Unilateral Cholesteatoma in the First Millennium BC

*Núria Armentano, *Assumpció Malgosa, †Brígida Martínez, ‡Pedro Abelló, §Manuel de Juan Delago, *Gemma Prats-Muñoz, and *†Albert Isidro

*Unitat d'Antropologia biològica, Dept. Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona (UAB); †Hospital Universitari Sagrat Cor de Barcelona; ‡Universitat Autònoma de Barcelona (UAB); and §Neuroradiologia. Hospital de Sant Pau, UAB, Barcelona, Spain

Objective: To analyze the bone lesions of the ear region from a late Bronze Age individual to establish the most probable diagnosis. **Background:** There has been evidence of diseases of the ear region since way back in history, but few human remains have been recognized. The case presented here corresponds to an ear lesion from a prehistoric skeleton found in the archeological site of *La Cova des Pas* (900–800 cal yr BC), located on Minorca island, in the western Mediterranean.

Methods: Macroscopic and radiologic (iCT) analysis had been performed.

Results: The remains belong to an elderly female subject who had a large cavity on the tympanic cavity as a result of the complete erosion of the outer wall of the attic and a large increase in the diameter of the outer ear canal. The cavity extends posterior to the mastoid.

Conclusion: The diagnosis suggests a probable cholesteatoma, being one of the oldest cases in Europe. **Key Words:** Bronze Age—Computed tomographic scan—Ear region disease—Minorca—Paleopathology.

Otol Neurotol 35:561-564, 2014.

Diseases of the ear region have been known since the Egyptians and the Assyrians (1). The Ebers Papyrus (764/770) and the Berlin Papyrus (70/71 and 200/203) dating from the New Kingdom, XIX dynasty, both described ear affections and their treatment (2). There is no high prevalence of aural region damage in archeological remains, and there are many difficulties with interpreting past ear diseases. Taphonomic changes to old bones due to external factors such as the chemical composition of the soil, changes in temperature, humidity, direct sunlight, or plant and animal modifications lead to the misdiagnosis of some of these lesions.

Otitis media (OM) and its complications, such as mastoiditis, chronic otitis, and cholesteatoma, may have had a major impact on ancient populations. The morphologic study of this region is often difficult, but there have been several previous case studies of ear diseases that have mainly focused on the radiologic examination of the mastoid. The

temporal bone is a complex 3-dimensional bone that makes it difficult to identify fine structures, whereas the absence of the ossicular chain is frequent given its fragility.

The oldest case of disease affecting the temporal bone is that of the Broken Hill skull dated between 300,000 and 125,000 years old discovered by A.S. Woodward in 1921 in the former Southern Rhodesia. Yearsley (3) was the first to describe the temporal pathology, and he thought that the presence of serious dental caries with alveolar abscesses plus a pneumatic anatomic variation of the mastoid and the loss of posterior wall of the attic and posterior tympanic spine could be diagnosed as Bezold's mastoiditis. Later, this was questioned because of a lack of antral involvement in this specimen (4). More recent and accurate diagnoses have been made of this case using medical endoscopes and radiographic images. For this lesion, the authors proposed, speculatively, a differential diagnosis such as an intradiploic dermoid or eosinophilic granuloma (5).

The case we present was found in the archeological site of *La Cova des Pas*, on Minorca (Balearic Islands) excavated from 2005 to 2006 (6). It can be considered an exceptional archeological discovery in the prehistoric Balearic and western Mediterranean region as it presents superb preservation and conservation of archeological and anthropologic records. The cave was of natural origin and was used as a necropolis by a pre-Talayotic culture community, in the late Bronze Age (900–800 cal yr BC) (7). Located in an inaccessible location of the wall of a ravine, had been

Address correspondence and reprint requests to Albert Isidro, M.D., Capio, Hospital Universitari Sagrat Cor de Barcelona i Unitat d'Antropologia biològica, Dept. Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra-Cerdanyola del Vallès. Spain; E-mail: assumpcio.malgosa@uab.cat, aisidro.cot@gmail.com

This work was partially funded by the Spanish MEC: CGL2008-00800 and Generalitat de Catalunya SGR-2009-566.

The authors disclose no conflicts of interest.

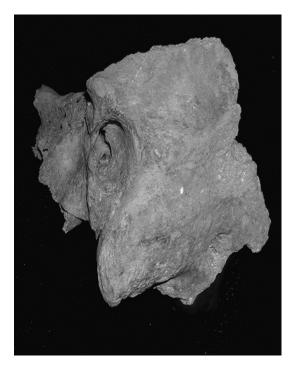


FIG. 1. IE. Left temporal bone with normal characteristics.

used to bury a minimum of 66 persons, representing both sexes and all age groups. During the funeral rite, the body was left on the cave floor and kept in a forced flexed position by the use of plant fiber ropes and shrouds. The specific environmental conditions of the cave also allowed the preservation of mummified soft tissue and hair, as well as remnants of wood and ropes (8,9).

MATERIALS AND METHODS

Individual Description

The skeleton of the individual CP- $\overline{15}$ (6) was partially preserved. Sex and age were determined according to skeletal morphologic traits that suggest an older woman of 60 to 70 years of age (10–13).

She presents several diseases and bone abnormalities. A small trauma was observed on the frontal bone, but its remodeled aspect indicates that the injury occurred long before dying (14). The parietal bones show a significant bilateral thinning that is common in older women (15) and almost complete resorption of all observable alveoli of the mandible. Degenerative signs associated with osteoarthritis of the Atlas vertebra have also been observed. However, the most important injury affected the right temporal bone. The analysis had been performed in Phillips Brilliance iCT, cutting every 0.2 mm.

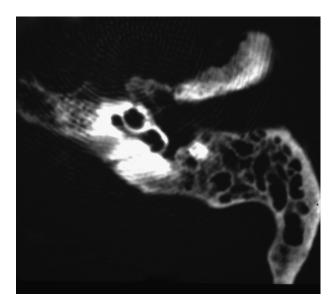
RESULTS

Macroscopic Description

The left temporal bone (Fig. 1) of the individual shows a well-preserved external auditory canal. The right temporal bone (Fig. 2) presents a broad widening of the external canal, a complete destruction of the posterior canal wall,

and erosion on an important part of the mastoid. The rest of the mastoid process shows sclerosal characteristics, without aerial cells that were possibly related with a chronic inflammatory process. The inspection under ×40 magnification using a low-power microscope shows the presence of several aligned spicular structures and low crests inside, which are residues of the edges of former connecting openings between the cells and the osseous walls between them. Also, undercut edges can be seen along the cavity because of plate-like proliferations that demonstrate the common interaction between bone proliferation and bone resorption in chronic mastoiditis. Furthermore, a few bony layers and a slight periostitis are present around the external auditory meatus. Periostitis is a nonspecific response to any aggressive disease. In this case, the presence of periostits around the external auditory meatus shows that inflammation is not acute, as occurs in cholesteatomas. It is therefore a reactive lesion coming from the cholesteatoma. Therefore, in this case, the resorption could be induced by a superinfected cholesteatoma.

Radiologic Description


The left ear TC shows normal structures (Figs. 3 and 4). The right ear (Figs. 5 and 6) shows a big cavity formed by the expansion of the middle ear, destruction of the attic wall, and an important increase in the external ear canal diameters. Part of the mastoid is eroded and the rest is completely sclerosed. *Tegmen tympani* is absolutely normal. The mastoid *antrum* is also normal, and the walls are not eroded, conserving little bone spicules similar to those noted in the normal ear. The structures of the inner ear, the inner wall of the tympanic cavity, and the oval and round foramina are normal. Inner ear canal is also normal.

This description is consistent with the characteristics of a cholesteatoma, which widely affected the middle ear (destruction of the wall of the attic and mastoid sclerosis)

FIG. 2. RE. Pathologic right temporal bone: macroscopically, great erosion affecting the external ear canal and tympanic cavity can be observed.

Otology & Neurotology, Vol. 35, No. 3, 2014

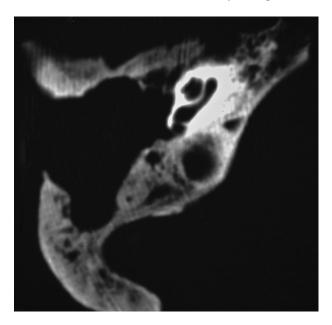
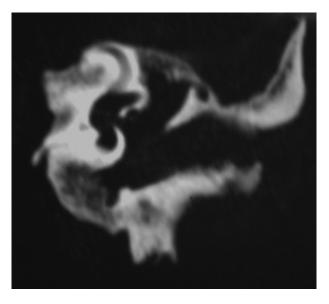


FIG. 3. IE. Axial CT of left temporal bone. Normal pneumatization of mastoid process and correct sizes of ear canal and tympanic cavity can be observed.


and was laterally externalized, destroying the superior and posterior walls of the ear canal. However, no signs of complications were found in the inner ear or in the endocraneal cavity. Therefore, after the macroscopic and radiologic analysis, the most accurate diagnosis is cholesteatoma.

DISCUSSION

Taking into account the age of the individual and the lesion patterns, the most probable diagnosis is an acquired unilateral cholesteatoma. There are very few published

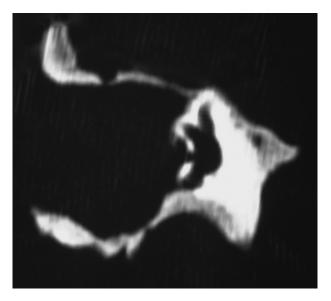

FIG. 4. IE. Coronal CT of the normal left ear where the wall of the attic is well differentiated (1).

FIG. 5. RE. Axial CT scan of the right ear: (1) great erosion causing a large cavity formed by the tympanic cavity and part of the mastoid process, (2) disappearance of mastoid pneumatization, and (3) good preservation of the structures of the inner ear.

cases of this kind of lesion originating in prehistoric times. However, attribution of these ancient lesions to cholesteatoma is not always confident as are based exclusively in macroscopic exam.

The oldest case of probable cholesteatoma belongs to a Late Stone Age skull from Boskof (Transvaal / RSA) discovered in 1913 and described by Singer (16). In Ancient Egypt the presence of otologic diseases are not uncommon. Both in Predynastic and Protodynastic times, some examples of lesions diagnosed as possible cholesteatomas are

FIG. 6. RE. Coronal cut of the right ear. The image shows the following: (1) destruction of the attic external wall and erosion of the tympanic cavity roof, (2) tegmen tympani preserved, (3) normal inner ear structures, and (4) major extension of the tympanic cavity and the CAE.

Otology & Neurotology, Vol. 35, No. 3, 2014

found in literature (17), some of them involving temporomandibular joints. From this period, a feasible case of cholesteatoma was found in a Predynastic skull from Nubia, now stored at the British Museum, the right temporal bone of which shows a considerable destruction of the mastoid (18). The cranium shows no sign of healing, and the individual probably died from the extensive inflammation in the ear region. Otherwise, it resembles the early dynastic skull from the Tarkhan discovered by Fitzsimons in Nubia that shows a well-defined breach in the meatal wall, possibly because of a mastoid abscess (19). Thus, the most impressive find of this piece is the presence of a fairly well-healed trephine hole at some distance on the inferior parietal bone that could be an ancient curative procedure. In America and in Asia, there have been few studies of the prevalence of mastoid infection in prehistoric times (20,21).

In Europe, few cases have been described of ear/mastoid disease in Prehistoric and Classical times. The oldest could be a Neolithic left mastoidal fistula belonging to a 20-year-old female temporal bone from Nerja (Malaga, Spain) (22). From the beginnings of the Bronze Age (Catalan Megalithic Culture), a 12-year-old child from the Dolmen at the *Cementiri dels Moros* (Torrent, Girona / Spain) shows a hole in the postero-superior wall of the left temporal bone that affects the sigmoid sinus in addition to a pneumatic mastoid process (15). However, both cases of cholesteatoma are doubtful. Also dating from the Bronze Age is the Irish skull from Knockast (23) with a lesion involving the temporomandibular joint.

More recent specimens described to experience cholesteatoma come from the Punic–Roman Necropolis of Cadiz (24). A possible case of cholesteatoma was found in a computer-assisted tomographic study of 33 temporal bones; the case is that of a female subject dating from the 4th century AD. Two other possible cases of cholesteatoma were described from Sedgeford and Red Castle–Thetford/Norfolk burials, both dating from the Late Saxon times (25) and another from Quarrington II (Lincolnshire) dating back to the 5th to 6th centuries AD (26). Finally, cholesteatomas were mentioned in four Merovingian skulls dating from the 5th to 7th century (27) in Germany.

After this revision of ancient cases of diagnosed cholesteatomas from prehistoric and historic times, the case of *La Cova des Pas* could be one of the most ancient cases of cholesteatoma in Europe ever to be published, if not the most ancient case. Also, it could be one of the most true as demonstrated by the morphologic and radiologic characteristics of these very well conserved ancient bones.

Acknowledgments: The authors thank the team and sponsors (Consell Insular de Menorca and Caixa de Catalunya) of the excavation of *La Cova des Pas*.

REFERENCES

- Thompson RC. Assyrian prescriptions for diseases of the ear. J R Asiat Soc GB Irel 1931;1:1–25.
- Nunn JF. Medicine in Ancient Egypt. London, UK: British Museum Press, 1966.

- Yearsley M. The pathology of the left temporal bone of the Rhodesian skull. In: Pycraft, WP, eds. *Rhodesian man and Associated Remains*. London, UK: British Museum (Natural History), 1928;59–63.
- McKenzie W, Brothwell D. Disease in the ear region. In: Brothwell D, Sandison AT, eds. *Diseases in Antiquity*. London, UK: Charles C Thomas Publisher, 1967:464–73.
- Montgomery PQ, Williams HOL, Reading N, Stringer CB. An assessment of the temporal bone lesions of the Broken Hill cranium. *J Archaeol Sci* 1994;21:331–37.
- Armentano N, Jordana X, Fadrique T, Galtés I, Malgosa A. La Cova des Pas (Ferreries, Menorca). In: Nieto JL, Obón JA, Baena S, eds. Genes, ambiente y enfermedades en poblaciones humanas. Zaragoza, Spain: Prensas Universitarias de Zaragoza, 2008:61–72.
- van Strydonck M, Boudin M, Guerrero Ayuso VM, Calvo M, Fullola JM, Petit MA. The necessity of sample quality assessment in 14C AMS dating: The case of Cova des Pas (Menorca – Spain). Nucl Instrum Methods Phys Res B 2010;268:990–4.
- 8. Cabanes D, Albert MR. Microarchaeology of a collective burial: Cova des Pas (Minorca). *J Archaeol Sci* 2011;38:1119–26.
- Simón M, González-Ruiz M, Prats-Muñoz F, Malgosa A. Comparison of two DNA extraction methods in a Spanish Bronze Age burial cave. *Quat Int* 2012;247:358–62.
- Ferembach D, Schwidetzky I, Stloukal M. Recommendations for age and sex diagnoses of skeletons. J Hum Evol 1980;9:517–49.
- Krogman WM, Iscan YM. The Human Skeleton in Forensic Medicine. Springfield, New Zealand: ChC Thomas Ed., 1986.
- Brothwell DR. Digging Up Bones. London, UK: British Museum, 1963
- Alemán I, Botella MC, Ruiz L. Determinación del sexo en el esqueleto posteraneal. Estudio de una población mediterránea actual. Arch Esp Morfol 1997;2:2–17.
- Etxeberría F. Patología traumática. In: Isidro A, Malgosa A, eds. Paleopatología, la enfermedad no escrita. Barcelona, Spain: Ed. Masson, 2003;195–207.
- Campillo D. Paleopatologia. Els primers vestigis de la malaltia. Barcelona, Spain: Fundació Uriach 1838, 1994. vol. 2.
- 16. Singer R. Pathology in the temporal bone of the Boskop skull. *S A Arch Bull* 1961:16:103.
- Derry DE. Anatomical report. Archaeol Survey Nubia Bull 1909; 3:29–52.
- Elliot-Smith G, Dawson WR. Egyptian Mummies. London, UK: George Allen and Unwin Ltd, 1924.
- Oakley KP, Brooke W, Akester AR, Brothwell D. Contribution on trepanning or trephination in ancient and modern times. *Man* 1959; 60:122.
- Titche LL, Coulthard SW, Wachter RD, Thies AC, Harries LL. Prevalence of mastoid infection in prehistoric Arizona Indians. Am J Phys Anthrop 1981;56:269–73.
- 21. Rathbun TA, Mallin R. Middle ear disease in a prehistoric Iranian population. *Bull NY Acad Med* 1977;53:901–5.
- García-Sánchez M. El enterramiento epipaleolítico de la Cueva de Nerja (Málaga). Estudio preliminar. Antropología y Paleoecología Humana 1986;4:3–13.
- Hencken HO, Movius H. The cemetery-cairn of Knockast. Proc Roy Irish Acad. Section C 1932;3441:232–84.
- 24. Macías M, Villanueva A, Mateo A, Ruzaperez-Barquero M. Enfermedades otológicas halladas en una muestra de población Púnica y Romana de Cádiz. In: Sánchez Sánchez JA, ed. Sistematización metodológica en Paleopatología. Actas del V Congreso Nacional de Paleopatología. 2001:103–12. Available at: http://pendientedemigracion.ucm.es/info/aep/boletin/actas/14.pdf. Accessed March 11, 2013.
- Wells C. Three cases of aural pathology of Anglo-Saxon date. J Laryng Otol 1962;76:931–3.
- May S, Holst M. Paleo-otology of cholesteatoma. Int J Osteoarchaeol 2006;16:1–15.
- Schultz M. Disease of the ear region in early and prehistoric populations. J Hum Evol 1979;8(6):575–80.