Journal of Magnetic Resonance 242 (2014) 33-40

Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

Straightforward measurement of individual ¹J(CH) and ²J(HH) in diastereotopic CH₂ groups

Servei de Ressonància Magnètica Nuclear and Departament de Química, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Catalonia, Spain

ARTICLE INFO

Article history: Received 17 December 2013 Revised 31 January 2014 Available online 12 February 2014

Keywords: E.COSY One-bond proton-carbon coupling constants Two-bond proton-proton coupling constants Methylene spin systems Inverse INEPT Residual dipolar couplings

ABSTRACT

The C-H_A cross-peak corresponding to a diastereotopic CH_AH_B methylene spin system exhibits a characteristic 1:0:1 multiplet pattern along the indirect dimension of a ω_1 -coupled HSQC spectrum. It is shown here that the use of the initial ¹³C Boltzmann polarization instead of the regular INEPT-based ¹H Boltzmann polarization makes visible the central lines of this multiplet pattern. A spin-state-selective method is proposed for the efficient measurement of both ¹J(CH_A) and ¹J(CH_B) along the indirect dimension of a 2D spectrum as well as to the magnitude and the sign of the geminal ²J(H_AH_B) coupling constant from the straightforward analysis of a single four-component E.COSY cross-peak. Additionally, the extraction of ¹J(CH) values for CH and CH₃ multiplicities can be also performed from the same spectrum. The success of the method is also illustrated for the determination of residual dipolar ¹D(CH) and ²D(HH) coupling constants in a small molecule weakly aligned in a PMMA swollen gel.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, it has appeared an enormous interest for the measurement of scalar and residual dipolar (RDC) one-bond proton-carbon coupling constants (¹I(CH) and ¹D(CH), respectively) in small molecules dissolved in weakly aligned anisotropic media [1–3]. HSQC-based pulse schemes have been generally chosen for this purpose and the accuracy and the simplicity on the experimental measurement of ¹I(CH) are subjects of discussion. Some topics of recent interest have been (i) the design of general and robust NMR methods that works efficiently for all multiplicities, (ii) the discussion about whether the ¹J(CH) splitting should be measured from the direct $\omega_2~(^1H)$ or the indirect $\omega_1~(^{13}\text{C})$ dimension, (iii) the accurate measurement of ¹J(CH) for individual protons in diastereotopic CH₂ or NH₂ groups, or (iv) the simultaneous determination of additional coupling constants from the analysis of the same cross-peak, being the maximum interest the sign-sensitive determination of geminal ²J(HH) values.

The measurement of ${}^{1}J(CH)$ from the detected dimension is relatively easy and high levels of digital resolution are readily available. For instance, the CLIP-HSQC experiment prove to be an efficient tool to determine the ${}^{1}J(CH)$ value from the resulting clean in-phase doublets [4]. However, strong J(HH) coupling effects can

* Corresponding author. E-mail address: teodor.parella@uab.cat (T. Parella). generate a high degree of asymmetry between the high- and low-field multiplet lines in ω_2 -coupled HSQC spectra, which can preclude reliable determination of ¹J(CH) coupling constants values. In addition, broad signals and/or the large contributions of RDCs can generate poorly defined multiplets that make difficult accurate measurements. These drawbacks have already been described, particularly for CH spin systems in carbohydrates or on the typical strong geminal interaction found in diastereotopic CH₂ spin systems, and some practical solutions have been proposed [5-9]. To avoid such inconveniences, the measurement of ¹J(CH) along the ω_1 dimension have been advisable [9,10] although this requires the need for a large number of t_1 increments, and therefore longer acquisition times. The successful use of non-linear uniform sampling, I scaling factors or spectral folding can speed up data acquisition and/or increase the digital resolution in the ω_1 dimension [10].

The accurate measurement of ¹J(CH) for individual protons in diastereotopic CH_AH_B (or NH_AH_B) groups is one of the most challenging tasks in this field. Several methods have been proposed that measure them from the ω_1 or ω_2 dimension, but they all present some drawback that can prevent their general use [11–25]. For instance, the passive ¹J(C-H_B) value can be separately measured into the active H_A cross-peak, and vice versa, along the ω_1 dimension of a J-resolved HMQC experiment [11]. In addition, the large doublet is further split by the ²J(H_AH_B) coupling yielding a double-doublet. The disadvantage is that additional experiments can

be needed to measure ¹I(CH) for CH or CH₃ spin systems. ¹³C-edited versions of the 2D ¹H J-resolved experiment have been proposed to resolve enantiomeric derivatives dissolved in anisotropic media by visualizing their different ¹I(CH) splitting sizes along the indirect dimension [12,13]. Other related J-resolved HSQC experiments have been also described but they can require time-consuming 3D data acquisition [14] or the collection of multiple 2D J-modulated data [15,16]. An important group of NMR experiments are those based on spin-state selection specifically designed for methylene groups [8,17–25]. Some reported examples should be the P.E.HSQC [8] SPITZE [17] or CH₂-TROSY [19,20] experiments that yield simplified coupling patterns, and where the sign and the magnitude of the geminal ²J(HH) can be additionally extracted. In all these cases, the central lines of the ω_1 -multiplet corresponding to a CH₂ group are not observed, and therefore only the sum of the two ¹ (CH) can be determined from the indirect dimension.

In the present study, a new 2D ω_1 -coupled inverse INEPT experiment (referred to as ω_1 -iINEPT) is proposed for the observation of the missing central lines in diastereotopic CH₂ cross-peaks. The resulting cross-peak present a characteristic E.COSY multiplet pattern that facilitates the straightforward measurement of both individual ${}^{1}J(CH_{A})$ and ${}^{1}J(CH_{B})$ values, as well as the sign and magnitude of the geminal ²J(HH) coupling. The method starts exclusively from ¹³C Boltzmann polarization, it is driven with broadband ¹³C decoupling during ¹H acquisition and, very importantly, also works for CH and CH₃ multiplicities. The experiment is easily adapted for a J-resolved presentation (referred to as ω_1 iINEPT-J) which allows obtain higher levels of resolution within the same experimental time by the use of a reduced spectral width in the indirect dimension [11–13,26,27]. The success of the method is illustrated for several samples and particular cases and as well as for the measurement of small residual coupling constants in small molecules dissolved in a weakly aligned media.

2. Results and discussion

The idea to develop the ω_1 -iINEPT experiment was born from the recent P.E.HSQMBC experiment, which was devised to measure three different ¹I(CH), ²I(HH) and a ^{*n*}I(CH) coupling constants from a single 2D cross-peak [28]. Other related works that have inspired us were the P.E.HSQC [8] and the BIRD-HSQC [9] experiments, this latter being further refined and evaluated by Thiele and Bermel (see Fig. 1c in Ref. [10]). The basic pulse scheme of the reference ω_1 -coupled HSQC (ω_1 -HSQC) experiment uses the traditional ¹H Boltzmann polarization as a starting point (Fig. 1A). In the following, we consider an isolated diastereotopic CH_AH_B spin system defined with three different ${}^{1}J(CH_{A})$, ${}^{1}J(CH_{B})$ and ${}^{2}J(H_{A}H_{B})$ coupling constants. The sequence starts with an initial 90° (¹³C)-gradient element to remove any contribution coming from the ¹³C Boltzmann polarization. After the ¹H-to-¹³C INEPT transfer, anti-phase 13 C magnetization is present as a mixture of $2H_{Az}C_y + 2H_{Bz}C_y$, which evolve under the effects of ${}^{1}J(CH)$ and $\delta({}^{13}C)$ in a sequential mode, by using separated and synchronously incremented time periods. Thus, the magnetization evolves first under the effect of a BIRD^{d,X} element [29,30] flanked by a variable [-scaled t_1 evolution period (defined by a scaling factor k) to allow the exclusive evolution of ¹I(CH) whereas ¹³C chemical shift and long-range CH contributions are refocused, and then ¹³C chemical shift can evolve from an optional t_1 evolution period as usual. In the subsequent analysis, the scaling factor, which is set arbitrarily within the limits set by relaxation and/or signal overlapping, the effects of the labeling G1 gradient and the optional 13 C chemical shift t_1 evolution period are neglected for the sake of clarity. Thus, for a single H_A spin, the

Fig. 1. Pulse sequences for the (A) ω_1 -HSQC and (B) ω_1 -iINEPT experiments. Thin and thick rectangles represent 90° and 180° rectangular pulses, respectively, applied along the *x* axis unless indicated differently. A basic two-step phase cycling is applied: $\varphi_1 = x, -x$; $\varphi_{rec} = x, -x$. A small flip angle ($\beta = 36°$) generates E.COSY crosspeaks. Inversion and refocusing 180° ¹³C pulses can be applied as adiabatic pulses and the element labeled as $\delta(^{13}C)$ evolution period is optional. The inter-pulse delays in INEPT and BIRD elements are optimized according to $\Delta = 1/(2 * {}^{1}J(CH))$. The echo/anti-echo encoding of ω_1 frequencies was achieved by changing the sign of G1 between successive t_1 increments. The ratio between G1:G2:G3 were 80:20.1:13. The duration of a pulse-field gradient (PFG) and of the subsequent recovery delay amounts to δ .

evolution during the variable t_1 BIRD-based period (k = 1) is described as:

$$2H_{Az}C_{y}[\cos(\pi^{1}J(CH_{A})t_{1})\cos(\pi^{1}J(CH_{B})t_{1}) - \sin(\pi^{1}J(CH_{A})t_{1})$$

$$\times \sin(\pi^{1}J(CH_{B})t_{1})]$$
(1)

Applying the trigonometric relationship $\cos A \cos B - \sin A \sin B = \cos (A + B)$, we obtain

$$2H_{Az}C_{y}\cos(\pi^{1}J(CH_{A}+{}^{1}J(CH_{B}))t_{1})$$
(2)

meaning that only the outer lines of the theoretical triplet or double-doublet coupling pattern of the methylene proton cross-peak would be observed and, therefore, only the sum of the both couplings (${}^{1}J(CH_{A} + {}^{1}J(CH_{B}))$ will be observed as an in-phase doublet along the indirect dimension (Fig. 2A) [15]. This dependence with respect to the cosine function makes that multiplet patterns with relative intensities of 1:1 for CH, 1:0:1 for CH₂, and 3:1:1:3 for CH₃ will be displayed along the ω_1 dimension [8,34]. A key feature introduced in the last refocusing INEPT block is the small-flip 1 H pulse angle ($\beta = 36^{\circ}$) which generates simplified E.COSY multiplet patterns for non-equivalent protons in CH₂ and CH₃ spin systems (Fig. 2B) [8,31–33].

To improve the appearance and usefulness of cross-peaks obtained from ω_1 -iINEPT experiments, we propose to start the experiment with the initial ¹³C Boltzmann polarization instead of the INEPT-based ¹H Boltzmann polarization because this leads to interesting changes in the central lines of methylene cross-peaks, as known for the analogous old ¹³C-detected heteronuclear J-resolved 2D experiment [35]. The initial 90° ¹³C pulse, applied after an

Fig. 2. Schematic representation of the 2D multiplet pattern of each individual H_A and H_B proton belonging to a methylene CH_AH_B group. (A and B) ¹H-Boltzmann polarization driven (ω_1 -HSQC) experiments using $\beta = 90^\circ$ and 36 \circ , respectively, and (C and D) ¹³C-Boltzmann polarization driven experiments (ω_1 -iINEPT) using $\beta = 90^\circ$ and 36 \circ , respectively. In (D), the magnitude and the sign of all involved couplings (defined as ²J(H_AH_B) and assuming ¹J(CH_A) < ¹J(CH_B)) can be readily extracted. Open and dotted circles represent peaks with opposite phase.

heteronuclear NOE enhanced pre-scan period by means of a ¹H WALTZ-16 pulse train saturation, generates in-phase $-C_y$ magnetization (Fig. 1B) which evolves under the effect of ¹J(CH) during the variable t_1 BIRD-based period:

$$-2H_{Az}C_{x}[\sin(\pi^{1}J(CH_{A})t_{1})\cos(\pi^{1}J(CH_{B})t_{1})]$$

-2H_{Bz}C_x[cos(\pi^{1}J(CH_{A})t_{1})sin(\pi^{1}J(CH_{B})t_{1})] (3)

The result is a pure absorptive 2D ω_1 -iINEPT spectra displaying double-doublet coupling patterns along the ω_1 dimension for each individual H_A or H_B cross-peaks, that initially would consist of eight different components as shown in Fig. 2C. Analyzing only the H_A spin, it will show an anti-phase doublet pattern with respect to ¹J(CH_A) (sine modulated) and an additional in-phase doublet pattern with respect to ${}^{1}J(CH_{B})$ (cosine modulated) along the ω_1 dimension. As discussed before, the effect to apply a small flip angle ($\beta = 36^{\circ}$) will generate a simplified four-component cross-peak with a characteristic E.COSY multiplet pattern due to the mutual 2 J(H_AH_B) (Fig. 2D), which facilites both the multiplet interpretation and analysis (see Fig. S1; supporting information). Thus, the active ¹J(CH_A) coupling is directly extracted from the anti-phase 1:-1pattern along the same column in ω_1 , whereas the passive 1 I(CH_B) coupling can be also extracted directly by measuring the in-phase components in each part of the E.COSY pattern. Otherwhise, the sign and the magnitude of ²J(HH) is easily extracted from the frequency separation between tilted peaks along the w2 dimension. Fig. 2 summarizes the expected cross-peak pattern for a single diastereotopic CH_AH_B proton using the different $ω_1$ -HSQC and $ω_1$ -iINEPT approaches with $β = 90^\circ$ and 36°. For CH groups, a doublet with relative 1:-1 intensities is obtained whereas a 1:1:-1:-1 coupling pattern will be displayed for a CH₃ group.

As a first example, Fig. 3A and B shows the equivalent ω_1 -HSQC and ω_1 -iINEPT correlation spectra, respectively, of strychnine (**1** in Scheme 1) acquired with the pulse schemes of Fig. 1, under the same experimental conditions and using a scaling factor of k = 8. The general coupling pattern for individual CH and CH₂ groups are marked with highlighted boxes. CH cross-peaks present the same doublet structure in both approaches. On the other hand, whereas the central lines for each individual CH₂ cross-peak are absent in the ω_1 -HSQC spectrum, they are clearly distinguished in the ω_1 -iINEPT version. A close inspection of the multiplet patterns for CH₂ cross-peaks in both spectra reveals the simplified E.COSY multiplet structure as described in other related experiments [8,19]. Also note the different in-phase vs anti-phase pattern behavior along the indirect dimension, although this is not relevant for the measurement. In cases where chemical shift assignment is already known and/or signal overlapping is not severe, the proposed method can be recorded in a I-resolved mode by simple omission of the ¹³C chemical shift evolution period $(t_{1/2})$ $-180^{\circ}(^{1}\text{H}) - t_{1/2}$). In this way the spectral width in the indirect dimension could be reduced by a factor of about 40, from 20.000 Hz (160 ppm at 500 MHz) to 500 Hz, and therefore the spectral resolution in ω_1 should be improved by a similar factor if all other experimental conditions remain the same. Fig. 3C and D shows the equivalent ω_1 -HSQC-J and ω_1 -iINEPT-J spectra, respectively, acquired with the same number of t_1 increments and using an scaling factor of k = 1. It can be observed that the absence of ¹³C chemical shift signal dispersion does not introduce a serious problem on severe signal overlapping in a small molecule like 1, where all cross-peaks can be succesfully analyzed. All the discussion and conclusions described in Ref. [10] about the application of non-linear sampling to accelerate data acquisition and/ or to increase digital resolution in the indirect dimension could

Fig. 3. 2D ¹H–¹³C spectra of **1** acquired with the pulse sequences of Fig. 1. (A) ω_1 –HSQC and (C) ω_1 -HSQC-J spectra were obtained starting from ¹H Boltzmann magnetization, and (B) ω_1 -iINEPT and (D) ω_1 -iINEPT-J spectra were achieved starting from ¹³C Boltzmann magnetization. (A) and (B) are heteronuclear correlation maps (acquired with an scaling factor of *k* = 8) whereas (C) and (D) are the corresponding J-resolved versions (scaling factor *k* = 1 and omission of the ¹³C chemical shift *t*₁ evolution period). All spectra were acquired and processed under the same experimental conditions. 2 scans were collected for each one of the 256 *t*₁ increments using a pre-scan delay of 3 s. Squared boxes mark specific CH and diastereotopic CH₂ cross-peak as examples in each spectrum.

be extrapolated here for the proposed methods. Further increase of resolution by a factor of 3 can be additionally achieved by allowing signal folding in the indirect dimension (see Fig. S2 in the supporting information for an example provided using a reduced spectral width of 180 Hz).

Fig. 4 shows an expanded area of the 2D ω_1 -iINEPT-J spectrum, where the clean tilt, the straightforward analysis and the excellent resolution of the resulting peak patterns can be quickly observed. Note the perfect equivalence between the cross peaks of diastereotopic protons (for instance H-18a vs H-18b or H-11a vs H-11b) which permit the easy and direct measurement of the same three different involved couplings $({}^{1}J(CH_{A}) \text{ and } {}^{1}J(CH_{B})$ as well as the geminal ²J(HH)) from two independent cross-peaks. The comparison of the experimental J values extracted from these two different measurements evaluates the accuracy of the measurement, and also ensures the measurement of all couplings even in the case of accidental signal overlapping of one of the two diastereotopic proton prevents its analysis. For well resolved ²J(HH) values, the difference between diastereotopic ¹J(CH) values is quickly ascertained from the relative displacement between the two central lines and accurate ¹J(CH) values can be easily measured even in the case of minor differences between ¹J(CH_A) and ¹J(CH_B). For instance, whereas a small difference smaller than 2 Hz is measured for the H-15a/H-15b pair, a big difference about 14.5 Hz is found

for H-18a/H-18b. Experimental ¹J(CH) and ²J(HH) data extracted from these spectra for compound **1** are in agreement with those reported previously in other works (see Table S1 in the supporting information) [5,36–39]. Even in the case of signal overlapping, CH cross-peaks can be easily distinguished from those of CH₂ groups by their different doublet or double-doublet coupling patterns and also from the relative opposite phase of the anti-phase components for CH/CH₃ and CH₂ groups because the BIRD element acts as a multiplicity-editing element. For instance, note the clear distinction and straightforward measurement that can be performed for the three different protons resonating close to 3.1– 3.2 ppm.

When two diastereotopic protons have similar chemical shift and ¹J(CH) values, the central lines can be partially or completely cancelled, as shown for the H-17a/H-17b protons resonating at 1.9 ppm in Fig. 3D. Another special case is when the geminal ²J(HH) is near to 0 Hz, where the distinction of the four E.COSY components will depend of the different ¹J(CH) sizes. One illustrative example is the H-8a and H-8b olefinic protons belonging to the exocyclic CH₂ group in 5-methylene-2-norbornene (**2**) (Fig. 5A) which present unresolved signals in the conventional ¹H spectrum, and where the mutual ²J(H8a–H8b) coupling can not be directly measured. The well differentiated four components observed in the ω_1 -iINEPT-J spectra allow a measurement of ²J(HH) = +1.1 Hz,

Scheme 1. Molecules used in this work.

Fig. 4. Expanded area corresponding to the ω_1 -iINEPT-J spectrum of Fig. 3D, where the different multiplet patterns for a CH group and several diastereotopic CH₂ spin systems can be clearly visualized and analyzed, and all ¹J(CH) and ²J(HH) can be measured with simplicity and accuracy.

where the positive sign can be determined by comparison with the opposite E.COSY tilt presented by other diastereotopic H-6 and H-7 methylene protons, which have large negative 2 J(HH) values of -15.3 Hz and -8.1 Hz, respectively. Although there are small dif-

ferences between the two central lines, the measurement of each individual ${}^{1}J(CH)$ (155.1 vs 157.1 Hz) can be performed twice, independently from each cross-peak and with a minimal deviation of ±0.1 Hz (Table S2; supporting information).

The simplicity of the proposed ω_1 -iINEPT methods make them highly interesting for the measurement of small ¹D(CH) and ²D(HH) RDCs, by comparison the difference between experimental measurements performed in isotropic vs anisotropic conditions $(D = T_{(aniso)} - J_{(is)}))$. Compound 2 was weakly aligned in a poly(methyl methacrylate) (PMMA) gel swollen in CDCl₃ using the reversible compression/relaxation method [40], and ¹D(CH) and ²D(HH) RDCs magnitudes and signs could be easily determined for all signals (see Fig. S3C; supporting information). Fig. 5 compares some cross-peaks obtained in both isotropic and anisotropic conditions. It can be seen how the relative orientation of each diastereotopic HH pair is clearly differentiated from their ²D(HH) values: -0.2 Hz for H-8a/H-8b protons, -4.1 Hz for H-6a/H-6b protons and +3.1 Hz for H-7a/H-7b protons. A list of all measured scalar and residual dipolar coupling constants can be found in Table S2 of the supporting information.

The last example corresponds to a molecule having a more complex ¹H spectrum, progesterone (**3**), with high levels of signal overlapping in its aliphatic region. Fig. 6 shows an expanded area of the ω_1 -iINEPT spectrum, where cross-peaks for all multiplicites can be distinguished and the corresponding ¹J(CH) and ²J(HH) values conveniently measured (see Table S3 in the supporting information). For instance, note the excellent signal dispersion and multiplet editing for the five resonances fully overlapped in the 1.5– 1.65 ppm area. Accidental overlapping of multiplet components

Fig. 5. Some illustrative 2D cross-peaks extracted from the ω_1 -ilNEPT-J spectra of **2** showing the easy measurement of the experimental ¹J(CH)/¹T(CH) and ²J(HH)/²T(HH) values measured in (A–C) isotropic (CDCl₃) and (D–F) anisotropic (weakly aligned in PMMA gel swollen in CDCl₃) conditions. Similar values for the same couplings are also measured from the cross-peaks of the other diastereotopic protons (see a complete set of coupling values in Table S2 in the Supporting information).

can be overcomed by using the J-resolved version or by changing the scaling factor. The diastereotopicity in the three protons belonging to a methyl groups is not observed and they usually appear as a singlet due to their free rotation under isotropic conditions. However, in analogy with the discussion presented here for diastereotopic CH₂ spin systems, the same conclusions could be extracted from the analysis of a hypothetical non-equivalent protons in a CH₃ group [8,41]. Whereas isotropic CH₃ cross-peaks with no distinction between equivalent protons present a typical 3:1:1:3 multiplet pattern in ω_1 -HSQC experiments [34], they display a symmetrical 1:1:-1:-1 coupling pattern in the ω_1 -ilNEPT, as seen for the Me-21 in Fig. 6. A modified HSQC experiment has been

Fig. 6. Expanded area of the 2D ω_1 -ilNEPT spectrum of **3** acquired with 4 scans for each one of the 256 t_1 increments, and using a pre-scan delay of 3 s. Boxes enhance the different components corresponding to the H-6ax and H-1ax protons. In addition, the 1:1:-1:-1 multiplet corresponding to the methyl group 21 (at 2.08 ppm) is also highlighted.

reported to recover the 1:2:1 and 1:3:3:1 pattern in NH_2 and NH_3^+ groups, respectively, and spin-state selected methods to study analysis have been used to study differential relaxation of the different line multiplets of methyl cross-peaks in proteins [41].

In terms of sensitivity, the ω_1 -iINEPT experiment present a sensitivity decrease when compared to the analog ω_1 -HSQC experiment, because of the differential signal enhancement achieved by heteronuclear polarization transfer via INEPT or by heteronuclear NOE effects. In addition, the pre-scan delay must be optimized as a function to the longer ¹³C T₁ values, although that protonated carbons relax relatively fast. Our experimental data confirms such theoretical prediction and signal-to-noise enhancements by a factor of about 3 and 4 can be achieved for ω_1 -iINEPT and ω_1 -HSQC experiments, respectively, when compared with a reference non signal-enhanced ω_1 -iINEPT experiment acquired without proton saturation and a pre-scan delay of 3 s (see Fig. S4 in the supporting information). Although the proposed methodology could distinguish diastereotopic protons in NH2 groups, the large difference in sensitivity enhancement achieved by polarization transfer when compared with those obtained by direct ¹⁵N Boltzmann magnetization without NOE enhancement (a theoretical factor about 10) makes the experiment of limited practical use due to its very low sensitivity. In addition, the two central lines are likely to be quite broad for large molecules.

In summary, a general and simple NMR method to obtain a characteristic spin-state-selected multiplet pattern for diastereotopic CH_AH_B methylene systems has been described. The magnitude and the sign of the three involved coupling values (¹J(CH_A), ¹J(CH_B) and ²J(H_AH_B)) can be measured simultaneously from the analysis of a single and clean four-component E.COSY cross-peak. The method also measures ¹J(CH) for all other carbon multiplicities, and it is easily adapted for a J-resolved representation that allows the use of a more reduced spectral width in the carbon dimension, obtaining higher levels of resolution within the same experimental time. We have also shown that small ¹D(CH) and ²D(HH) RDCs can be measured for small molecules weakly aligned in anisotropic media. The proposed techniques are appropriate for routine use because require minimum set-up and afford simple data analysis and interpretation.

3. Methods and materials

The isotropic samples used in this work were 0.12 M strychnine dissolved in CDCl₃ (**1**), 0.14 M 5-methylene-2-norbornene dissolved in CDCl₃ (**2**) and 0.13 M progesterone dissolved in DMSO (**3**) (see chemical structures in Scheme 1). For the measurement of RDCs, 10 mg of **2** was aligned in a poly(methyl methacrylate) (PMMA) gel swollen in CDCl₃ using the reversible compression/ relaxation method [40]. The ²H quadrupolar splitting (Δ vQ) for the CDCl₃ signal was of 24 Hz. NMR experiments on **1** and **3** were recorded on a BRUKER DRX-500 spectrometer equipped with a 3-channel 5-mm cryoprobe incorporating a z-gradient coil. NMR experiments on **2** were carried out in a Bruker Avance 600 spectrometer equipped with a TXI HCN z-grad probe. The temperature for all measurements was set to 298 K.

In all experiments, the inter-pulse Δ (=1/(2 * ¹J(CH)) delays were set to 3.5 ms (optimized to ¹J(CH)=145 Hz). Gradient ratios for G1:G2:G3 were set to 80:20.1:13, measured as percentage of the absolute gradient strength of 53.5 G/cm. Sine bell shaped gradients of 1 ms of duration and followed by a recovery delay of 100 µs were used. ¹H saturation during the entire pre-scan delay was accomplished applying a 2.5 kHz WALTZ-16 modulated pulse train. Broadband ¹³C decoupling during acquisition was achieved applying a 8 kHz GARP modulated pulse train. All experiments were acquired and processed using the echo/anti-echo protocol where the gradient G1 was inverted for every second FID. An scaling factor k = 8 were used for the correlation experiments for all compounds. The J-resolved spectra were acquired omitting the $t_{1/2} - 180({}^{1}\text{H}) - t_{1/2}$ element in the pulse sequence of Fig. 1 and reducing the spectral width in the indirect ω_1 dimension to 500 Hz.

For spectra of Figs. 3, 2 scans were accumulated for each one of the 256 t_1 increments and the number of data points in t_2 was set to 2048. The recycle delay was set to 1 s for ω_1 -HSQC type experiments (Fig. 3A and C) and 3 s for ω_1 -iINEPT type experiments (Fig. 3B and D). Spectra 3A and 3B were acquired with an spectral window of 5000 Hz (in ω_2) and 20,000 Hz (in ω_1) giving a FID resolution of 2.4 and 9.8 Hz, respectively. Prior to Fourier-transformation of each data, zero filling to 4096 in ω_2 , 1024 in ω_1 and a $\pi/2$ -shifted sine-squared window function in both dimensions were applied. After applying zero filling the digital resolution was 1.2 and 2.4 Hz, respectively. In spectra of Figs. 3C and 3D, the spectral window in ω_1 dimension was reduced to 500 Hz giving a FID resolution of 2.4 Hz (in ω_2) and 1.9 Hz (in ω_1). After applying zero filling the digital resolution was 1.2 and 0.5 Hz, respectively.

In the ω_1 -iINEPT-I experiments recorded on **2** in isotropic and anisotropic media (Fig. 5), a recycle delay of 3 s was used, 4 scans were accumulated for each one of the 256 t_1 increments and the number of data points in t_2 was set to 2048. Both of them were acquired with an spectral window of 3600 Hz (in ω_2) and 500 Hz (in (ω_1) giving a FID resolution of 1.8 and 1.9 Hz, respectively. Prior to Fourier-transformation of each data, zero filling to 4096 in ω_2 , 1024 in ω_1 and a $\pi/2$ -shifted sine-squared window function in both dimensions were applied. After applying zero filling the digital resolution was 0.9 and 0.5 Hz, respectively. In the ω_1 -iINEPT experiment recorded on 3 (Fig. 6), a recycle delay of 3 s was used, 4 scans were recorded for each one of the 256 t_1 increments and the number of data points in t_2 was set to 2048 in all the experiments. Data were acquired with an spectral window of 2000 Hz (in ω_2) and 12,500 Hz (in ω_1) giving a FID resolution of 1.0 and 6.1 Hz, respectively. Prior to Fourier-transformation of each data, zero filling to 4096 in $\omega_2\text{, }1024$ in ω_1 and a $\pi/2\text{-shifted sine$ squared window function in both dimensions were applied. After applying zero filling the digital resolution was 0.5 and 1.5 Hz, respectively.

Acknowledgments

Financial support for this research provided by MINECO (project CTQ2012-32436) is gratefully acknowledged. Authors thanks to R.R. Gil and A. Navarro-Vázquez for a sample of PMMA gel. We also thank the Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, for allocating instrument time to this project.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jmr.2014.02.003.

References

- [1] C.M. Thiele, Residual dipolar couplings (RDCs) in organic structure determination, Eur. J. Org. Chem. (2008) 5673–5685.
- [2] G. Kummerlowe, B. Luy, Residual dipolar couplings for the configurational and conformational analysis of organic molecules, Annu. Rep. NMR Spectrosc. 68 (2009) 193–230.
- [3] G. Kummerlowe, B. Luy, Residual dipolar couplings as a tool in determining the structure of organic molecules, Trend Anal. Chem. 28 (2009) 483–493.
 [4] A. Enthart, J.C. Freudenberger, J. Furrer, H. Kessler, B. Luy, The CLIP/CLAP HSQC:
- [4] A. Enthart, J.C. Freudenberger, J. Furrer, H. Kessler, B. Luy, The CLIP/CLAP HSQC: pure absorptive spectra for the measurement of one-bond couplings, J. Magn. Reson. 192 (2008) 314–322.
- [5] C.M. Thiele, Simultaneous assignment of all diastereotopic protons in strychnine using RDCs: PELG as alignment medium for organic molecules, J. Org. Chem. 69 (2004) 7403–7413.
- [6] B.W. Yu, H. van Ingen, S. Vivekanandan, C. Rademacher, S.E. Norris, D.I. Freedberg, More accurate ¹JCH coupling measurement in the presence of ³JHH strong coupling in natural abundance, J. Magn. Reson. 215 (2012) 10–22.
- [7] B.W. Yu, H. van Ingen, D.I. Freedberg, Constant time INEPT CT-HSQC (CTi-CT-HSQC) a new NMR method to measure accurate one-bond J and RDCs with strong 1H–1H couplings in natural abundance, J. Magn. Reson. 228 (2013) 159–165.
- [8] P. Tzvetkova, S. Simova, B. Luy, P.E. HSQC: a simple experiment for the simultaneous and sign-sensitive measurement of (¹JCH + DCH) and (²JHH + DHH) couplings, J. Magn. Reson. 186 (2007) 193–200.
- [9] K. Fehér, S. Berger, K.E. Kövér, Accurate determination of small one-bond heteronuclear residual dipolar couplings by F1 coupled HSQC modified with a G-BIRD(r) module, J. Magn. Reson. 163 (2003) 340–346.
- [10] C.M. Thiele, W. Bermel, Speeding up the measurement of one-bond scalar (1J) and residual dipolar couplings (1D) by using non-uniform sampling (NUS), J. Magn. Reson. 216 (2012) 134–143.
- [11] K.E. Kövér, K. Fehér, Measurement of one-bond heteronuclear dipolar coupling contributions for amine and diastereotopic protons, J. Magn. Reson. 168 (2004) 307–313.
- [12] L. Ziani, J. Courtieu, D. Merlet, Visualisation of enantiomers via insertion of a BIRD module in X-H correlation experiments in chiral liquid crystal solvent, J. Magn. Reson. 183 (2006) 60–67.
- [13] U.R. Prabhu, S.R. Chaudhari, N. Suryaprakash, Visualization of enantiomers and determination of homo- and hetero-nuclear residual dipolar and scalar couplings: the natural abundant ¹³C edited J/D-resolved NMR techniques, Chem. Phys. Lett. (2010) 334–341.
- [14] J. Furrer, M. John, H. Kessler, B. Luy, J-spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution, J. Biomol. NMR 37 (2007) 231–243.
- [15] M. Ottiger, F. Delaglio, J.L. Marquardt, N. Tjandra, A. Bax, Measurement of Dipolar Couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination, J. Magn. Reson. 124 (1998) 365–369.
- [16] T.N. Pham, T. Liptaj, K. Bromek, D. Uhrín, Measurement of small one-bond proton-carbon residual dipolar coupling constants in partially oriented ¹³C natural abundance oligosaccharide samples. Analysis of heteronuclear ¹JCHmodulated spectra with the BIRD inversion pulse, J. Magn. Reson. 157 (2002) 200–209.
- [17] T. Carlomagno, W. Peti, C. Griesinger, A new method for the simultaneous measurement of magnitude and sign of ¹DCH and ¹DHH dipolar couplings in methylene groups, J. Biomol. NMR 17 (2000) 99–109.
- [18] P. Permi, A spin-state-selective experiment for measuring heteronuclear onebond and homonuclear two-bond couplings from an HSQC-type spectrum, J. Biomol. NMR 22 (2002) 27–35.
- [19] E. Miclet, D.C. Williams Jr., G.M. Clore, D.L. Bryce, J. Boisbouvier, A. Bax, Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic acids, J. Am. Chem. Soc. 126 (2004) 10560–10570.
- [20] G. Guichard, A. Violette, G. Chassaing, E. Miclet, Solution structure determination of oligoureas using methylene spin state selective NMR at ¹³C natural abundance, Magn. Reson. Chem. 46 (2008) 918–924.

- [21] T. Parella, M. Gairí, Simultaneous recording of spin-state-selective NMR spectra for different I_nS spin systems, J. Am. Chem. Soc. 126 (2004) 9821–9826.
- [22] P. Permi, Two simple NMR experiments for measuring dipolar couplings in asparagine and glutamine side chains, J. Magn. Reson. 153 (2001) 267–272.
- [23] E. Miclet, E. O'Neil-Cabello, E.P. Nikonowicz, D. Live, A. Bax, ¹H-¹H dipolar couplings provide a unique probe of RNA backbone structure, J. Am. Chem. Soc. 125 (2003) 15740–15741.
- [24] P. Nolis, J.F. Espinosa, T. Parella, Optimum spin-state-selection for all multiplicities in the acquisition dimension of the HSQC experiment, J. Magn. Reson. 180 (2006) 39–50.
- [25] P. Nolis, T. Parella, Solution-state NMR experiments based on heteronuclear cross-polarization, Curr. Anal. Chem. 3 (2007) 47–68.
- [26] M. Liu, R.D. Farrant, J.M. Gillam, J.K. Nicholson, J.C. Lindon, Selective inversedetected long-range heteronuclear *J*-resolved NMR spectroscopy and its application to the measurement of ³JCH, J. Magn. Reson. B 109 (1995) 275– 283.
- [27] K. Kobzar, H. Kessler, B. Luy, Stretched gelatin gels as chiral alignment media for the discrimination of enantiomers by NMR spectroscopy, Angew. Chem. Int. Ed. 44 (2005) 3145–3147.
- [28] J. Saurí, L. Castañar, P. Nolis, A. Virgili, T. Parella, P.E. HSQMBC: simultaneous measurement of proton-proton and proton-carbon coupling constants, J. Magn. Reson. 224 (2012) 101–106.
- [29] J.R. Garbow, D.P. Weitekamp, A. Pines, Bilinear rotation decoupling of homonuclear scalar interactions, Chem. Phys. Lett. 93 (1982) 504–509.
- [30] D. Uhrín, T. Liptaj, K.E. Kövér, Modified BIRD pulses and design of heteronuclear pulse sequences, J. Magn. Reson. A 101 (1993) 41–46.
- [31] C. Griesinger, O.W. Sørensen, R.R. Ernst, Two-dimensional correlation of connected NMR transitions, J. Am. Chem. Soc. 107 (1985) 6394–6396.

- [32] L. Mueller, P.E-COSY, a simple alternative to E.COSY, J. Magn. Reson. 72 (1986) 191–196.
- [33] C. Griesinger, O.W. Sørensen, R.R. Ernst, Practical aspects of the E.COSY technique. Measurement of scalar spin-spin coupling constants in peptides, J. Magn. Reson. 75 (1987) 474–492.
- [34] Y. Takayama, D. Sahu, J. Iwahara, Observing in-phase single-quantum ¹⁵N multiplets for NH₂/NH₃⁺ groups with two-dimensional heteronuclear correlation spectroscopy, J. Magn. Reson. 194 (2008) 313–316.
- [35] W.P. Aue, L. Muller, R.R. Ernst, Phase separation in two-dimensional spectroscopy, J. Magn. Reson. 28 (1977) 29–39.
- [36] B. Luy, K. Kobzar, H. Kessler, An easy and scalable method for the partial alignment of organic molecules for measuring residual dipolar couplings, Angew. Chem. Int. Ed. 43 (2004) 1092–1094.
- [37] A. Bagno, F. Rastrelli, G. Saielli, Toward the complete prediction of the ¹H and ¹³C NMR spectra of complex organic molecules by DFT methods: application to natural substances, Chem. Eur. J. 12 (2006) 5514–5525.
- [38] M. Misiak, W. Koźmiński, Determination of heteronuclear coupling constants from 3D HSQC-TOCSY experiment with optimized random sampling of evolution time space, Magn. Reson. Chem. 47 (2009) 205–209.
- [39] J.C. Cobas, V. Constantino-Castillo, M. Martín-Pastor, F. del Río Portilla, A twostage approach to automatic determination of 1H NMR coupling constants, Magn. Reson. Chem. 43 (2005) 843–848.
- [40] C. Gayathri, N.V. Tsarevsky, R.R. Gil, RDCs analysis of small molecules made easy: fast and tuneable alignment by reversible compression/relaxation of reusable PMMA gels, Chem. Eur. J. 16 (2010) 3622–3626.
- [41] G. Kontaxis, A. Bax, Multiplet component separation for measurement of methyl ¹³C-¹H dipolar couplings in weakly aligned proteins, J. Biomol. NMR 20 (2001) 77–82.