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The η and η′ transition form factors in the space-like region are analyzed at low and
intermediate energies in a model-independent way through the use of rational approxi-
mants. The slope and curvature parameters of the form factors as well as their values at
infinity are extracted from experimental data. The impact of these results on the mixing
parameters of the η-η′ system are also discussed.
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The η and η′ transition form factors (TFFs) encode the effects of the strong force in
the interaction of two photons with the η and η′, respectively. In the space-like region
of the TFFs, the η or η′ are produced, for instance, in the reaction e+e− → e+e−P ,
with P = η, η′. Using this reaction, the energy dependence of the TFFs is measured
in the following way: one of the leptons is scattered at large angles emitting a highly
virtual photon and the other is little scattered thus producing a quasi-real photon.
The scattered lepton is then tagged while the other remains untagged. This is the
single-tag method which at present and before has been used to measured the TFFs,
not only for the η and η′ but also for the π0. Then, the energy dependence of the
TFFs, which in principle is a function of the two photon virtualities FPγ∗γ∗(q21 , q

2
2),
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reduces to FPγ∗γ(Q2), with Q2 = −q2, for the case of a single-tagged lepton and in
the space-like region of phase-space.

In the low-energy region, the TFF can be expanded as

FPγ∗γ(Q2) = FPγγ(0)
(

1 − bP
Q2

m2
P

+ cP
Q4

m4
P

+ · · ·
)
, (1)

where FPγγ(0) is the normalization, the parameters bP and cP are the slope and
curvature, respectively, and mP is the pseudoscalar meson mass. FPγγ(0) can be
fixed from experiment through the measurement of Γ(η(′) → γγ),

|FPγγ(0)|2 =
64π

(4πα)2
Γ(P → γγ)

m3
P

, (2)

or from theory by means of the prediction of the QCD axial anomaly in the chiral
and large-Nc limits simultaneously, that is, Fπ0γγ(0) = 1/(4π2Fπ), with Fπ � 92
MeV, for the π0, and

Fηγγ(0) =
1

4π2

(
ĉq
Fq

cφ− ĉs
Fs

sφ
)
, Fη′γγ(0) =

1
4π2

(
ĉq
Fq

sφ+
ĉs
Fs

cφ
)
, (3)

with ĉq = 5/3, ĉs =
√

2/3 and (s, c) ≡ (sin, cos). Concerning the slope parameter,
there is a wide variety of approaches that predict it (see Fig. 1 for a comparison of
numerical predictions): Chiral Perturbation Theory (ChPT),1 Vector Meson Dom-
inance (VMD),1 constituent-quark loops,1 the Brodsky-Lepage (BL) interpolation
formula,2 Resonance Chiral Theory (RChT),3 and more recently, a dispersive anal-
ysis.4 On the experimental side, these parameters are usually obtained from a fit to
data using a normalized, single-pole term with an associated mass ΛP , i.e.

FPγ∗γ(Q2) =
FPγγ(0)

1 +Q2/Λ2
P

. (4)

In this case, bP = m2
P /Λ

2
P and cP = b2P .

In the high-energy region, the TFF is expressed, within the framework of per-
turbative QCD (pQCD), as a convolution of a perturbative hard scattering ampli-
tude and the soft non-perturbative wave function of the meson.5 The asymptotic
behaviour of the TFFs in the limit Q2 → ∞ is then given by

lim
Q2→∞

Q2Fηγ∗γ(Q2) = 2(ĉqFqcφ− ĉsFssφ) ,

lim
Q2→∞

Q2Fη′γ∗γ(Q2) = 2(ĉqFqsφ+ ĉsFscφ) ,
(5)

in the same way as limQ2→∞Q2Fπ0γ∗γ(Q2) = 2Fπ for the π0 (see Ref. 2).
While the low- and high-energy regions are in principle well described by ChPT

and pQCD, respectively, to have a model-independent description of the TFFs in
the whole energy range is unfortunately still lacking for the η and η′. In Ref. 6,
it was suggested for the π0 case that this model-independent approach can be
achieved using a sequence of rational functions, the Padé Approximants (PAs), to
fit the experimental data. In this way, not only the low- and high-energy predictions
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of ChPT and pQCD should be reproduced but also a reliable description of the
intermediate-energy region would be available. The main advantage of the method
of PAs is indeed to provide the Q2 dependence of the TFF over the whole space-like
region in an easy, systematic and model-independent way.7 It is the purpose of the
work in Ref. 8, in which this proceeding is based on, to present such a description
for the η and η′ cases.

PAs are rational functions PNM (Q2) (ratio of a polynomial TN(Q2) of order N
and a polynomial RM (Q2) of orderM) constructed in such a way that they have the
same Taylor expansion as the function to be approximated up to order O(Q2)N+M+1

(see Ref. 9 for details). For certain special functions, there are convergence theorems
that guarantee the convergence of different PA sequences to the given function.9 For
the case of the TFF, we don’t know the function itself, nor its analytic structure
in detail. The only information we have, if we want to use it, is the asymptotic
behaviour of that function in the low- and high-energy limits. Moreover, due to
the limited statistics of the experimental data, it will not be possible to build an
infinite sequence of PAs. The best we can do is to check whether several well-
motivated sequences of PAs show an asymptotic behaviour when compared to the
exact predictions of some given well-established models. If so, we can be confident,
even though it is not proven, that the proposed sequences of PAs will also converge
to the unknown function behind the TFF. It is in this sense that the PAs method
has to be considered as a model-independent way of analyzing the TFFs in the
whole energy region. The issue of being the PAs a systematic procedure can be
quantified in this case through a systematic error. For some observable related to
the TFF, such as the normalization or the slope and curvature parameters, this
error is defined as the relative error between the exact result for the observable in
some given model and the prediction of some PA at some order. Once this procedure
is performed for several models and different sequences of PAs, we choose as the
systematic error associated to that particular observable the worst of the relative
errors that were found, thus being as much conservative as possible. This systematic
error will take into account the fact that we don’t know the exact function of the
TFF, that we have used several different PAs sequences, and that we can reach only
a finite order for these sequences. However, the predictions obtained in this way
are robust and do not depend on any physical model (maybe only supplemented
by some physical input if required for the lack of precision), they have been just
obtained from a mathematical treatment of experimental data. Model-dependent
predictions for the observables should lie, if the model is correct, inside the error
windows allow by this procedure.

For the η and η′ TFFs, we use two different types of PA sequences, the PN1 (Q2)
(single-pole approximants) and PNN (Q2) (diagonal approximants). The PN1 (Q2)
sequence seems the optimal choice if an appropriate combination of the ρ, ω and
φ mesons plays the same role, as an effective single-pole dominance, as the ρ on
the π0 TFF, where this ρ meson contribution exhibits a predominant role with the
excited states being much suppressed. According to Ref. 5, the pseudoscalar TFFs
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behave as 1/Q2 for Q2 → ∞. Therefore, it would be desirable to incorporate this
asymptotic limit information in the fits by considering also a PNN (Q2) sequence.
As stated, the length of the sequences will be fixed by the limited statistics of the
experimental data. The systematic error for the slope and curvature parameters
obtained from these two types of sequences is discussed in detail in Ref. 8. The
experimental data for the η and η′ TFFs in the space-like region come from the
CELLO,10 CLEO,11 BABAR,12 and L3 Collabs.,13 the latter only for the η′ case.
The Q2 set of data ranges from the 0.62 GeV2 of CELLO to the 34.38 GeV2 of
BABAR, for the η, and from the 0.0 GeV2 of L3 to the 34.32 GeV2 of BABAR, for
the η′, respectively. Since it is common to present data in the form of Q2|FPγ∗γ(Q2)|
instead of |FPγ∗γ(Q2)|, we prefer to fit the first form. In Ref. 8, many different fits
are discussed. However, in this proceeding, we only present the best ones, fits were
two supplementary conditions are imposed. First, limQ2→0Q

2Fη(′)γ∗γ(Q2) = 0, a
condition which is satisfied because the TFFs are known to be non-singular at the
origin. Second, the normalisations Fη(′)γγ(0) will be fixed, through Eq. (2), to the
experimental values obtained from the measurements of the respective two-photon
partial widths. We use Γη→γγ = 0.516(18) keV, after combining the PDG average14

together with the recent KLOE-2 result,15 and Γη′→γγ = 4.35(14) keV from the
PDG fit.14

Our results for the η and η′ slope and curvature parameters obtained from these
best fits are shown in Table 1. The quality of the fits are similar in all cases. The
values of the low-energy parameters (LEPs) for each meson are in agreement within
errors (only symmetrized statistical errors are shown). The difference between the
single-pole approximants, PN1 , and the diagonal ones, PNN , is that the former do
not include the asymptotic behaviour expected from pQCD which is imposed in the
latter. For the η′ case, the weighted average is not performed because the systematic
errors of the LEPs obtained from the P 1

1 approximant are large and thus considered
as unacceptable (see Ref. 8 for details). Our final results are

bη = 0.60(6)stat(3)sys ,

cη = 0.37(10)stat(7)sys ,

bη′ = 1.30(15)stat(7)sys ,

cη′ = 1.72(47)stat(34)sys ,
(6)

Table 1. η (left) and η′ (right) slope and curvature parameters obtained from the best
fits to experimental data including the measured two-photon partial decay widths.
The first column indicates the type of sequence used for the fit and N is the highest
order reached for that sequence. The last row shows the weighted average result for
each low-energy parameter.

N bη cη χ2/dof N bη′ cη′ χ2/dof

P N
1 5 0.58(6) 0.34(8) 0.80 6 1.30(15) 1.72(47) 0.70

P N
N 2 0.66(10) 0.47(15) 0.77 1 1.23(3) 1.52(7) 0.67

Final 0.60(6) 0.37(10) 1.30(15) 1.72(47)
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Fig. 1. Slope parameter for the η (left) and η′ (right) TFFs from different theoretical (red circles)
and experimental (blue squares) determinations mentioned in the text. Inner error is statistical
and larger error is the combination of both statistical and systematic.

where the second uncertainty is the most conservative systematic error in each case
(of the order of 5% and 20% for bP and cP , respectively). A comparison of the
former results for the slope parameter of both mesons and different theoretical and
experimental determinations found in the literature are shown in Fig. 1.

The η-η′ mixing parameters in the quark-flavour basis are obtained from
Eqs. (3) and (5). As an input, we use the normalization at zero of both TFFs,
|Fηγγ(0)| = 0.274(5) GeV−1 and |Fη′γγ(0)| = 0.344(6) GeV−1, from the measured
decay widths, and for the asymptotic value of the η TFF we take the predicted value
limQ2→∞Q2Fηγ∗γ(Q2) = 0.160(24) GeV. With these values, the mixing parameters
are predicted to be

Fq/Fπ = 1.06(1) , Fs/Fπ = 1.56(24) , φ = 40.3(1.8)◦ , (7)

with Fπ = 92.21(14) MeV.14 They can be compared, for instance, with the mix-
ing parameters obtained in Ref. 16, Fq/Fπ = 1.10(3), Fs/Fπ = 1.66(6) and
φ = 40.6(0.9)◦, after a careful analysis of V → η(′)γ, η(′) → V γ, with V = ρ, ω, φ,
and η(′) → γγ decays, and the ratio RJ/ψ ≡ Γ(J/ψ → η′γ)/Γ(J/ψ → ηγ). The
agreement between this determination and the values in Eq. (7) is quite impressive
since only the information of the TFFs is used to predict these mixing parameters.
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