0fcf66c6b3f5045a87371d6bb4aa6f8a elenotdis_a2014m9v46p289.pdf b77ff320c4b630862908cc0a0bb66d443a1f7124 elenotdis_a2014m9v46p289.pdf 098c8440eb2fcaf6d08923df773debfff47b5bd9fd90064d96cfb42a4bc8eb6f elenotdis_a2014m9v46p289.pdf Creator: TeX output 2015.11.16:1351 Producer: MiKTeX-dvipdfmx (20150315) CreationDate: Mon Nov 16 13:51:10 2015 ModDate: Tue Nov 17 16:01:15 2015 Tagged: no UserProperties: no Suspects: no Form: AcroForm JavaScript: no Pages: 8 Encrypted: no Page size: 595.28 x 841.89 pts (A4) Page rot: 0 File size: 520345 bytes Optimized: yes PDF version: 1.6 name type encoding emb sub uni object ID ------------------------------------ ----------------- ---------------- --- --- --- --------- ZFDFDC+CMBX12 Type 1C Builtin yes yes no 118 0 CEBOKV+CMMI6 Type 1C Builtin yes yes yes 121 0 MGPTKM+CMR9 Type 1C Builtin yes yes no 124 0 FQQBWK+CMMIB10 Type 1C Builtin yes yes yes 127 0 CKRHBY+CMR10 Type 1C Builtin yes yes yes 130 0 UOQAKO+CMTT10 Type 1C Builtin yes yes no 133 0 QNMFFO+CMBX10 Type 1C Builtin yes yes yes 136 0 EOPKDB+MSBM10 Type 1C Builtin yes yes no 139 0 HRVNAF+CMR7 Type 1C Builtin yes yes no 142 0 DVNXZS+CMMI10 Type 1C Builtin yes yes no 145 0 CDXIBT+CMR8 Type 1C Builtin yes yes no 148 0 Helvetica Type 1 Custom no no no 113 0 IZOXFS+CMMI8 Type 1C Builtin yes yes no 73 0 FBSWUU+CMSY10 Type 1C Builtin yes yes yes 70 0 WNRUKM+CMTI10 Type 1C Builtin yes yes yes 67 0 HCDYJQ+CMEX10 Type 1C Builtin yes yes yes 64 0 QPCLGZ+CMSY8 Type 1C Builtin yes yes yes 61 0 GKQSJA+CMSY6 Type 1C Builtin yes yes no 60 0 UNDQTO+CMR6 Type 1C Builtin yes yes no 59 0 SKVDWA+CMBXTI10 Type 1C Builtin yes yes no 58 0 GMPTBO+CMBX8 Type 1C Builtin yes yes no 55 0 Jhove (Rel. 1.6, 2011-01-04) Date: 2016-10-07 02:22:58 CEST RepresentationInformation: elenotdis_a2014m9v46p289.pdf ReportingModule: PDF-hul, Rel. 1.8 (2009-05-22) LastModified: 2016-10-06 15:19:04 CEST Size: 520345 Format: PDF Version: 1.6 Status: Well-Formed, but not valid SignatureMatches: PDF-hul ErrorMessage: Invalid Resources Entry in document Offset: 7927 ErrorMessage: Invalid Resources Entry in document Offset: 7927 MIMEtype: application/pdf Profile: Linearized PDF PDFMetadata: Objects: 0 FreeObjects: 1 IncrementalUpdates: 0 DocumentCatalog: PageLayout: SinglePage PageMode: UseNone Filters: FilterPipeline: FlateDecode XMP: 2015-11-16T13:51:10+01:00 TeX output 2015.11.16:1351 2015-11-17T16:01:15+01:00 2015-11-17T16:01:15+01:00 MiKTeX-dvipdfmx (20150315) uuid:aa1350d3-1982-437b-a999-e6a300eb32ea uuid:e1dde8d2-733d-4add-8bac-eb96261ee378 application/pdf Pages: Page: Sequence: 1 Annotations: Annotation: Subtype: FreeText Contents: This is the author's version of a work that was accepted for publication in Electronic notes in discrete Mathematics (Elsevier). Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A defi- nitive version was subsequently published in Rifà, J and Suàrez, E. “About a class of Hadamard pro- pelinear codes” in Electronic notes in discrete Mathematics, vol. 46 (Sept. 2014), p. 289-296. DOI 10.1016/j.endm.2014.08.038 Rect: 98, 750, 504, 839 Name: 754447ec-4b8c-4a77-a4c7-db7432972039 LastModified: D:20151117160050+01'00' Flags: Print AppearanceDictionary: true Page: Sequence: 2 Page: Sequence: 3 Page: Sequence: 4 Page: Sequence: 5 Page: Sequence: 6 Page: Sequence: 7 Page: Sequence: 8 Checksum: 2d6898f4 Type: CRC32 Checksum: 0fcf66c6b3f5045a87371d6bb4aa6f8a Type: MD5 Checksum: b77ff320c4b630862908cc0a0bb66d443a1f7124 Type: SHA-1