotes the

increase in concentration of Nile Blue relative to SoF. In (c,d,f,g) the error

bars represent the s.d. of the average results obtained for all equivalent

droplets in the array.
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volume and reagent delivery—through delivery of a sodium
fluorescein (SoF) solution onto a SiO2 surface. In a typical
experiment, the microfluidic pen was first loaded with a dime-
thylsulphoxide (DMSO)/glycerol (1:1) solution of SoF, mounted
onto the lithographic platform at an acute angle of 10�, and used
to fabricate an array of droplets by bringing it into contact with
the surface for 0.001–10 s (hereafter, DT1: dwell time used in step
1) at 60% relative humidity (RH; Fig. 1b; also see Supplementary
Fig. S2 for a three-dimensional reconstruction of the droplet
array). The patterned green fluorescent droplets had diameters
(d1) from 8.8±0.2 to 24.0±0.2 mm (Fig. 1c), confirming that DT1

can be used to control the size (and therefore the estimated
volumes, which vary from 42.7±2.3 to 873.4±20.9 fL,
considering a measured macroscopic contact angle of 34.6±0.3�;
see also Supplementary Methods) of the initial droplets patterned
by MPL. To demonstrate homogeneous concentration delivery,
we measured the average of the fluorescence mean intensity per
surface area (I/A—as a measure of dye concentration in the
droplets, we analysed the fluorescence image slice corresponding
to the droplet volume in direct contact with the surface, summed
the intensity values for all fluorescent pixels of the droplet, and
then divided by the droplet area in that image; also see
Supplementary Methods) for each droplet series patterned at a
different DT1. Significantly, we observed o6% deviation in I/A
among the droplet series (Fig. 1d).

To demonstrate the ability of controlling the deposition of a
second femtolitre volume on top of the pre-patterned droplets
(step 2), we delivered femtolitre volumes of an H2O/glycerol (1:1)
mixture into pre-patterned H2O/glycerol (1:1) droplets of SoF
(d1¼ 9.4±0.1 mm). The H2O/glycerol solution was delivered at
dwell times (hereafter DT2: dwell time used in step 2) of 0.001 to
8 s at 50% RH, forming an array of mixture droplets with
diameters (d2) from 10.5±0.1 to 19.7±0.4 mm, respectively
(Fig. 1e). Figure 1f shows that the delivered volume increased
with increasing DT2. Based on this finding, we concluded that
DT2 could be used to control the volume delivered into the pre-
patterned droplets and, therefore, to control the concentration of
SoF in each mixture droplet. This is demonstrated in Fig. 1g and
Supplementary Fig. S3, in which the average I/A measured for
each droplet series normalized to the average of the I/A measured
for the initial SoF concentration (I/AN) is plotted as a function of
the dilution factor (V2/V1¼ d2

3/d1
3) and of DT2. When DT2 is

increased, the SoF concentration in each mixture droplet—and
consequently, I/AN—decreases according to the volumes of H2O/
glycerol added, following the expected behaviour of a bulk SoF
solution (assuming that the decrease in fluorescence intensity is
due only to dilution). This dependence was reproducibly obtained
(see Supplementary Fig. S4), demonstrating that DT2 can
effectively be used to control the ratio of reagents in the mixture
droplets.

Another factor contributing to this ratio is cross-contamina-
tion, which can affect the homogeneous mixing between mixture
droplets. The influence of this phenomenon was evaluated by
analysing the I/A of several droplets patterned at DT of 2 s after
delivering an H2O/glycerol (1:1) mixture into pre-patterned H2O/
glycerol (1:1) droplets of SoF (d1¼ 8.7±0.2 mm) at DT2 of 0.001–
10 s at 45% RH (see Supplementary Fig. S5). I/A was detected in
the first three droplets for all cases: the average intensity values
(relative to the initial SoF intensity) were ca. 6.0% (1st droplet),
2.8% (2nd droplet) and 1.2% (3rd droplet). Based on these values,
we decided to introduce a cleaning step to prevent cross-
contamination and ensure unadulterated reagent mixing. In the
cleaning step, a few droplets are patterned outside the working
area (that is, on a different surface) between each round of
reagent delivery on top of the pre-patterned droplets. To further
verify the delivery capabilities of MPL and homogeneous mixing

of the solutions in each mixture droplet, we also delivered a
solution of the red-fluorescent dye Nile Blue at different DT2 into
pre-patterned green-fluorescent SoF droplets, and then visualized
their fluorescence signal co-localization (Fig. 1h–j).

Acid-base and enzymatic recognition reactions. Figure 2a–i
show two chemical reactions performed at the femtolitre scale: an
acid/base reaction between the non-fluorescent fluorescein acid
and its fluorescent dianionic state (Fig. 2a), and a biologically-
relevant reaction based on the detection of calf intestinal alkaline
phosphatase (AP) enzyme (Fig. 2f). For the acid/base reaction, we
delivered a H2O/glycerol (7:3) solution of KOH into alternated
pre-patterned DMSO/glycerol (7:3) droplets of fluorescein acid at
50% RH (Fig. 2b,d). Before the KOH delivery (Fig. 2c), low
fluorescence was detected from all fluorescein droplets, but in the
droplets in which KOH was mixed, a ca. 30-fold increase in green
fluorescence (corresponding to the deprotonation of fluorescein)
was observed (Fig. 2e). Note that numerous femtolitre reactions
(400 replicas over 0.78 mm2 area) were successfully run without
the microfluidic pens having to be reloaded (Supplementary
Fig. S6). Femtolitre reactions of the AP-detection reaction also
were performed with a high level of reproducibility. To detect this
enzyme through the dephosphorylation of blue fluorescent 20-[2-
benzothiazoyl]-60-hydroxybenzothiazole phosphate (BBTP) to
green fluorescent 20-[2-benzothiazoyl]-60-hydroxybenzothiazole
(BBT), a diethanolamine (DEA)/glycerol (7:3) droplet array of
BBTP was created, and then femtolitre volumes of a DEA/glycerol
(7:3) solution of AP were added to alternating droplets in the
array at 80% RH (Fig. 2g). After the two reagents were mixed, the
substrate was incubated at 37 �C and 80% RH for 15 min. The
resulting array was first excited at 355 nm: all the BBTP droplets
fluoresced blue, whereas none of the mixture droplets fluoresced
(Fig. 2h). In contrast, when excited at 488 nm (Fig. 2i) all the
mixture droplets fluoresced green (even though they were more
dilute), at approximately twice the intensity of the BBTP droplets.
These observations confirmed the proper detection of AP through
the complete dephosphorylation of BBTP, thus demonstrating the
utility of the MPL method for studying biological reactions at the
femtolitre scale.

Femtolitre crystallization of MOFs. We then evaluated the MLP
method for creating well-defined mixture droplets and subse-
quently using them to confine the synthesis and crystallization of
materials (rather than liquid reactions) on surfaces. As proof-of-
concept, we reproducibly compartmentalized the crystallization
of the archetypical MOF HKUST-1 (ref. 23) by mixing femtolitre
volumes of two DMSO solutions of Cu(NO3)2 � 2.5(H2O) and
trimesic acid on a SiO2 surface, and placing the resulting mixture
droplet array in ambient conditions for 2 h (Fig. 3a–c). To
increase the complexity and prove that this MPL method can be
used to confine the synthesis of different materials into side-by-
side mixture droplets in the same array, we created a multiplexed
array of crystalline porous Prussian blue analogues (PBAs)24,25.
We selected four PBAs with the general formula M3[Co(CN)6]2,
where M is Cd(II), Zn(II) and Mn(II), and Ag3[Co(CN)6]. The
multiplexed array was made by first creating a 4� 4 droplet array
of an H2O/glycerol (7.5:2.5) solution of K3Co(CN)6 either on
SiO2 or transmission electron microscopy-grid surfaces. Four
different microfluidic pens, each one loaded with a different H2O/
glycerol (7.5:2.5) metal nitrate solution, were used to deliver
femtolitre volumes of each metal salt into four selected droplets
comprising the array, as shown in Fig. 3d. Mixing of the two
solutions into each one of the mixture droplets enabled the
immediate formation of nanocrystals corresponding to the four
desired PBAs (Fig. 3e), as confirmed by the positive matching
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between the interplanar distances extracted from electron
diffraction patterns measured for each synthesized PBAs and
the corresponding literature values (Fig. 3f–i).

Screening new metal-peptide networks. Finally, as a first proof-
of-concept, we tested our method to discover new metal-peptide
networks26 incorporating a randomly selected peptide ligand,
glycine-histidine (GH). Figure 4a shows a 3� 7 combinatorial
array of droplets in which we mixed different femtolitre volumes
of an aqueous solution of GH with H2O/diethyleneglycol (7:3)
solutions of various metal acetates (the metals were, from left to
right, Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)) at
85% RH. After 2 h of reaction at room temperature, only the
droplets corresponding to Ni(II)-GH and Cu(II)-GH mixtures
showed the formation of crystals that were stable after cleaning
with water (Fig. 4c,d). These screening results were confirmed by
reproducing all these reactions in bulk (Fig. 4b), from which two
[Cu(GH)(H2O)] �H2O and [Ni(GH)2] � 7H2O networks were
discovered after solving their crystal structures (Fig. 4e,f; also
see Supplementary Figs S7–S10 and Supplementary Tables
S1–S5). Thus, this MPL approach, once enhanced to enable

greater control over reaction conditions such as temperature, will
likely have important applications in biology, chemistry and
materials science. Furthermore, it will be ideal for fabricating
arrays of complex structures that can only be prepared via
chemical synthesis (for example, crystals), thus making it
potentially useful for electronics and sensors.

Discussion
We have reported a new, highly versatile lithographic method,
MPL, for doing femtolitre chemistry on surfaces by handling and
mixing femtolitre volumes of reagents. Albeit this nascent form of
MPL includes only a microfluidic single pen, it can reproducibly
perform a broad range of femtolitre reactions in water and
organic solvents, and enables the confined crystallization of
nanomaterials at precise locations on surfaces in a spatially
ordered and combinatorial manner. We are confident that MPL
could be greatly enhanced in scope and capability through the
introduction of microfluidic multi-pens, analogously to the
evolution recently undergone by other nanolithography methods
that began with a single pen (for example Dip-Pen Nanolitho-
graphy). Furthermore, method development to optimize crucial
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reaction parameters (for example, humidity, temperature, surface
type, evaporation rate, possible cross-contamination and so on),
should provide access to an ever widening scope of femtolitre
reactions and crystallizations on diverse surfaces. Finally, we are
cautiously optimistic that as MPL matures and becomes more
sophisticated, it will ultimately enable researchers to run high-
throughput assays and combinatorial screening, perform femto-
litre-scale biological studies, and even discover novel materials
based on expensive building blocks.

Methods
Substrate preparation and microfluidic pen lithography. Si/SiO2 substrates were
subsequently sonicated for 10 min. in acetonitrile, ethanol and MilliQ water, and
dried with N2 gas flow. Each microfluidic pen was cleaned in piranha solution (3:1
v/v solution of H2SO4 and 30% H2O2) for 20 min., rinsed with MilliQ water and
dried with slight N2 gas flow. Caution: piranha solution is a strong acid and oxidant
and should be handled with extreme care. Afterwards, each pen was introduced in
an UV/ozone chamber for 20 min., and was then loaded with the corresponding
reagent solutions by adding 1.5ml of the appropriate solutions into the reservoir via
micropipette. MPL-assisted femtolitre reactions were run on an NLP-2000 Nano-
lithography Platform at room temperature and at relative humidities of 50–85%.

Array of SoF droplets delivered at different DT1. An array of 7� 9 droplets
(droplet separation¼ 28mm) of 0.01 M SoF (in DMSO/glycerol, 1:1 v/v) was pat-
terned on a SiO2 surface at DT1¼ 0.001, 0.01, 0.1, 0.5, 1, 2, 3, 5 and 10 s at room
temperature under a RH of 60%.

Mixture droplet arrays. An array of 8� 9 droplets (droplet separation¼ 35 mm)
of 0.01 mM SoF (in H2O/glycerol, 1:1 v/v) was first patterned on a SiO2 surface at
DT1¼ 0.001 s at room temperature under a RH of 60%. Femtolitre volumes of an
H2O/glycerol (1:1) mixture were then delivered into the pre-patterned SoF droplets
using a second microfluidic pen at DT2¼ 0.001, 0.1, 0.5, 1.5, 2, 4, 6 and 8 s, starting
from the second row. To evaluate the cross-contamination effect, an array of 1� 8
droplets (droplet separation¼ 35mm) of 0.03 mM SoF (in H2O/glycerol, 1:1 v/v)
was first patterned on a SiO2 surface at DT1¼ 0.001 s at room temperature under a
RH of 45%. Then, femtolitre volumes of an H2O/glycerol (1:1) mixture were
delivered into the pre-patterned SoF droplets using a second microfluidic pen at
DT2¼ 0.001, 0.01, 0.1, 1, 3, 5, 8 and 10 s. In this case, after each one of these eight
deliveries, eight consecutive droplets (droplet separation¼ 35mm) of the H2O/
glycerol (1:1) mixture were patterned at a DT¼ 2 s. An SoF/Nile Blue mixture
droplet array was fabricated by first patterning an array of 10� 6 droplets (droplet
separation¼ 28mm) of 0.01 M SoF (in H2O/glycerol, 1:1 v/v) on a SiO2 surface at
DT1¼ 0.01 s at room temperature under a RH of 52%. Femtolitre volumes of
0.014 mM Nile Blue (in H2O/glycerol, 1:1 v/v) were then delivered into the
pre-patterned droplets using a second microfluidic pen at DT2¼ 0.001, 0.01, 0.1,
0.5, 2, 4, 8 and 10 s.
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MPL-assisted femtolitre reactions. In a typical experiment, an array of droplets
of a solution containing a reagent (R1) was first patterned onto a SiO2 surface at a
certain DT1. Then, femtolitre volumes of a second solution containing another
reagent (R2) were delivered into the pre-patterned droplets using another micro-
fluidic pen at an optimized DT2. This two-step process was performed at a certain
RH. Unless otherwise noted, all resulting mixture droplets were then kept at RT
under the same RH for a certain time (t) in order to conduct the intended reac-
tions. Following this protocol, optimal reaction conditions were studied for the
acid/base reaction and the enzymatic recognition reaction, as well as for the
synthesis of HKUST-1, PBAs and metal-peptide coordination networks. The
conditions used to perform these femtolitre reactions were: Acid-base reaction. R1:
Fluorescein acid [2 mM, DMSO/glycerol (7:3)]; DT1: 0.001 s; 11� 11 droplet array
(droplet distance¼ 25mm); R2: KOH [0.34 M, H2O/glycerol (7:3)]; DT2: 0.1 s; RH:
50%; t: 1 min. Enzymatic recognition reaction. R1: BBTP [14 mM, AttoPhos
buffer—Promega AttoPhos AP Fluorescent Substrate System, Technical Bulletin.
http://www.promega.com, (2.4 M DEA, 0.057 mM MgCl2, 0.005% NaN3)]; DT1:
0.5 s; 10� 10 droplet array (droplet distance¼ 30mm); R2: AP [1 unit 6 ml� 1

(1 unit: amount of enzyme required to catalyse the hydrolysis of 1 mmol of
4-nitrophenyl phosphate per minute at 37 �C in 1 M DEA, 10.9 mM 4-nitrophenyl
phosphate and 0.5 mM MgCl2 (pH¼ 9.8))]; DT2: 0.5 s; RH: 75%; t: 15 min. at
37 �C. HKUST-1 synthesis. R1: Cu(NO3)2 �2.5H2O [2.5 M, DMSO]; DT1: 0.001 s;
30� 30 droplet array (droplet distance¼ 20mm); R2: Trimesic acid [1 M, DMSO/
glycerol (8.5:1.5)]; DT2: 0.1 s; RH: 50%; t : 4 h. Combinatorial PBA synthesis. R1:
K3Co(CN)6 [0.1 M, H2O/glycerol (7.5:2.5)]; DT1: 1 s; 4� 4 droplet array (droplet
distance¼ 20mm); R2: M(NO3)x � yH2O [M¼Mn(II) (0.18 M), Cd(II) (0.18 M),
Zn(II) (0.18 M) and Ag(I) (0.36 M), H2O/glycerol (7.5:2.5)]; DT2: 0.5 s; RH: 50%;
t: 0.5 h. Screening the formation/crystallization of metal-peptide networks. R1: GH
[1 M, H2O]; DT1: 1 s; 3� 7 droplet array (droplet distance¼ 30 mm); R2:
M(CH3COO)x � y(H2O) (where M¼Mn(II), Cd(II), Cu(II), Cr(III), Zn(II),

Ni(II) and Co(II), 0.3 M, H2O:diethyleneglycol (7:3)); DT2: 0.01, 0.1 and 0.2 s;
RH: 85%; t: 0.5 h.

Array characterization. SoF and mixture (SoF/H2O-glycerol and SoF/Nile Blue)
droplet arrays were characterized by confocal fluorescence microscopy (LEICA
TCS SP5). Stacks comprising 30 fluorescence microscopy image slices
(lexc¼ 488 nm; lem¼ 500–575 nm for SoF and lexc¼ 633 nm; lem¼ 600–785 nm
for Nile Blue) at different heights (Dz¼ 0.42 mm) were collected for each array.
Confocal microscopy images were then used to determine the average droplet
diameter (d1 and d2), and therefore, the estimated average volumes of each droplet
series, as further described in Supplementary Methods, Supplementary Figs S11,S12
and Supplementary Tables S6, S7. Moreover, the same images were used to
determine the average of the fluorescence mean intensity (I/A; defined as the sum
of the intensities of all fluorescent pixels in a droplet divided by its area) for each
droplet series, as detailed in Supplementary Methods. The data were analysed using
ImageJ software. Importantly, d1 and d2 values determined from confocal micro-
scope images were in full agreement with those determined from optical micro-
scopy images. Acid-base and enzymatic recognition reactions, both involving
fluorescent compounds, were followed by fluorescence optical microscopy (Zeiss
Axio Observer Z-1). FESEM (Zeiss Merlin) and Energy Dispersive X-Ray (Oxford
INCA X-Max) analysis were used to study the formation of the different MOF
crystals. To confirm the formation of the desired PBA phases, electron diffraction
analysis (Hitachi H-7000) was also performed on each one of the sixteen individual
crystalline islands of the multiplexed array.

Bulk reactions between metal salts and the dipeptide GH. A quantity of 0.35 ml
of an aqueous solution of 0.3 M M(CH3COO)x � y(H2O) (where M¼Cr(III),
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)) was added into 2 ml of an

Cr Mn Co Ni

b

c

c

a

b

c

Cu Zn CdCdZnCuNiCoMnCr

Figure 4 | Formation and crystallization of peptide-based coordination networks using MLP. (a) FESEM image of a 3� 7 droplet array in which each row

comprises droplets of a mixture containing the GH ligand and one of seven metal acetates (droplet distance¼ 25mm). Mixture droplets within each row

were created by first patterning a droplet of an aqueous solution of 1 M GH (contact time¼ 1 s), and then delivering a solution of the corresponding metal

acetate (0.3 M in 7:3 H2O/diethyleneglycol) for different contact times per row: 0.2 s (top), 0.1 s (middle) and 0.01 s (bottom). (b) Photograph showing the

bulk reproduction of all screened GH-metal acetate reactions, revealing that the occurrence of crystal formation matched perfectly to the corresponding

femtolitre reactions. (c,d) Representative FESEM images of crystals obtained within the femtolitre mixture of Ni(II) (c) and Cu(II) (d) with GH dipeptide.

Scale bars: 2mm. (e,f) X-ray crystal structures of the new [Ni(GH)2] � 7H2O and [Cu(GH)(H2O)] �H2O.
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aqueous solution of GH (1 mmol) in a 5-ml glass vial. The resulting mixtures were
left standing at RT or heated at 90 �C for 2 h. Under the studied conditions, only
the reactions (both at RT and 90 �C) between GH and Cu(CH3COO)2 �H2O or
Ni(CH3COO)2 � 4H2O afforded crystals suitable for single crystal analysis: dark
blue (79% yield) and blue (62% yield), respectively (see Supplementary Tables S1–
S5). Their phase purity was confirmed by XRPD (X’Pert PRO MPD diffractometer;
Panalytical), IR (Tensor 27 FTIR spectrophotometer equipped with a Golden Gate
diamond ATR cell; Bruker) and elemental analysis (see Supplementary Fig. S10).
Interestingly, no formation of solid was observed in any of the reactions with the
other metal ions, even after 1 week left standing at room temperature.
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