Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Diversity of pyrrolizidine alkaloids in native and invasive *Senecio pterophorus* (Asteraceae): implications for toxicity. **Phytochemistry** 108: 137-146 DOI 10.1016/j.phytochem.2014.06.006

Supplementary information

Table S1

¹H (600 MHz) and ¹³C NMR (150 MHz) data (δ in ppm, J in Hz) of rosmarinine in CDCl₃

ld	¹ H		¹³ C
	δ _Η	multiplicity ¹	δc
1	2.59	m, br	48.60
2	4.29	dd, $J_{2,1} = 8.21$, $J_{2,3b} = 8.20$	68.93
3a	3.26	m, br	60.36
3b	3.01	dd, $J_{3b,3a} = 11.24$, $J_{3b,2} = 8,21$	60.36
4	-	-	
5a	2.69	m, br	53.28
5b	3.49	m, br	53.28
6a	2.16	m, br	34.12
6b	2.32	dd, $J_{6b,6a}$ =13.68, $J_{6b,x}$ = 5.80	34.12
7	5.10	br	74.73
8	3.81	m, br	69.39
9a	4.92	dd, $J_{9a,9b} = 12.67$, $J_{9a,1} = 5.00$	61.40
9b	4.13	dbr, $J_{9b,9a} = 12.67$	61.40
10	-		
11	-		179.96
12	-		76.86
13	1.79	m	37.72
14a	2.26	dbr, $J_{14a,14b} = 13.94$	39.27
14b	1.95	dd, $J_{14b,14a} = 13.94$, $J_{14b,13} = 9.62$	39.27
15	-		131.27
16	-		166.33
17	-		
18	1.34	d, $J_{18,13} = 6.5$	25.69
19	0.97	d, $J_{19,13} = 6.78$	11.43
20	5.81	q, $J_{20,21} = 7.04$	134.84
21	1.85	d, $J_{21,20} = 7.04$	14.81

¹Multiplicity ${}^{3/4}J_{H,H}$: s (singlet), d (doublet), dd (double doublet), q (quartet), m (multiplet), br (broad signal)

Fig. S1 Rosmarinine chemical structure and stereochemistry determined by NMR spectroscopy: A) ¹H NMR spectrum with the assignment of signals corresponding to rosmarinine, B) 1D selective ¹H NOE spectrum when proton 7 signal is saturated, and C) 1D selective ¹H NOE spectrum when proton 1 signal is saturated. Spectra acquired at 298.0 K and at a magnetic field of 600 MHz.

Fig. S2 Typical mass fragmentation of A) senecionine and B) senecionine N-oxide as representatives of retronecine PAs; C) platyphilline and D) platyphilline N-oxide as representatives of platynecine PAs; E) rosmarinine and F) rosmarinine N-oxide as representatives of rosmarinecine PAs; G) senkirkine as representative of otonecine PAs; H) 1,2-dihydrosenkirkine as representative of dihydrootonecine PAs; I) 2-hydroxy-1,2-senkirkine and J) 1,2-dihydro senkirkine, 2-C₅H₇O-ester as representatives of hydroxydihydrootonecine PAs.

Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146 DOI 10.1016/j.phytochem.2014.06.006

Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146 DOI 10.1016/j.phytochem.2014.06.006

Fig. S3 Putative fragmentation pathways for A) senecionine and B) senecionine N-oxide as representatives of retronecine PAs; C) platyphilline and D) platyphilline N-oxide as representatives of platynecine PAs; E) rosmarinine and F) rosmarinine N-oxide as representatives of rosmarinecine PAs; G) senkirkine as representative of otonecine PAs; H) 1,2-dihydrosenkirkine as representative of dihydrootonecine PAs; I) 2-hydroxy-1,2-senkirkine and J) 1,2-dihydro senkirkine, 2-C₅H₇O-ester as representatives of hydroxydihydrootonecine PAs.

Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146 DOI 10.1016/j.phytochem.2014.06.006

H)

CH₃ C₈H₁₄NO m/z: 140.107 Da

C₇H₁₁NO m/z: 125.084 Da

I)

