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Abstract

Fanconi Anemia (FA) is a recessive disorder characterized by genomic instability, congenital 

abnormalities, cancer predisposition and bone marrow failure. However, the pathogenesis of FA is 

not fully understood partly due to the limitations of current disease models. Here, we derive 

integration-free induced pluripotent stem cells (iPSCs) from an FA patient without genetic 

complementation and report in situ gene correction in FA-iPSCs as well as the generation of 

isogenic FANCA deficient human embryonic stem cell (ESC) lines. FA cellular phenotypes are 

recapitulated in iPSCs/ESCs and their adult stem/progenitor cell derivatives. By using isogenic 

pathogenic mutation-free controls as well as cellular and genomic tools, our model serves to 

facilitate the discovery of novel disease features. We validate our model as a drug-screening 

platform by identifying several compounds that improve hematopoietic differentiation of FA-

iPSCs. These compounds are also able to rescue the hematopoietic phenotype of FA-patient bone 

marrow cells.

Introduction

Fanconi Anemia (FA) is a recessive disorder characterized by congenital abnormalities, 

cancer predisposition and progressive bone marrow failure (BMF) 1, 2. The underlying 

genetic defect of FA can reside in any of the sixteen FANC genes 3, 4, which function in a 

common DNA damage repair pathway. Eight FA proteins, including FANCA, form a core 

complex with ubiquitin–E3 ligase activity. During the S phase of the cell cycle or upon 

DNA damage, the FA core complex mono-ubiquitinates the FANCD2/FANCI heterodimer, 

which subsequently translocates to specific nuclear foci and functions in DNA repair. 

Defective DNA repair in FA cells leads to G2 phase cell cycle arrest and increased cell 

death in response to DNA crosslinking reagents, which may contribute to the manifestation 

of FA disease phenotypes 1. Patients with biallelic mutations in any of the FANC genes 

frequently succumb to BMF, which is the major cause of death. The mechanistic link 

between FA pathway deficiency and BMF remains elusive. Recent evidence in humans and 

mice shows that FA deficiencies lead to progressive loss of hematopoietic stem/progenitor 
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cells (HSPCs) and functional impairment of the repopulating ability of these cells in NOD-

SCID IL2gnull mice 2, 5, 6, 7. It has been suggested that a heightened p53/p21 DNA damage 

response induced by accumulating unrepaired DNA lesions underlies these defects, although 

direct evidence from patient HSPCs is still lacking 5. Other than DNA repair, FA proteins 

also regulate proinflammatory and proapoptotic cytokine signaling. FA patient bone marrow 

(BM) has been shown to overproduce tumor necrosis factor-α (TNFα) and interferon-γ 

(INFγ), which may suppress hematopoiesis 8.

Studying FA in primary patient cells is often impractical due to the rarity of FA, the low 

cellularity of patient BM and inaccessibility to certain tissues. Transformed FA cell lines 

have been practical surrogates, but they may not faithfully recapitulate FA disease 

phenotypes due to transformation related artifacts. Although primary patient fibroblasts are 

useful in studying DNA damage repair in FA 9, 10, and while multiple mouse genetic models 

of FA have been developed (these models do not develop anemia with the exception of 

hypomorphic Fancd1 mutation and Btbd12 deficient mouse model 11, 12), understanding of 

stem cell defects in FA is scarce. Induced pluripotent stem cell (iPSC) technology provides 

the opportunity to produce various disease-relevant cell types and therefore constitutes an 

attractive new way to model FA 13. However, reprogramming FA cells into iPSCs has 

proven to be highly inefficient 14, 15. We have previously shown that successful generation 

of FA patient-specific iPSCs (FA-iPSCs) under normoxia could be achieved if the FANCA 

deficiency is complemented by a lentiviral vector expressing the FANCA gene 15. Muller et 

al. have since shown that reprogramming activates the FA pathway and that hypoxic 

conditions can facilitate lentivirus-mediated reprogramming of FA fibroblasts without 

genetic complementation, albeit with low efficiency 14. More recently, Yung et al. derived 

FANCC deficient iPSCs under normoxia and showed increased apoptosis and reduced 

clonogenic potential of FANCC deficient hematopoietic progenitor cells (HPCs) derived 

from FA-iPSCs 16. While these studies have improved our understanding of the role of the 

FA pathway in reprogramming, they also highlight challenges in establishing an iPSC-based 

FA model: 1) the derivation of FA-iPSCs remains highly inefficient – less than two iPSC 

clones established per patient fibroblast line; 2) It is still unclear whether karyotypically 

normal FA deficient iPSCs can be derived without genetic complementation. Indeed, Yung 

et al. 16 reported a high degree of chromosomal abnormalities in FA-iPSCs (only FA 

complemented iPSCs have been analyzed by Muller et al. 14); 3) The established FA-iPSCs 

often fail to be maintained in culture 16; 4) To date, lentiviral gene complementation remains 

the only method of correcting FA deficiency. Because of the fact that defects in the FA 

pathway are associated with low efficiency in homologous recombination (HR)-dependent 

gene editing 17, 18, it is unknown whether HR-dependent gene correction approaches can be 

applied to FA cells. Furthermore, genetic complementation and reprogramming by viral 

vectors may lead to random mutagenesis and tumorigenicity 19, which undermine the 

therapeutic value of the corrected cells.

To avoid the issues associated with viral vectors and with the aim of improving the 

therapeutic potential of the FA-iPSC model, we explored the possibility of generating FA-

iPSCs with episomal vectors, which are non-viral and non-integrative. To aid in studying FA 

pathogenesis mechanisms and developing future therapeutics, herein we report for the first 
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time the generation of isogenic iPSC lines free of pathogenic FANCA mutation as well as 

FANCA−/− ESC lines by homologous recombination. Our model recapitulates key cellular 

phenotypes of FA and leads to the observation of previously unknown defects, which are 

rescued by targeted gene correction. Furthermore, we validate our system as a platform for 

drug screening, as it not only recapitulates the effects of compounds known to improve FA 

phenotypes, but also identifies a novel candidate that enhances hematopoietic phenotypes of 

FA-iPSCs/ESCs and FA BM cells. Altogether, our integration-free FA-iPSC and isogenic 

FA-ESC models represent a multifaceted platform to understand FA pathogenesis, discover 

novel therapeutic drugs and develop cell replacement therapies of FA.

Results

Generation of integration-free FA-specific iPSCs

To obtain integration-free FA-specific iPSCs, we reprogrammed fibroblasts from an FA 

patient, who bears a biallelic truncating mutation (C295T) in the FANCA gene (Fig. 1A) 20, 

by transiently expressing five reprogramming factors (OCT4, SOX2, KLF4, LIN28, L-

MYC) and p53-shRNA encoded in episomal vectors 21, 22. Histone deacetylase inhibitor 

sodium butyrate was included in the reprogramming medium to facilitate epigenetic 

remodelling 23. We successfully derived FA patient-specific iPSCs under normoxia without 

FANCA complementation (Fig.1B-C). FA fibroblasts were reprogrammed with lower 

efficiency (0.024% vs. 0.2%) and slower kinetics (NANOG-positive colonies appeared after 

an average of 40 days for FA cells vs. 22 days for controls) than the control fibroblasts 

without FANCA mutation. Despite repeated trials, we did not obtain any iPSC colony when 

p53 shRNA was omitted from the reprogramming cocktail even with hypoxia conditions, 

which are known to enhance reprogramming efficiency 24 (Fig. 1C). This is likely due to 

reprogramming barriers caused by an exacerbated p53 stress response in FA cells 14. All 

FA-iPSC lines (data shown from representative clones) displayed surface makers of iPSCs 

(Fig. 1D). Importantly, we did not detect any ectopic reprogramming factor transgene or 

residual episomal vector sequence in five randomly selected iPSC lines (FA-iPSC#1,2,4,5 

and 8, Fig. 1E). The established FA-iPSC lines displayed hallmarks of pluripotency (Fig. 

2A-C), carried the FANCA mutation (Fig. 1A), were devoid of the FANCA protein (Fig. 2D) 

and demonstrated a normal karyotype at passage 13 (Fig. 2E). Since these fully 

characterized clones behaved similarly in culture, we used them interchangeably in 

subsequent analyses.

Characterization of FA-iPSCs

FA cells are characterized by excessive G2/M arrest in the cell cycle 25. We observed an 

increased G2/M cell cycle arrest in FA-iPSCs when compared with their wild-type 

counterparts (Fig. 3A). Even though FA-iPSC lines could be serially subcultured (up to 

passage 60 at the time of manuscript submission), they showed a decrease in clonogenicity 

when compared with control iPSCs (Fig. 3B). FA-iPSCs also displayed sensitivity to DNA 

crosslinking reagents and chromosome fragility (Fig. 3C-D) 26. Monoubiquitination of 

FANCD2, which is indicative of a functional FA core complex that includes FANCA, was 

reduced in FA-iPSCs (Fig. 3E). In addition, FA-iPSCs failed to form FANCD2 nuclear foci 
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upon treatment with a DNA crosslinking reagent – mitomycin C (MMC) (Fig. 3F). 

Altogether, these observations demonstrated a defective DNA-repair pathway in FA-iPSCs.

Targeted correction of the FANCA mutation in FA-iPSCs

A major challenge in developing HR-dependent gene correction approaches in FA cells is 

that defects in the FA pathway are associated with inefficient HR-dependent gene 

editing 17, 18. Helper-dependent adenoviral vectors (HDAdVs) have been shown to mediate 

efficient gene targeting/correction via HR at various genomic loci with minimal impact on 

genomic integrity 21, 27, 28. This non-integrative vector is devoid of the virus genome, thus 

minimizing cytotoxicity 29, 30. We performed targeted correction of the FANCA mutation in 

FA-iPSCs by using an HDAdV-based gene correction vector – FANCA-c-HDAdV, covering 

the genomic region from the promoter to intron 7 of the FANCA gene (Fig. 4A). Targeted 

gene correction was confirmed by PCR, Southern blot, and sequencing analyses (Figs. 1A 

and 4B-C). Further sequencing analysis confirmed that the correction was due to HR 

between the FANCA locus and the FANCA-c-HDAdV (Supplementary Fig. 1A). We next 

excised the integrated neomycin-resistant gene cassette using the FLP/FRT system 

(Supplementary Fig. 1B). As a complementary approach, we also generated a corrected FA-

iPSC line by gene complementation using a lentiviral FANCA expression vector, similar to 

the one that will be used in an upcoming clinical trial 31. These genetically corrected cells 

retained pluripotency and a normal karyotype (Figs. 1D and 2A, B and E).

Since heterozygous carriers of FA mutations are not symptomatic 20, we reasoned that the 

corrected FA-iPSCs bearing one wild-type allele might hold therapeutic potential. As 

expected, gene correction restored the FANCA protein expression (see C-FA-iPSC#1 in Fig. 

2D). Consistently, the cell cycle and clonogenicity defects in FA-iPSCs were also rescued 

by FANCA correction (Fig. 3A and B). FANCD2 monoubiquitination was restored by either 

targeted gene correction of FANCA or lentiviral delivery of the FANCA transgene (C-FA-

iPSC#2) in diseased iPSCs (Fig. 3E). At the cellular level, gene-corrected FA-iPSCs 

regained the capability to form FANCD2 nuclear foci after MMC treatment (Fig. 3F). 

Consequently, MMC sensitivity and chromosomal fragility in FA-iPSCs were rescued by 

gene-correction via HR or genetic complementation (Fig. 3C and D). Therefore, the FA-

specific cellular defects observed in pluripotent stem cells appeared to be effectively 

reversed by targeted correction of the FANCA mutation.

Differentiation of FA-iPSCs into HPCs

A defective hematopoietic system is one of the main clinical manifestations of FA 5, 32. 

However, the pathogenesis of FA hematopoietic defects is incompletely understood. Since 

hematopoietic differentiation of human iPSCs is thought to mirror the developmental pattern 

of embryonic hematopoiesis, we reasoned that FA-iPSCs could provide a unique model for 

investigating FA pathogenesis during early hematopoietic commitment and specification in 

humans 33. Upon directed differentiation towards the hematopoietic lineage, FA-iPSCs and 

in situ gene-corrected FA-iPSCs shared a common temporal pattern of HPC gene induction, 

suggesting that they underwent similar hematopoietic commitment and specification (Fig. 

5A). However, when compared with control-iPSCs, FA-iPSCs yielded a significantly lower 

percentage of HPCs (Fig. 5B-C), especially in the CD34hi/CD43lo population that has been 
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shown to contain multipotent progenitors 34. The FACS data coincided with the lower levels 

of gene induction shown by qPCR (Fig. 5A-C). Importantly, the deficit in generating HPCs 

was markedly rescued by FANCA correction (Fig. 5B-C). Furthermore, FA-HPCs were 

restricted to colony forming unit-granulocyte-macrophage (CFU-GM) and not able to 

generate colonies containing erythroblasts and/or megakaryocytes, whereas HPCs derived 

from C-FA-iPSCs gave rise to all typical hematopoietic colonies (Fig. 5D-E). Purified FA-

HPCs displayed increased sensitivity to MMC when compared with control HPCs. Genetic 

correction of the FANCA mutation completely rescued this phenotype (Fig. 5F).

Differentiation of FA-iPSCs into mesenchymal stem cells

Mesodermal tissue defects have been reported in FA patients and mice models 35, 36. Given 

the roles of MSC in maintaining multiple mesodermal lineages and providing a niche for 

normal bone marrow hematopoietic stem cell (HSC) function 37, we explored the possibility 

that human FA pathogenesis could be associated with cellular defects in mesenchymal stem 

cells (MSCs). Accordingly, we differentiated control-iPSCs and FA-iPSCs to MSCs (Fig. 

6A and Supplementary Fig. 2). Whereas the control MSCs proliferated normally upon serial 

passaging, FA-iPSC derived MSCs (FA-MSCs) failed to proliferate beyond the first three 

passages (Fig. 6B). The loss of proliferative ability was accompanied by cell senescence 

characteristics including enlarged and flattened cell morphology and positive staining for 

SA-β-galactosidase activity (Fig. 6C). To further support these findings, qPCR analysis was 

performed. When compared with control MSCs, FA-MSCs showed a robust upregulation of 

the cell proliferation suppressor p21, the cell senescence marker p16 and the stress sensor 

HO-1 as early as the first passage (Fig. 6D). Unlike control-iPSC derived MSCs, which 

could differentiate into adipogenic, chondrogenic and osteogenic lineages in vitro, FA-

MSCs failed to differentiate due to severe senescence (Fig. 6E). The FA-MSC-specific 

defects were reversed by targeted gene correction (Figs. 2D and 6B-E). Together, these 

results suggest that MSC dysfunction characterized by premature senescence could be a part 

of the FA pathology and correction of the FANCA mutation is sufficient to normalize MSC 

function 35.

Differentiation of FA-iPSCs into neural stem cells

The spectrum of anomalies in FA extends to the nervous system; conditions such as 

microcephaly and mental retardation are common among FA patients 38, 39, 40. FA genes 

including FANCA are highly expressed in the brain of zebrafish 41. The FA pathway has 

been shown to play a critical role in neural stem cell (NSC) maintenance in mice 42. 

However, the etiology of neurological manifestation of FA in humans remains elusive, 

partly due to a lack of appropriate experimental models. Since iPSC technology has recently 

been successfully used to reveal unknown neural disease phenotypes and mechanisms 43, 44, 

we next sought to study the consequence of FANCA-deficiency in human neural cells. 

Following in vitro differentiation into NSCs (Fig. 7A and Supplementary Fig. 3A), we first 

confirmed that FANCA expression was completely abrogated in FA-iPSCs derived NSCs 

(FA-NSCs, Fig. 7B). Upon treatment with MMC, control iPSC-derived NSCs (Ctrl-NSCs) 

exhibited formation of FANCD2 nuclear foci, which were completely abrogated in FA-

NSCs (Fig. 7C). Furthermore, FA-NSCs showed an increased susceptibility to MMC-

induced cell death, compared to control NSCs (Fig. 7D). While Ctrl-NSCs could be readily 
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differentiated into Tuj1-positive neurons, FA-NSCs showed impaired neuronal 

differentiation (Fig. 7E and Supplementary Fig. 3B). All these defects in FA-NSCs were 

rescued by targeted gene correction of FANCA (Fig. 7B-E and Supplementary Fig. 3B).

To elucidate the transcriptional and epigenetic alterations underlying the neurogenic defects 

of FA-NSCs, we conducted gene expression microarray analysis and global DNA 

methylation profiling. The gene expression pattern of gene-corrected NSCs (C-FA-NSCs) 

resembled that of control-NSCs but clustered distantly from FA-NSCs (Fig. 7F and 

Supplementary Data 1). Hierarchical clustering based on DNA methylation levels in the 

promoter region (+/−1.5kb from TSS) of genes whose expression levels were rescued in C-

FA-NSCs, placed C-FA-NSCs closer to control-NSCs and away from FA-NSCs (Fig. 7G), 

although this pattern was not seen at the whole genome level (Supplementary Fig. 3C). This 

suggests that FANCA gene correction leads to specific methylation changes in a subset of 

promoters. Interestingly, both microarray and RT-qPCR analyses revealed that FA-NSCs are 

associated with induction of tumor-related genes, down-regulation of tumor suppressor 

genes, as well as down-regulation of neural identity genes (Fig. 7H).

(Epi-)genetic characterization of FA and gene-corrected cells

Next, we examined whether reprogramming, gene correction, and differentiation could 

introduce genetic instability in the FANCA mutant genetic background. Array comparative 

genomic hybridization (array CGH) showed that C-FA-iPSCs and their derivatives did not 

bear additional DNA rearrangement when compared with the original FA-fibroblasts, while 

non-corrected FA-iPSCs showed DNA rearrangements after being cultured for 40 passages 

(Supplementary Fig. 4 and Supplementary Data 2).

We next compared the transcriptional and epigenetic status of the mutant and disease-free 

iPSCs at the whole genome level. RNA-seq showed that the transcriptomes of the HDAdV-

corrected (C-FA-iPSC#1) and the lentiviral vector-corrected FA-iPSCs (C-FA-iPSC#2) 

were similar to each other and clustered away from the two uncorrected FA-iPSC clones 

(FA-iPSC#5 and FA-iPSC#8, Supplementary Fig. 5A). Similarly, whole epigenome 

profiling based on trimethylated H3K4 (H3K4me3) showed concordant epigenetic 

remodeling in the two corrected clones (Supplementary Fig. 5B). Together, these results 

reinforce the notion that the methodologies used here preserve genome stability and may 

provide the grounds for developing FA therapeutics.

Evaluation of compounds able to reverse FA cellular defects

To evaluate the utility of the FA-iPSC model in drug discovery, we screened a panel of 

small molecules, including a Sirt1 activator, a p38 kinase inhibitor, a synthetic androgen and 

an anti-inflammatory compound, for their effects on the differentiation of FA-HPCs. 

Resveratrol, which has been shown to partially correct hematopoietic defects in Fancd2−/− 

mice 6, did not discernibly affect HPC differentiation (Fig. 8A and B). However, we could 

not exclude the effects of resveratrol on other aspects of FA hematopoiesis. Danazol, a 

synthetic androgen used to treat FA, other BMF disorders and aplastic anemia 45, enhanced 

the differentiation of FA-iPSCs, C-FA-iPSCs and control iPSCs, indicating that its effects 

are not specific to FA. We also observed that doramapimod, a highly selective p38 MAPK 
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inhibitor, specifically and significantly improved the derivation of CD34+/CD43+ 

progenitors from FA-iPSCs (Fig. 8A and B). The effect of doramapimod was even more 

pronounced in the CD34hi/CD43lo population. In addition, treating purified CD34+ FA-

HPCs with doramapimod enhanced CFU-GM formation, suggesting a partial rescue of the 

FA phenotype (Supplementary Fig. 6A). Our results are consistent with previous reports on 

the beneficial effects of p38 inhibition on FA cells 46, 47. Interestingly, our screen showed 

that tremulacin, a natural anti-inflammatory compound 48, produced a specific and 

significant improvement on FA-HPC differentiation (Fig. 8A and B). We further asked if 

these compounds might exert their effects by suppressing pro-inflammatory and/or pro-

apoptotic cytokine signaling in FA cells. Doramapimod and dasatinib, which have both been 

shown to suppress inflammatory responses 46, 47, significantly downregulated the expression 

of INFγ, TNF and IL6 in FA-iPSC derived hematopoietic cells, while danazol did not (Fig. 

8C). Our data showed that tremulacin also potently suppressed INFγ, TNF and IL6 at the 

transcription level (Fig. 8C). Interestingly, doramapimod also specifically rescued the 

proliferation defect of FA-MSCs but exerted no effect on the growth of gene corrected 

MSCs (Supplementary Fig. 6B).

To test if doramapimod and tremulacin could dampen the TNFα overproduction observed in 

FA patient cells, we utilized an FA-patient derived B-cell line that has been shown to 

produce TNFα constitutively 49. Consistent with previous data, doramapimod treatment 

significantly reduced secreted TNFα from patient cells (p=0.00004, Student’s t-test, 
Supplementary Fig. 6C) 46, while treatment with tremulacin lead to a small yet consistent 

reduction of secreted TNFα when compared with treatment with the vehicle (DMSO, 

p=0.00117, Student’s t-test, Supplementary Fig. 6C). Tremulacin treatment also 

significantly reduced TNF mRNA (p=0.0123, Student’s t-test), while the effect of 

doramapimod did not reach statistical significance (Supplementary Fig. 6D). This is 

consistent with the fact that doramapimod acts post-transcriptionally to suppress TNFα 

secreation 49. These data suggest that tremulacin may function by suppressing the 

inflammatory response in FA cells. It is unlikely that suppression of TNFα is the sole 

mechanism of action of tremulacin. Future study is necessary to elucidate the pathways 

through which tremulacin affects hematopoietic differentiation of FA-iPSCs.

The observation that FA deficient cells overproduce proinflammatory cytokines to which 

they are hypersensitive suggests that aberrant cytokine signaling may underlie BM 

dysfunction in FA. It also underpins the hypothesis that inhibiting the action of these 

proinflammatory cytokines (e.g. TNFα) could improve FA BM function. However, this has 

not been shown experimentally. Because our data show that doramapimod and tremulacin 

suppressed TNFα and rescued hematopoietic phenotypes of FA-HPCs, we investigated if 

these compounds could rescue the hematopoietic defects of FA patient BM. FA BM treated 

with doramapimod or tremulacin produced CFU-GMs that contained more cells than those 

obtained from vehicle treated samples (Fig. 8D). In Patient #1, erythroid colonies (burst-

forming unit-erythroid, or BFU-E) from tremulacin treated samples contained mostly dark 

red cells, indicating high levels of hemoglobin expression, while those from vehicle-treated 

BM consisted of cells that were pale red or colorless (Fig. 8D). No difference in the 

apperence of BFU-Es was noted in FA patient #2. Quantitation showed that doramapimod 
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significantly increased the frequency of CFU-GM in BM of two FA patients. Tremulacin 

increased the mean frequency of BFU-E in both patients, although only the case in FA 

patient #1 was statistically significant (Fig. 8E). Neither doramapimod nor tremulacin had 

any significant effect on BM of a healthy donor (Fig. 8E).

Generation of isogenic human ESC model of FA

To independently validate the findings in our FA iPSC model, we generated three 

FANCA−/− H9 ESC lines (ESC-FA−/−) by performing two rounds of transcription activator-

like effector nuclease (TALEN)-mediated gene targeting (Fig. 9A and B). As expected, 

ESC-FA−/− did not express FANCA and recapitulated the cell cycle and MMC sensitivity 

phenotypes seen in FA-iPSCs (Fig. 9C-E). Following the same protocols described in the 

FA-iPSC model, we confirmed that ESC-FA−/− derived HPCs, MSCs and NSCs displayed 

similar cellular defects as seen in the FA-iPSC model (Fig. 9F-I and Supplementary Fig. 

7A). We further showed that the HPC-FA−/− were not prone to apoptosis but did exhibit G2-

M cell cycle arrest, which could contribute to the lower number and reduced CFU capacity 

of HPC-FA−/− (Supplementary Fig. 7B and C). Importantly, this model allowed us to 

independently verify the specificity of doramapimod and tremulacin in rescuing FA cellular 

defects (Fig. 9J and Supplementary Fig. 7D).

Discussion

Considering that FA pathophysiology cannot be fully recapitulated in mouse models 50, 

there is a great need for human FA disease models. Here, we generated human FA-specific 

iPSCs without genomic integration of transgene. Additionally, we generated isogenic 

control iPSC lines using HDAdV-mediated targeted correction of the FANCA mutation. To 

the best of our knowledge, this is the first example of targeted correction of FA iPSCs. 

Furthermore, we verified that genome stability was preserved in C-FA-iPSCs and their 

differentiated progeny. We also generated isogenic FANCA−/− ESC lines by TALEN-

mediated gene targeting. These isogenic ESC lines allowed us to independently validate our 

findings in the FA iPSC model.

Our current study is limited to FA subgroup A, in which over 1500 pathogenic mutations in 

the FANCA gene have been reported (http://www.rockefeller.edu/fanconi/genes/jumpa). The 

FANCA-c-HDAdV vector covers 161 (or 10%) of these mutations in FANCA. From a 

therapeutic point of view, more vectors are needed to correct other mutations of FANCA. 

Engineered nucleases, including TALEN and clustered, regularly interspaced, short 

palindromic repeat (CRISPR)/CAS9 nuclease and zinc finger nuclease (ZFN), could 

potentially be useful tools in the gene correction of FA. However, the extent of off-target 

mutagenesis by these methods remains controversial. Further studies are necessary to clarify 

whether these nuclease-based methods can be safely applied to FA. The strategy presented 

here can also be applied to model other subgroups of FA. Given the complexity of the FA 

group, these additional FA-iPSC models are necessary to cover the full spectrum of FA 

pathology.

Many aspects of FA pathogenesis are insufficiently understood because of the scarcity of 

patient samples. For example, dysfunctions in MSCs and NSCs have been suggested but 
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poorly investigated 35, 36, 51. FA-iPSCs could offer unlimited research materials for 

unraveling yet unidentified FA phenotypes. We illustrate this point by differentiating iPSCs 

into three types of progenitor/stem cells, and reveal that FA pathology may entail 

dysfunctions in multiple progenitor/stem cell populations. FA-HPCs and FA-MSCs, show 

similar deficiencies in maintenance and proliferation. A recent study reported that Fancg-

deficient mice exhibit impaired MSC proliferation accompanied by a decreased ability to 

support the adhesion and engraftment of HPCs 36. The novel MSC proliferation defect could 

also be associated with bone malformations in FA, as osteocytes derived from these cells are 

compromised in FA. We cannot exclude the possibility that the profound proliferation 

defects of FA-iPSC derived MSCs may be exacerbated by extensive in vitro culture and 

mutations potentially accumulated during reprogramming. Nonetheless, ESC-FA−/− derived 

MSCs show a consistent proliferation defect, which suggests that the MSC phenotype is 

mainly attributable to the FANCA deficiency.

As for the neural manifestations of FA, microcephaly is a very common characteristic 

(>90%) especially in FANCD2 patients 38. VACTERL (Vertebral anomalies, Anal atresia, 

Cardiac defects, Tracheoesophageal fistula and/or Esophageal atresia, Renal & Radial 

anomalies and Limb defects) with hydrocephalus syndrome is also widespread in FANCB 

patients. The observed neuronal differentiation defects of FA-NSCs could contribute to 

these neurogenesis defects. This also supports a notion that adult neurogenesis in FA 

individuals may be prematurely impaired 51. In addition, reduced survival of FA-NSCs in 

the presence of DNA damage reagents suggests a mechanism for aging-dependent 

exhaustion of the NSC pool 42. Furthermore, our gene expression profiling shows that FA-

NSCs are associated with an induction of tumor-related genes and downregulation of tumor-

suppressor genes. This may be relevant to a previous report showing that FA patients 

carrying the FANCD1 mutation exhibit a predisposition to develop medulloblastoma 52. 

These new findings suggest an increased risk of malignant transformation in FANCA-

mutated neural progenitors and allow for the identification of molecular markers of FA-

associated tumor risk factors for clinical diagnosis. It should be noted that data regarding 

FA-NSC phenotypes are subjected to the limitations of the in vitro neuronal differentiation 

model. In the future, it would be of interest to study the behavior of FA-NSCs in a 

transplantable in vivo model.

There is an unmet need for a reliable platform allowing for the screening and evaluation of 

novel drug candidates for the treatment of FA. Other than its value in elucidating FA 

pathogenesis, the FA-iPSC/ESC model could be a useful tool for pharmacologic studies. 

iPSCs/ESCs can be differentiated into multiple types of hematopoietic cells in unlimited 

amounts. The isogenic diseased and corrected FA-iPSC and isogenic ESC lines reported 

here provide the most stringent and scalable screening conditions against the confounding 

effects that may arise due to genetic background variations. We demonstrate the usefulness 

of our system in drug evaluation by reproducing the beneficial effects of several compounds 

known to correct FA phenotypes in other FA models. Moreover, our system allowed for the 

discovery of a novel candidate drug for the alleviation of FA phenotypes. Although further 

study is needed to understand its mechanisms of action, tremulacin appears to suppress 

inflammatory cytokines at the transcription level. Furthermore, we show that doramapimod 
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and tremulacin could rescue the hematopoietic defects of FA patient BM. Previous studies 

have raised the idea that inhibiting the action of proinflammatory cytokines could improve 

FA BM function 46, 53. Our data provide the first experimental evidence supporting this 

hypothesis. These results validate our iPSC-based FA model as a platform for discovering 

novel drugs and for studying drug mechanisms of action.

Lastly, we showed that our FA-iPSC/ESC model complemented by a stringent isogenic 

disease-free control is amenable to genome-wide interrogations of novel networks of 

pathogenesis pathways. In summary, the FA disease model established here represents a 

multifaceted practical platform for studying FA pathogenesis, for discovering novel 

therapeutic drugs and for the development of FA cell replacement therapies.

Methods

Antibodies and plasmids

Antibodies were purchased from the following companies (catalogue number and dilution 

for immunofluorescence or FACS). BD Biosciences: anti-human CD43-APC (560198, 

1:50), anti-human CD43-FITC (555475, 1:50), anti-CD34-PE (555822, 1:50), anti-CD90-

FITC (555595, 1:100), anti-CD73-PE (550257, 1:50), isotype control APC (555751, 1:50), 

isotype control PE (555749, 1:50), isotype control FITC (555742, 1:50); Miltenyi Biotec: 

anti-human CD34-APC (130-090-954, 1:50), anti-human CD34-PerCP Vio700 

(130-097-915, 1:50); eBioscience: anti-CD105-APC (17-1057-42, 1:100); Biolegend: Alexa 

Fluor® 647 anti-human Ki-67 (350509, 1:20), Alexa Fluor® 647 Mouse IgG1, κ Isotype 

control (400130, 1:20); R&D Systems: anti-human Tra-1-85 APC (FAB3195A, 1:50); Santa 

Cruz Biotechnology: anti-OCT-3/4 (sc-5279, 1:100), anti-SOX2 (sc-17320, 1:100), anti-

Lamin B1 (sc-6217, 1:80), anti-FANCD2 (sc-20022, 1:50), and anti-WRN (sc-5629, 1:100), 

recombinant human Annexin V fluorescein reagent (NX50); Abcam: anti-NANOG 

(ab21624, 1:100), anti-Ki67 (ab16667, 1:1000), anti-FANCD2 (ab2187, 1:120); Millipore: 

anti-NESTIN (MAB5326, 1:500), Tra-1-60 (MAB4360, 1:100); Sigma: anti-β-Tubulin III/

TujI (T2200, 1:500); Covance: anti-PAX6 (PRB-278P, 1:500). pCXLE-hOCT3/4, pCXLE-

hOCT3/4-shp53-F, pCXLE-hSK, and pCXLE-hUL were purchased from Addgene (27076, 

27077, 27078, and 27080, respectively) 22. Lentiviral FANCA expression vector (pCCL-

PGK-FANCAWp) was generated in previous study 54. For generating FANCA knockout 

ESCs, two TALEN expression plasmids (TAL2416 and TAL2417) were purchased from 

Addgene (36817 and 36818, respectively) 55.

Cells

Human Fanconi Anemia fibroblasts (FA123) (homozygous for FANCA C295T, male, 19 

year old) were previously described 20. The control fibroblasts (FA52) were isolated from a 

FA patient initially bearing compound heterogeneous FANCA mutations (Mutation 1: C 

3558insG (R1187E fsX28); Mutation 2: C710-5T>C (Splicing mutation, skipping of exon 

8)) 56, which upon growth obtain spontaneous reversion of the pathological FANCA alleles 

in the patient. This line was used as a control for FA123 in order to exclude the non-specific 

effect of FA-associated profound epigenetic and genetic changes. These dermal fibroblasts 

were obtained after signed informed consent of the donors, the approval of the Ethics 
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Committee and the approval of the “Comisión de Seguimiento y Control de la Donación de 

Células y Tejidos Humanos del Instituto de Salud Carlos III” (project number: 110-90-1). 

H9 human ESCs were purchased from WiCell Research. Human ESCs and generated iPSC 

lines were cultured on Matrigel or mitotically inactivated MEF cells. A FANCC patient-

derived lymphoblast cell line HSC536N is purchased from the Coriell Institute and cultured 

as recommended by the vendor. Human bone marrow CD34+ cells from a healthy individual 

were purchased from Allcells (Alameda, CA). FA patient BM cells were isolated from two 

FA patients bearing FANCA mutations (Patient 1: c. 710-5T>C and c. 790C>T; Patient 2: 

biallelic deletions at exon 15-20). These FA patient BM samples were obtained from 

patients that gave informed consent. Approvals were obtained from the Ethics Committee at 

the G.Gaslini Hospital, Genova, Italy (protocol n° J5002; date: 24/9/2010).

iPSC generation

One million human fibroblasts were electroporated with pCXLE-hOCT3/4-shp53-F (or 

pCXLE-hOCT3/4), pCXLE-hSK, and pCXLE-hUL using a Nucleofector (Lonza) 21. Four 

days later, cells were re-plated onto mitotically inactivated MEF feeders in human ESC 

medium supplemented with 0.5 mM sodium butyrate (Sigma). After an additional 10 days, 

the cells were switched to human ESC medium without sodium butyrate and cultured until 

the colonies could be mechanically picked onto new MEF feeders. For reprogramming in 

hypoxia, electroporated fibroblasts were cultured in a 5% O2 condition for 40 days. The 

generated FA-iPSC lines were maintained by manual picking, since enzyme-mediated 

passaging caused compromised cell survival.

Lentiviral infection of FA-iPSCs

Lentiviruses were expressed and purified according to a recently published protocol 57. FA-

iPSCs cultured on MEF feeders were incubated with 10 μM Y-27632 for 3 h and then 

individualized with Accumax (Innovative Cell Technologies). Cells were transduced in 

suspension with lentiviral FANCA expression vector in the presence of Y-27632 and 4 

μg/ml polybrene for 1 h. After brief centrifugation to remove the residual lentivirus, the cells 

were seeded back on fresh MEF feeders in human ESC media containing Y-27632. After 

being cultured for 1 week, small iPSC colonies were manually passaged onto fresh MEF 

feeders and expanded as new iPSC lines. Ectopic expression of FANCA protein in different 

FA-iPSC lines were verified by Western blotting.

Bisulfite sequencing

Genomic DNA from the iPSC lines was extracted with Qiagen Blood and Tissue kit. 

Bisulfite conversion of DNA was carried out using the Zymo EZ DNA Methylation-direct 

Kit (Zymo Research) following the manufacturer’s recommendations. A genomic fragment 

of the Oct4 promoter was amplified with previously published primers using the 2× Zymo 

Taq Premix per manufacturer instructions 21, 27. PCR products were purified by gel 

extraction using QIAquick columns, and subsequently cloned into the pCR2.1-TOPO vector 

(Invitrogen). Ten clones from each sample were sequenced with the M13 universal primer.
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Teratoma analysis

Following injection of iPSC lines into NOD-SCID IL2Rgammanull mice (Jackson 

Laboratories) teratoma formation was analyzed to confirm pluripotency in vivo. Briefly, 

mice were anaesthetized and iPSCs were injected into testis. Teratoma formation was 

monitored. About 10-15 weeks after injection, animals were sacrificed. Teratomas were 

assessed by immunostaining. The Salk Institute Institutional Animal Care and Use 

Committee (IACUC) and Chinese Academy of Science Institutional Animal Care and Use 

Committee approved all murine experiments.

Protein and nucleic acid analysis

Protein quantification was performed with BCA approach (Thermo Fisher Scientific). 

Protein lysate was subjected to NuPAGE® Novex Tris-Acetate Gel or Bis-Tris Gel 

(Invitrogen) and electrotransfered to a PVDF membrane (Millipore). Mono-ubiquitination of 

FANCD2 in pluripotent stem cells were determined by Western blotting with anti-FANCD2 

antibody 32. Total RNA extraction and cDNA synthesis were performed with TRIzol 

(Invitrogen) and High capability RNA-to-cDNA Mater Mix (Invitrogen). Quantitative RT–

PCR was carried out with SYBR Green PCR Master Mix (Applied Biosystems). To 

determine copy numbers of transgenes and endogenous genes, genomic DNA was extracted 

with the DNeasy Blood & Tissue Kit (QIAGEN) and used as template in absolute 

quantification qPCR assays using the standard curve method 21, 22. Primer sequences are 

given in Supplementary Table 1.

Immunofluorescence microscopy

Cells were fixed with 4% formaldehyde in PBS for 20min at room temperature, and then 

permeabilized with 0.4% Triton X-100. After a blocking step with 10% FBS in PBS, cells 

were incubated with the primary antibody at 4 °C overnight, followed by incubation at room 

temperature with the corresponding secondary antibody for 1 h. Nuclei were counterstained 

with Hoechst 33342 (Invitrogen).

Flow cytometry analysis

For cell-cycle analysis of pluripotent stem cells expressing the marker Tra-1-60 or Tra-1-81, 

cultures of iPSCs growing on MEFs were collected using TrypLE Express (Invitrogen). 

Cells were incubated with a Tra-1-60 or Tra-1-81 antibody in 1% PBS-BSA for 30 minutes 

followed by incubation with a secondary Alexa-Fluor 488 anti-mouse antibody (Invitrogen) 

for another 30 minutes. After this incubation, cells were fixed in aldehyde-based fixative 

overnight. A Click-iT EdU flow cytometry analysis kit (Invitrogen) was used to analyze the 

proliferation of the Tra-1-60 or Tra-1-81 positive population of cells following 

manufacturer’s recommendations. For cell-cycle analysis of HPCs, differentiated cells were 

stained with anti-human CD34-PE and anti-human CD43-FITC, fixed and permeabilized 

using the BD Cytofix/Cytoperm™ kit, stained with Alexa Fluor® 647 anti-human Ki-67 and 

DAPI, and then analyzed on a BD LSRFortessa cytometer. For apoptosis analysis of HPCs, 

differentiated cells were stained with anti-human CD34-PE, anti-human CD43-APC and 

Annexin V FITC, and analyzed on a BD LSRFortessa cytometer.
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Construction and preparation of HDAdVs

FANCA-c-HDAdV for gene correction was generated using a BAC clone containing the 

human FANCA locus (CTD-2327D14, Invitrogen), that was modified using BAC 

Recombineering 58. In brief, an FRT-PGK-EM7-neo-bpA-FRT fragment was recombined 

into intron 4 of FANCA in the BAC clone. A total of 18.3 kb of FANCA homology, 

including the marker cassette, was subcloned into the HDAdV plasmid pCIHDAdGT8-4 

(kindly provided by Dr. Kohnosuke Mitani). The generated FANCA-c-HDAdV plasmid was 

linearized by PI-SceI (NEB) and then transfected into 116 cells (kindly provided by Dr. 

Philip Ng) in the presence of helper virus AdHPBGF35 (kindly provided by Dr. André M. 

Lieber) 59. Crude virus extracts were serially amplified in 116 cells and then purified 

according to a previously described method 28, 60. βgal-transducing units (btu) were 

determined in 293 cells to define infectious vector titers.

Isolation of gene-corrected human iPSCs

For generation of gene-corrected iPSCs, eleven separate experiments were performed and a 

total of 1.97 × 107 FANCA patient iPSCs were infected with FANCA-c-HDAdV at 

multiplicity of infection (MOI) of 3-30 btu/cell. Two to four days after infection, G418 

(25-450 μg/ml; Invitrogen) was added to the medium to start positive selection. After 10-13 

days, 4 μM Ganciclovir (GANC; Invitrogen) in addition to G418 was added to the medium 

to start negative selection. After an additional 5-7 days, G418/GANC double-resistant clones 

were transferred to 96-well plates and expanded for further characterization. Gene-targeted 

clones were determined by PCR of genomic DNA from drug-resistant clones with the 

following primers (P1, 5′- GGAACCCACTGGTCATGTTTGCTTTTGCCCAT -3′; P2, 5′-

CCCCAAAGGCCTACCCGCTTCCATTGCTCA-3′; P3, 5′-

CTACCTGCCCATTCGACCACCAAGCGAAACATC-3′; P4, 5′-

TACCAGGTTATAGTAGCTCAGGAATGCTAAGTCGCTCA-3′; see Fig. 3A) using LA 

Taq DNA Polymerase and GC Buffer (TAKARA). Long PCR cycling included a 1 min 

initial denaturation at 94°C, 14 cycles of 10 sec denaturation at 98°C and a 10 min annealing 

and extension at 68°C, 21 cycles of 10 sec denaturation at 98°C and a 10 min plus 5 sec/

cycle annealing and extension at 68°C plus a final extension at 68°C for 10 min. To 

determine gene-corrected clones, exon 4 of FANCA was PCR-amplified with the following 

primers: 5′-TTGCCCACCGTTTCTCACTTTATTGAATGCAGACC-3′ and 5′-

AGGCAACCATCCCGGCTGAGAGAATACCCA -3′ with Phusion High-Fidelity DNA 

Polymerase (NEB). Amplicons were sequenced using an ABI 3730 sequencer (Applied 

Biosystems). Finally, one gene-corrected clone was generated.

Excision of the neomycin-resistance cassette

To efficiently remove the neomycin-resistance cassette, we generated a pCAG-Flpo-2A-

puro vector, which, under control of a CAG promoter, expresses the genes for Flpo 

recombinase 61, and puromycin N-acetyltransferase (puro). FANCA gene-corrected iPSCs 

cultured on Matrigel were transfected with pCAG-Flpo-2A-puro vector using FuGENE HD 

(Promega). Two days after transfection, puromycin (1 μg/ml; Invitrogen) was added to the 

medium to enrich Flpo recombinase expressing cells. Two days later, puromycin was 

withdrawn, and after about 10 days, cells were individualized and plated onto MEF feeder 
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cells at a density of 300-3000 cells / 75 cm2 in the presence of 10 μM Y-27632 (Biomol 

Inc.). After 2 weeks, the emerging colonies were picked and expanded. Removal of the 

neomycin-resistance cassette was verified by PCR using LA Taq Hot Start Version 

(TAKARA) and DNA sequencing with the following primers: with the following primers: 

5′- GCCCACCGTTTCTCACTTTATTGAATGCAGACCA-3′ and 5′- 

TGCCTCCATCCAGATCAACAGAACATTGCC-3′.

Generation of FANCA gene-knockout human ESCs

For generation of biallelic FANCA gene-knockout human ESCs, we performed two rounds 

of transcription activator-like effector nuclease (TALEN)-mediated gene targeting. In brief, 

the donor plasmids were constructed by the combination of 1.3-1.5 kb homology arms and 

drug resistance cassettes (neo or puro). For the 1st round of gene knockout, 1.5 × 107 

feeder-free cultured wild-type H9 human ESCs (ESC-FA+/+) were dissociated by TrypLE, 

and resuspended in 1 ml of MEF-conditioned medium containing 10 μM ROCK inhibitor 

Y-27632. Cells were electroporated with 10 μg of TALEN expression plasmids each 

(TAL2416 and TAL2417) and 30 μg of donor vectors and were plated onto 100 mm dishes 

precoated with 1 × 106 irradiated multiple drug resistant DR4 MEFs (ATCC). Four days 

after electroporation, G418 (50 μg/ml) was added to the medium. After 5 days, G418 

concentration was increased to 100 μg/ml. After 14 days, G418-resistant clones were 

transferred to 96-well plates and expanded for genotyping. The determined heterozygous 

knockout clones (ESC-FA+/−) were used in another round of gene knockout. For this, we 

repeated the same steps with a puromycin resistant donor and puromycin selection (1 μg/ml) 

instead of a neomycin resistant donor and G418 selection.

To determine biallelic knockout clones, exon 1-2 of FANCA was PCR-amplified with the 

following primers (P1, 5′- TCGGCTTGGTTGGCCAGGTGGTCTCT-3′ and P2, 5′-

CGCCTCGGGTGTTTTCTTAGGAAAGCTGT-3′, see Fig. 8A) with PrimeSTAR GXL 

DNA Polymerase (TAKARA). Finally, three biallelic FANCA knockout clones (ESC-FA−/

−) were generated.

Southern blotting

Ten μg of genomic DNA for each sample was digested with NcoI (NEB) and subjected to 4 

h at 50 V on a 0.65% agarose gel. The gel was subsequently incubated in depurination 

buffer (0.25 M HCl) for 15 min followed by 30 min incubation in denaturation buffer (1.5 M 

NaCl, 0.5M NaOH). The DNA was then blotted overnight onto a Hybond XL (GE 

Healthcare) by capillary transfer in denaturation buffer. The membrane was incubated in 

neutralization buffer (0.5 M Tris-HCl [pH 7.4], 1.5 M NaCl) for 20 min followed by UV 

crosslinking. The 5′ and 3′ probes were amplified from BAC DNA (CTD-2327D14) with 

the following primers (5′ probe, 5′- TCCCAGAGCAGAGACAGAGGAAGCCC-3′ and 5′-

CACGCCCAGCCAGGACCCAT -3′; 3′ probe, 5′-

GCAGGTATCACACAAATTACAGAAGATTACCA-3′ and 5′-

AGGAACATACCAGCACCTCACGAT-3′) using LA Taq Hot Start Version, following the 

manufacturer’s protocol. The probes were labeled with dCTP [−32P] (Perkin Elmer), and 

Southern hybridization was performed following the standard protocol.
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Hematopoietic differentiation

Hematopoietic differentiation efficiency and hematopoietic colony formation activity were 

assayed as previously described 62 with some modifications. iPSCs (passage 11) and ESCs 

cultured on MEF feeders in human ESC medium were manually dissociated and plated on 8 

days old overgrown OP9 feeders to start differentiation. Cells were co-cultured with the OP9 

feeders for 12-14 days in OP9 differentiation medium (Alpha MEM containing 10% FBS, 

100 μM monothioglycerol and 50 μg/ml ascorbic acid) as described 62. Differentiated cells 

were dissociated with collagenase and Accutase (Innovative Cell Technologies) and 

subjected to flow cytometry analyses, cell sorting, qPCR analyses and clonogenic progenitor 

cell assays. Primer sequences for qPCR are given in Supplementary Table 1.

Clonogenic progenitor cell assay

Hematopoietic clonogenic assays were performed in 35-mm low adherent plastic dishes 

(Stem Cell Technologies) in triplicate using 1.1 ml/dish of MethoCult GF + H4435 

semisolid medium (Stem Cell Technologies) or StemMACS human HSC-CFU complete 

medium with Epo (Miltenyi Biotec, 130-091-280). Colony-forming cells (CFCs) were 

scored after 15 days of incubation. Cytospins were stained with Wright stain (Millipore) 

according to manufacturer’s instructions.

Generation and characterization of MSCs

In order to guide differentiation to mesenchymal stem cells (MSCs) from iPSC (passage 11) 

or ESC lines, groups of 10-14 EBs were plated on matrigel coated 6 well plates in αMEM 

(Invitrogen) medium with 10% fetal bovine serum (FBS, Gibco), 1% penicillin/streptomycin 

(Gibco), 10 ng/ml bFGF (JPC), and 5 ng/ml TGFb (humanzyme). Cells were left to 

differentiate for 2 weeks, until confluent fibroblast-like populations appeared. After one 

passage the differentiated MSC-like cells were analyzed by FACS using different antibodies 

related to the MSC signature. Cells were stained with antibodies against CD73, CD90, and 

CD105. Further differentiation towards bone, cartilage and adipose cells was performed in 

order to demonstrate MSC functionality. In order to evaluate the differentiation capacity to 

osteogenic fate, MSC lines were seeded in osteogenic media [αMEM (Invitrogen) with 10% 

FBS, 1% penicillin/streptomycin, 10 μM β-glicerolphosphate (Sigma), 0.2 mM ascorbate-2-

phosphate (Sigma), and 0.01 mM dexamethasone (Sigma)]. In the same manner, in order to 

evaluate chondrogenic differentiation, pellets of 200,000 MSCs, were suspended in 

chondrogenic media [DMEM-high glucose (Invitrogen) with 1% penicillin/streptomycin, 10 

ng/ml TGF-β3 (R&D Systems), 50 mg/ml ITS+Premix (BD), 50 g/ml proline (Sigma), 50 

μg/ml ascorbate-2-P (Sigma), and 0.1 μM dexamethasone (Sigma)]. For adipogenic 

differentiation, once MSCs reached 95–100% confluency, expansion media was replaced 

with adipogenic media [αMEM with 10% FBS, 1% penicillin/streptomycin, 50 μM 

indomethacin (Sigma), 0.5 mM IBMX (Sigma), and 1 μM dexamethasone (Sigma)]. All 

differentiation protocols were maintained for approximately 21 days. Analysis of cell 

differentiation was performed by histochemical staining with Oil red O (adipogenic), von 

Kossa (osteogenic), and Alcian blue (chondrogenic) kits (IHC world).
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NSC generation from iPSCs and ESCs

Neural induction was performed as previously described with some modifications 63. 

Induction was initiated by passaging iPSCs (passage 11) or ESCs onto MEF feeder cells at 

roughly 20% confluency using dispase. Neural Induction Medium 1 (NIM-1: 50% 

Advanced DMEM/F12 (invitrogen), 50% Neurobasal (invitrogen), 1× N2 (invitrogen), 1× 

B27 (invitrogen), 2 mM GlutaMAX (Invitrogen) and 10 ng/mL hLIF (Millipore), 4 μM 

CHIR99021 (Cellagentech), 3 μM SB431542 (Cellagentech), 2 μM Dorsomorphin (Sigma), 

and 0.1 μM Compound E (EMD Chemicals Inc.) was used for the first 2 days. Culture 

medium was then switched to Neural Induction Medium 2 (NIM-2: 50% Advanced DMEM/

F12, 50% Neurobasal, 1× N2, 1× B27, 2 mM GlutaMAX, 10 ng/mL hLIF, 4 μM 

CHIR99021, 3 μM SB431542 and 0.1 μM Compound E) and maintained for 5 days. 

Accumax (Innovative Cell Technologies) was used to passage cells onto Matrigel-coated 

plates. Cultures were subsequently maintained in Neural Stem cell Maintenance Medium 

(NSMM) containing 50% Advanced DMEM/F12, 50% Neurobasal, 1× N2, 1× B27, 2 mM 

GlutaMAX, 10 ng/mL hLIF, 3 μM CHIR99021, and 2 μM SB431542.

Neuronal differentiation assay

10,000 NSCs were seeded on Matrigel-coated 35 mm wells and maintained in NSMM for 

3-5 days. For spontaneous neuronal differentiation, cultures were switched to differentiation 

medium containing DMEM/F12, 1× N2, 1× B27, 400 μM dbcAMP (Sigma), 200 μM 

Ascorbic acid (Sigma), 10 ng/ml BDNF (Peprotech), and 10 ng/ml GDNF (Peprotech). After 

two days, laminin (Sigma) was added to cells to encourage differentiation. Cultures were 

maintained in differentiation medium for a total of 14 days, followed by immunostaining 

with neuronal marker Tuj1.

Small molecule pharmacologic study

Resveratrol (Sigma, R5010-100MG), Danazol (Sigma, D8399-100MG), Doramapimod 

(BIRB 796, LC Laboratories, D-2444), Dasatinib (LC Laboratories, D-3307) and 

Tremulacin (Santa Cruz Biotech, sc-237233) were dissolved in DMSO and used at 

concentrations as indicated. At least three concentrations were tested for each drug in a pilot 

screen, and an optimal concentration was picked in a later confirmative study. Because early 

hematopoietic specification of FA-iPSCs is normal, we treated the differentiating FA-iPSC 

for one week starting on day 6 of differentiation, when the expression of HPC marker genes 

were at the highest levels. Drugs were added at day 6 of the iPSC hematopoietic 

differentiation protocol, as described above, and renewed every 2 days. At the end of the 

differentiation, differentiated cells were harvested and used for RNA extraction for RT-

qPCR analysis of gene expression, or stained with anti-human CD34-PE, anti-human CD43-

FITC and anti-human Tra-1-85-APC, and subjected to flow cytometric analyses as 

described. For colony forming unit assay, FA-iPSCs were differentiated as described. 

CD34+ cells were sorted from the differentiated cells by a BD FACSAria II cytometer. 

Equal number of CD34+ cells was plated in Methocult (Stem Cell Technologies, H4435) in 

the presence of doramapimod (5 μM) and DMSO, respectively. To examine the drug effects 

on MSCs, iPSC and ESC derived MSCs were cultured in the presence of doramapimod (5 

μM), tremulacin (5 nM), or DMSO in passage 0-3 for iPSC-derived or in passage 0-5 for 
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ESC-derived MSCs. The drug effects were calculated as the number of drug treated cells 

normalized to the number of DMSO treated cells. For studying the drug effects on Fanconi 

patient BM cells, CFU assay was performed as described above in StemMACS human HSC-

CFU complete medium with Epo in triplicate in the presence of indicated compounds. 

Colonies were enumerated after 2 weeks.

TNFα ELISA and qRT-PCR

TNFα assays were performed as described previously 46. Briefly, 100,000 HSC536N cells 

were seeded per well in a 96-well plate. Cells were treated with vehicle (DMSO), 

doramapimod (500 nM) or tremulacin (5 nM) for 6 hours. After 6 hours incubation, cell 

culture supernatants were collected and assayed for human TNFα using the human TNFα 

Quantikine ELISA kit (R&D Systems). The cell pellets were used for RNA extraction using 

the Qiagen RNeasy kit and qRT-PCR analysis of TNF mRNA. Primer sequences are given 

in Supplementary Table 1.

Cell viability analysis

To measure MMC sensitivity, 2-6 × 104 iPSCs, 5-7 × 104 ESCs or 1 × 105 NSCs were 

plated on matrigel coated 96 well plates (CytoOne). The following day, cells were treated 

with 0-40 ng/ml (iPSC), 0-30 ng/ml (ESC) or 0-2 μg/ml (NSCs) MMC (BIOMOL) for 24 

hours. Two days after damage, survival was assessed using CellTiter 96 AQueous One 

Solution Cell Proliferation Assay (Promega). To measure MMC sensitivity of HPCs, 

CD34+/CD43+ HPCs were FACS sorted from differentiated FA-iPSCs, C-FA-iPSCs and 

ctrl-iPSCs and cultured in a medium (Stemspan, 10 ng/ml IGF2, 10 ng/ml FGFa, 50 ng/ml 

TPO, 50 ng/ml Flt3L and 50 ng/ml SCF) containing various concentrations of MMC for 24 

hour before being used in CFU assays as described above.

Chromosome fragility test

To measure a chromosomal instability with a DNA crosslink reagent, feeder-free cultured 

human ESCs/iPSCs were treated with 0-0.1 μg/ml diepoxybutane (DEB; Sigma) for 48 

hours. The cells were further treated with KaryoMAX Colcemid solution (Invitrogen) at a 

final concentration of 20 ng/ml for 45 min. Staining and chromosomal fragility evaluation 

were described in previous study 26.

RNA-seq

Reads were aligned to the reference genome (hg19, GRCh37) by using the program tophat2 

(v2.0.8b) 64 considering the read strand and the annotation data (Ensembl version 70 from 

iGenomes website [http://cufflinks.cbcb.umd.edu/igenomes.html]). Alignments were then 

fed to the program cuffdiff 65 to estimate the differential expression between the samples 

choosing the ‘blind’ dispersion method. The results were then analyzed by using the 

program cummerbund 64 to make dendrograms.

ChIP-seq

Reads were aligned to the reference genome (hg19, GRCh37) by using the program bowtie2 

(version 2.1.0) 66 with default parameters. Mapped reads were then investigated for the 
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presence of enrichment against the input by using the program MACS (version 1.4.2) 67. 

Peaks with FDR lower or equal to 0.05 FDR were kept for the further analysis. BEDtools 

package 68 was used for detecting the Ensembl genes (version 70) overlapping with the 

detected peaks. A matrix of genes containing or not peaks for every sample was created and 

used to calculate the dendrogram by using R (www.r-project.org/). Detection of 

differentially enriched peaks between samples was realized by using MAnorm tool 69.

Genome-wide DNA methylation analysis

Methylation sequencing with bisulfite padlock probes was performed as previously 

described 70. Briefly, genomic DNA was extracted from Ctrl-NSC, FA-NSC, and C-FA-

NSC using QIAamp DNA Micro Kit (QIAGEN). Approximately 1,000 ng of genomic DNA 

was bisulfite converted with EZ-96 DNA Methylation-Lightning MagPrep kit (Zymo 

Research). Normalized amount of the genome-wide scale padlock probe set was annealed to 

250 ng of bisulfite converted genomic DNA, circularized, amplified and barcoded by PCR 

using the library-free BSPP protocol 70. The resulting bisulfite sequencing libraries were 

pooled in the same molar ratio, purified with 6% TBE PAGE gel (Invitrogen), and 

sequenced by Illumina HiSeq2000 sequencer (110 bp, paired-end reads). The bisulfite reads 

were mapped to the in silico bisulfite-converted human genome sequences (hg19) by 

bisREADMapper 70. DNA methylation frequency at each CpG site with minimum 10× 

depth coverage was calculated. Hierarchical clustering on genome-wide DNA methylation 

was performed on all CpG sites shared in all three samples. Heatmap with dendrogram was 

generated based on the variable CpG sites in the promoter regions (1.5 kb +/− from TSS) of 

the genes rescued by C-FA-NSC.

DNA microarray and bioinformatics analysis

Ctrl-, FA- and C-FA-NSC samples were prepared in biological triplicates. Total RNA of all 

samples was extracted using Trizol Reagent (Invitrogen) and purified by RNeasy Mini Kit 

(QIAGEN). Affymetrix GeneChip PrimeView Human Gene Expression Arrays were 

performed by the Functional Genomics Core Facility at the Salk Institute for Biological 

Studies according to the manufacturer’s protocol (Affymetrix, Santa Clara, CA). Expression 

signals were scanned on Affymetrix GeneChip Scanner 3000 7G. Statistical analysis of the 

data was performed on the GenePattern platform from the Broad Institute (http://

www.broadinstitute.org/cancer/software/genepattern/). Briefly, raw CEL files were imported 

into GenePattern software and normalized using RMA algorithm. Gene expression probes 

with a minimal 3-fold difference in both scientific comparisons (Ctrl-NSC vs. FA-NSC; FA-

NSC vs. C-FA-NSC) were selected for further analysis. The Hierarchical Clustering analysis 

was performed using the HierarchicalClustering module of the GenePattern software. The 

dendrograms and the heat map of the clustered gene expression data were visualized by the 

HierarchicalClusteringViewer module.

Array-based genomic hybridization (aCGH)

aCGH was performed to identify copy number alterations in the samples of interest (FA-

Fibroblasts, FA-iPSCs, C-FA-iPSCs and C-FA-MSCs). We used an in-house designed 

microarray, based in the 8×60K Agilent slide platform, composed of ~60.000 

oligonucleotide probes scattered throughout the Human genome, with an average coverage 
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of 1 probe / 30Kb in subtelomeric and pericentromeric regions, and 1/100Kb in the 

remaining euchromatic portion of the genome. The design also included the recommended 

set of 2.118 control probes from Agilent’s catalog. Before hybridization, DNA quality was 

assessed by continuous reading of optical density using a Nanodrop 2000c machine (Thermo 

Scientific), and DNA integrity was checked by electrophoresis and Sybr® Green II 

(LifeTechnologies) staining. For each sample, 500 ng of Cy5-labeled DNA was hybridized 

against 500 ng of a sex-matched reference DNA Cy3-labeled. For the present study control 

DNA used in the hybridization was obtained from peripheral blood lymphocytes of an 

anonymous donor male who consented the use of this material for research purposes. The 

list of copy number variations (CNVs) alterations present in the control sample are indicated 

in Supplementary Data 2. Labeling, hybridization, slide washing and scanning was 

performed following Agilent’s recommended protocols (Agilent Oligonucleotide Array-

Based CGH for Genomic DNA Analysis - Enzymatic Labeling for Blood Cells or Tissues, 

v6.0, Nov. 2008) with minor modifications, in an ozone-free environment to prevent dye 

degradation. Raw data from images was extracted using Feature Extraction (Agilent, Palo 

Alto, CA) and detection of copy number alterations was performed using ADM-2 algorithm.

Statistical analysis

Results are shown as mean±s.d. Comparisons were performed with student’s t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Generation of FA-specific iPSCs
A, DNA sequencing analysis revealed the presence of biallelic C295T point mutations in 

FANCA in FA-iPSCs, and the targeted correction of a FANCA-mutant allele in FA-iPSCs 

(C-FA-iPSCs). B, NANOG immunostaining of control (Ctrl) and patient (FA) colonies at 

day 25 and day 40 of reprogramming, respectively. Scale bar, 2 cm. C, Quantification of the 

number of NANOG-positive colonies at the end of reprogramming experiments. Numbers 

are normalized against control (mean±s.d., n=3, *p<0.05, t-test). shp53 indicates the use of 

p53 shRNA in the reprogramming cocktail. In both hypoxia (5%) and normoxia conditions, 

there were no NANOG-positive colonies without p53 shRNA. D, Immunofluorescence 

analysis of pluripotency markers OCT4 and NANOG in FA-iPSCs and C-FA-iPSCs. DNA 

was stained with Hoechst. Bar, 20 μm. E, Copy number quantification of reprogramming 

factor genes (left panel) and the episomal vector element EBNA1 (right panel). H9 human 

ESCs were included as a negative control. Human fibroblasts (hFib) 6 days after 

nucleofection were included as a positive control. The average copy numbers are 

comparable between H9 human ESCs and five randomly selected FA-iPSCs. Data are 

shown as mean±s.d. n=3.
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Fig. 2. Characterization of FA-specific iPSCs
A, DNA methylation profile of the OCT4 promoter region in control-, FA-iPSCs and C-FA-

iPSCs. A diagram showing the position of the CpG dinucleotides relative to the OCT4 

transcription start site is provided. B, RT-qPCR analysis of endogenous expression of the 

indicated pluripotency genes in the indicated lines. FA fibroblast and H9 human ESCs (Ctrl-

ESC) were included as negative and positive controls, respectively. Data are shown as mean

±s.d. n=3. C, Immunostaining in teratomas derived from FA-iPSCs show in vivo 

differentiation towards ectodermal, mesodermal and endodermal tissues. Scale bar, 75 μm. 

D, Western blotting analysis of FANCA expression in iPSCs, MSCs, and fibroblasts (Fib) 

treated with or without MMC. Ku80 was included as a loading control. Also see 

Supplementary Fig. 8. E, Karyotyping analysis revealed normal karyotypes in all of the 

indicated iPSC lines. For FA-iPSC, four clones were randomly selected. C-FA-iPSC#1 and 

C-FA-iPSC#2 indicate FA-iPSCs corrected by HR and lentiviral vector, respectively.
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Fig. 3. FA-iPSCs recapitulate FA cellular defects
A, FACS analysis of cell cycle profiles of the indicated iPSCs revealed an increased 

percentage of G2/M phase cells (indicated in red squares) in two randomly selected FA-

iPSCs. C-FA-iPSC#1 indicates the targeted gene-correction clone. Values shown are mean

±s.d. B, An identical number of iPSCs were seeded onto MEF feeder cells in the presence of 

ROCK inhibitor and allowed to form small colonies. The relative iPSC colony numbers 

were determined 10 days later. Data are shown as mean±s.d. n=3. **p<0.01 (t-test). C, 
MMC sensitivity of Ctrl-iPSCs, FA-iPSCs, C-FA-iPSCs#1, and FA-iPSCs lentivirally 

transduced with FANCA (C-FA-iPSC#2). Data are shown as mean±s.d. n=8. D, DEB 

induced chromosomal fragility test. Statistical analyses were performed by comparing Ctrl-

iPSCs with other samples. Data are shown as mean±s.d. n=35 **p<0.01 (t-test). E, Western 

blotting analysis of FANCA and FANCD2 expression in indicated iPSC lines. WRN was 

included as a loading control. L-FANCD2 and S-FANCD2 indicate the mono-ubiquitinated 

and non-modified form of FANCD2, respectively. Quantitative analysis shows that targeted 

correction of the FANCA gene (C-FA-iPSC#1) or lentiviral introduction of FANCA in FA-

iPSCs (C-FA-iPSC#2) restored expression of FANCA protein and mono-ubiquitination of 

FANCD2. F, Immunostaining of FANCD2 and SOX2 in the indicated iPSCs treated with 

100 ng/ml MMC for 24 h. The percentage of nuclei positive for FANCD2 foci is indicated 

in the bottom left corner. Bar, 10 μm. Arrows denote FANCD2 foci.
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Fig. 4. Gene correction of FA-specific iPSCs
A, Schematic representation of HDAdV-based correction of the C295T mutation at the 

FANCA locus. The HDAd-vector includes a neomycin-resistant cassette (neo) and an HSVtk 

cassette to allow for positive and negative selection, respectively. Half arrows indicate 

primer sites for PCR (P1, P2, P3 and P4). Probes for Southern analysis are shown as black 

bars (a, 5′ probe; b, neo probe; c, 3′ probe). The red X indicates the mutation site in exon 4. 

Blue triangles indicate the FLPo recognition target (FRT) site. B, PCR analysis of FA-iPSCs 

(FA) and gene corrected FA-iPSCs (C-FA) using 5′ primer pair (P1 and P2; 12.7 kb) or 3′ 

primer pair (P3 and P4; 7.3 kb). M, DNA ladder. C, Southern blot analysis. The approximate 

molecular weights (kb) corresponding to the bands are indicated.
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Fig. 5. Hematopoietic differentiation of FA-iPSCs and characterization of FA-iPSC-derived 
HPCs
FA-iPSCs were differentiated by using a murine OP9 stromal cell-based differentiation 

protocol that allows robust generation of hematopoietic cells for downstream quantitative 

analyses. A, RT-qPCR analysis of the kinetics of the upregulation of hematopoietic lineage 

specific marker genes during hematopoietic differentiation of FA-iPSCs (FA) and FA-iPSCs 

corrected by HR (C-FA). Expression levels are normalized against GAPDH. Data are shown 

as mean±s. e.m. n=3. B, FACS analysis of the CD34+ and CD43+ populations 13 days after 

hematopoietic differentiation of control iPSCs, FA-iPSCs (#5 and #8 clones) and C-FA-

iPSCs. Cells shown are in the Tra-1-85+ gate, which shows only human cells. Numbers 

represent percentages. C, Percentage of differentiated iPSCs that are CD34+(Q1 & Q2 in B), 

CD34+/CD43+ (Q2 in B) and CD34hi/CD43lo (small gate in Q2 in B). Error bars represent 

SEM of 3 independent experiments. ** p<0.01 (t-test). D-E, Colony forming assays of 

human iPSC-derived hematopoietic progenitors harvested after 14 days of differentiation. 

Data are representative results from two independent experiments. Quantification of the 

indicated colony types derived from a total of 1×105 starting differentiated cells. CFU-

GEMM, colony-forming unit granulocyte/erythroid/macrophage/megakaryocyte; CFU-GM, 

colony-forming unit granulocyte/monocyte; CFU-M, colony-forming unit macrophage; 

CFU-G, colony-forming unit granulocyte; CFU-E, colony-forming unit erythroid; BFU-E, 

blast-forming unit erythroid. n=3. ** p<0.01 (t-test). (D). Representative photos of colony 

morphology (left columns) and Wright staining of cytospins (right columns) of different 

hematopoietic colonies are shown (E). Scale bar, 300 μm. F, MMC sensitivity of Ctrl-iPSC-, 
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FA-iPSC- and C-FA-iPSC-derived blood lineage colonies. Data are shown as mean±s.d. 

n=4.

Liu et al. Page 30

Nat Commun. Author manuscript; available in PMC 2015 January 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6. MSCs derived from FA-iPSCs demonstrate characteristics of premature senescence
A, FACS analyses of common MSC surface markers on MSCs differentiated from control-

iPSCs, FA-iPSCs, and FA-iPSCs corrected by HR (C-FA-iPSCs). B, Growth curve 

representing the accumulated population doubling of iPSC-derived MSCs. Data are shown 

as mean±s.d. n=3. C, Representative SA-β-galactosidase staining in passage 3 MSCs 

derived from control-, FA-, C-FA-iPSCs. Bar, 10 μm. Note that senescent FA-MSCs are 

larger in size. D, RT-qPCR analysis of the indicated gene transcripts in iPSCs and their 

MSC derivatives. Data are shown as mean±s.d. n=3. **p<0.01 (t-test). At mRNA levels, 

MSCs demonstrated significant upregulation of MSC-specific marker CD44 and 

downregulation of pluripotency marker NANOG. No significant difference was observed in 

NANOG and c-KIT expression between the isogenic pairs (FA-iPSCs and C-FA-iPSCs). 

When compared with control MSCs, FA-MSCs showed a robust upregulation of the cell 

proliferation suppressor p21, the cell senescence marker p16 and the stress sensor HO-1, at 

passage 1. E, Control- and C-FA-iPSC-derived MSCs were induced to undergo 

adipogenesis, chondrogenesis, and osteogenesis. Oil red, Alcian blue, and von Kossa were 

employed for staining of adipocyte, cartilage, and bone-specific markers, respectively. Scale 

bar, 25 μm.
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Fig 7. Cellular defects and molecular signatures of NSCs derived from FA-iPSCs
A, Immunofluorescence analysis of neural progenitor markers in FA-iPSC derived NSCs 

(FA-NSCs) and C-FA-iPSC derived NSCs (C-FA-NSCs). Bar, 20 μm. B, Western blotting 

analysis of FANCA expression in control-iPSC derived NSCs (Ctrl-NSC), FA-NSCs and C-

FA-NSCs. WRN expression was included as a loading control. Also see Supplementary Fig. 

8. C, Immunostaining of FANCD2, lamin B1 and NESTIN in the indicated NSCs treated 

with 100 ng/ml MMC for 24 h. Arrows denote FANCD2 foci. Bar, 5 μm. D, MMC 

sensitivity of indicated NSCs. Data are shown as mean±s.d. n=8. E, Representative bright 

field (left panels) and Tuj1 immunofluorescence (right panels) micrographs of cultures 

spontaneously differentiated from Ctrl-, FA-, and C-FA-NSCs. DNA was counterstained 

with Hoechst. Bar, 50 μm. F, Hierarchical clustering analysis of genes with a minimum 3-

fold difference in both comparisons (Ctrl-NSC vs. FA-NSC; FA-NSC vs. C-FA-NSC). 96% 

of genes (97 out of 101) altered by the FA mutation were rescued in gene corrected NSCs. 

Also see Supplementary Data 1. G, Heatmap and hierarchical clustering of DNA 

methylation levels at CpG sites in the promoter regions of the genes rescued by C-FA-NSC. 

Note that not every gene rescued by C-FA-NSC from gene expression analysis showed 

differential DNA methylation on their promoter regions. H, RT-qPCR analysis of the 

expression of selected genes in passage 2 NSCs derived from Ctrl-, FA-, and C-FA-iPSCs. 

The expression levels of genes in Ctrl-NSCs were set to one. Data are shown as mean±s.d. 

n=3. Gene functions are annotated below gene names.
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Fig 8. Small-molecule screen for compounds rescuing FA hematopoietic defects
Two randomly selected clones, FA-iPSC#5 and FA-iPSC#8 (data not shown) were used in 

this experiment and provided consistent results. A, FACS analysis of the CD34+ and CD43+ 

populations at day 13 of hematopoietic differentiation of FA-iPSC#5 after one-week 

treatment with vehicle (DMSO), resveratrol (1 μM), danazol (50 ng/ml), doramapimod (5 

μM) and tremulacin (5 nM). B, Quantification of percentages of FA-HPCs that are CD34+/

CD43+ and CD34hi/CD43lo after drug treatments indicated in A. Error bars represent SEM 

of 3 independent experiments. * p<0.05 and ** p<0.01 (t-test). C, RT-qPCR quantification 

of expression levels of interferon gamma (INFγ), tumor necrosis factor alpha (TNFα) and 

Interleukin 6 (IL6) in differentiation cultures of FA-iPSCs treated with vehicle (DMSO), 

danazol (50 ng/ml), doramapimod (5 μM), dasatinib (5 μM) and tremulacin (5 nM). 

Expression levels are normalized against GAPDH. Asterisks denote expression levels below 

the detection limit. D-E, Colony forming assay of FA patient BM mononuclear cells treated 

with compounds. Representative photos of the morphology of different hematopoietic 

colonies are shown (D). Bar, 500 μm. E, quantification of the indicated colony types derived 

from a total of 5×102 BM CD34+ cells and 2×104 BM cells from healthy donors and FA 

patients, respectively. CFU-GEMM, colony-forming unit granulocyte/erythroid/

macrophage/megakaryocyte; CFU-GM, colony-forming unit granulocyte/monocyte; BFU-E, 

blast-forming unit erythroid. Data are shown as mean±s.d. n=3. * p<0.05 and ** p<0.01 (t-

test).
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Fig. 9. Generation and characterization of FANCA knockout ESCs
A, Schematic representation of TALEN-based knockout of the FANCA gene. The donor 

vectors include a neomycin-resistant cassette (neo) or a puromycin-resistant cassette (puro). 

Half arrows indicate primer sites for PCR (P1 and P2). The red line indicates the TALEN 

target site in exon 1. The human H9 cells were used as wild type host cells (ESC-FA+/+). 

The heterozygous FANCA mutant ESC line (ESC-FA+/−) was generated by one round of 

gene targeting, and the biallelic FANCA knockout mutant ESC line (ESC-FA−/−) was 

generated by a 2nd round of gene targeting. B, PCR analysis of ESC-FA+/+, ESC-FA+/− and 

ESC-FA−/− using P1 and P2 primer pairs shown in (A). M, DNA ladder. C, RT-PCR 

analysis of ESC-FA+/+ and ESC-FA−/−. ESC-FA−/− did not express FANCA mRNA. Data 

are shown as mean±s.d. n=3. ** p<0.01 (t-test). D, FACS analysis of cell cycle profiles of 

the indicated ESCs revealed an increased percentage of G2/M phase cells (indicated in red 

squares) in FANCA knockout cell (ESC-FA−/−). E, MMC sensitivity of ESC-FA+/+, ESC-

FA+/− and ESC-FA−/−. Data are shown as mean±s.d. n=8. F, Percentage of differentiated 

ESCs that are CD34+/CD43+. Error bars represent SEM of 3 independent experiments. * 

p<0.05 (t-test). G, Representative SA-β-galactosidase staining (left panel, Scale bar, 200 

μm) in passage 1 MSCs derived from ESC-FA+/+ and ESC-FA−/−, and quantitative data 

(right panel). H, RT-qPCR analysis of TUJ1 in ESCs and their pan neuron derivatives. Data 

are shown as mean±s.d. n=3. ** p<0.01 (t-test). I, Representative bright field (left panels) 

and Tuj1 immunofluorescence (right panels) micrographs of cultures spontaneously 

differentiated from NSC-FA+/+ and NSC-FA−/−. DNA was counterstained with Hoechst. 
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Bar, 100 μm. J, Quantification of accumulated doubling population of FA-MSCs with 

doramapimod or tremulacin treatments at passage 5. The drug effects were normalized by 

the number of DMSO treated cells. Data are shown as mean±s.d. n=3. * p<0.05 (t-test).

Liu et al. Page 35

Nat Commun. Author manuscript; available in PMC 2015 January 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


