

Global warming potential of the circular economy of aluminium: the role of old scrap recycling

Abstract: For decades, aluminium recycling was a regional concern traditionally concentrated in the regions with high aluminium demand and a well-organized aluminium recycling industry. Today, however, aluminium scrap is a global raw material commodity. This change has increased the need to analyze the flows of aluminium scrap, as well as to determine the environmental consequences from aluminium recycling. The objective of this work is to determine the environmental consequences of the old scrap aluminium collection for recycling, considering the market interactions. The study focused on Spain as a representative country for Europe. We integrate material flow analysis (MFA) with consequential life cycle assessment (CLCA) in order to determine the most likely destination for the old scrap and the most likely corresponding process affected. Based on this analysis, it is possible to project some scenarios and to quantify the environmental impacts (generated and avoided) associated with aluminium recycling within a global market. From the MFA results, we projected that the demand for aluminium products will be met mainly with an increase in primary aluminium imports, and the excess of old scrap not used in Spain will be exported in future years, mainly to Asia. Depending on the marginal source of primary aluminium considered, the greenhouse gases (GHG) emission estimates varied between -17,088 kg of CO₂ eq. t⁻¹ of old scrap collected to -10,305 of CO₂ eq. t⁻¹ of old scrap collected for the global or local scenario, respectively. More GHG emissions are avoided with an increase in export flows, but the export of old scrap should be considered as the loss of a key resource, and in the long term, it will also affect the semifinished products industry. Mapping the flows of raw materials and waste, as well as quantifying the environmental impacts derived from recycling, has become an

essential prerequisite to consistent development from a linear towards a circular economy.

KEYWORDS: dynamic material flow analysis, consequential life cycle assessment, greenhouse gases, aluminium packaging, Spain

1 1. INTRODUCTION

2 For decades, aluminium recycling was a regional concern, traditionally concentrated in
3 regions with high aluminium demand and a well-organized aluminium recycling

4 industry. Today, however, aluminium scrap is a global raw material commodity (EAA,
5 2006a). In fact, national or regional markets for raw materials, intermediate products,
6 and final products have become increasingly interconnected in a globalizing world,

7 creating more complexity in the supply chain (Liu and Müller, 2013). Several

8 documents have been presented recently (EC, 2012a; EC, 2012b; NPSCS, 2008) to
9 promote Circular Economies (CE) by encouraging recycling as a material independence
10 strategy for green economic development and the reinforcement of local markets.

11 Nevertheless, the first step in determining the potential environmental gains resulting
12 from achieving those objectives is to map properly the material flows along the whole
13 production chain in order to assess the flows and stocks and to establish past trends to

14 project alternative trade patterns. In the case of aluminium, studies were recently
15 published assessing aluminium flows for the United States (Chen and Graedel, 2012),

16 China (Chen and Shi, 2012), and Italy (Ciacci et al., 2013) and also at the global scale

17 (Cullen and Allwood, 2013; Liu and Müller, 2013). All these studies assessed flows and
18 stocks using material flow analysis (MFA), and all of them also noted the need for
19 further environmental studies in order to evaluate the impacts of the aluminium

20 industry.

21 There is a clear need for studies considering how recycling fits into the bigger economic
22 picture (Gardner, 2013), but studies calculating the environmental impacts derived from
23 the international trade are also essential because increasing trade means increasing
24 transport, logistics and emissions (Liu and Müller, 2013). However, massive
25 international trade requires life-cycle thinking and a global perspective to take into
26 account burden shifting across borders (EEA, 2012). In this sense, consequential life
27 cycle assessment (CLCA) seems to be an effective methodological framework to
28 address the environmental impacts of international industries because it provides a
29 modeling approach that seeks to describe the consequences of decisions when processes
30 are linked via market mechanisms (Weidema, 2009) and allows the limits of the system
31 to be expanded beyond national boundaries. Nevertheless, the CLCA approach applied
32 to quantifying the impact of recycling presents two challenges. First, the process
33 affected by recycling (i.e., raw primary aluminium production or other process) must be
34 identified, and second, the most sensitive technology in the market to a change in
35 demand must be determined (Weidema, 2009). Both identifications depend on the
36 market trend and delimitation. Thus, to quantify recycling through the CLCA
37 methodology, it is necessary to conduct in-depth analysis of changes in the dynamic of
38 supply and demand of material flows. Therefore, because MFA studies require
39 complementary studies of CLCA to assess the environmental impacts, while at the same
40 time, the CLCA needs the material information provided by the MFA studies; the
41 integration of both methodologies is a good strategy to assess the material flows and
42 environmental impacts of recycling within trade interactions.

43 In this paper, we evaluate the environmental performance associated with an increase of
44 old aluminium scrap collection in Spain for recycling by integrating a dynamic MFA
45 model with a CLCA in order to evaluate the interactions of recycling markets. MFA

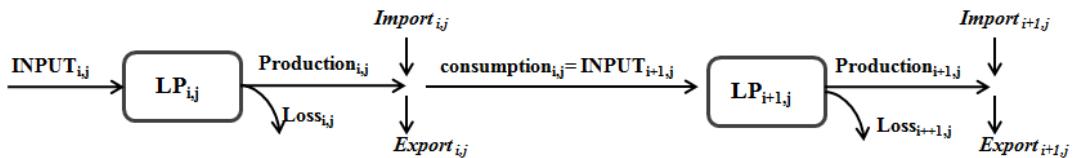
46 traces material flows both along technological life cycles and across national
47 boundaries, allowing the most-probable destinies of the old scrap collected in Spain for
48 recycling are determined. CLCA calculates the GHG consequences of recycling related
49 to marginal (product systems) displacements according to local markets and global
50 market considerations. Aluminium scrap is categorized as new and old, representing
51 pre- or post-consumption scrap, respectively; new scrap is nearly 100% recycled either
52 inside a plant or directly by a remelter. We focus on old scrap, therefore, because it is
53 the key issue in recycling and scrap supply (JRC, 2007). Spain was selected because it
54 is the first exporter of aluminium scrap in the European Union (EU) to non EU-
55 countries (Liu and Müller, 2013; EAA, 2012b), and in a previous study, it was detected
56 that there is no study quantifying the GHG emissions due to aluminium old scrap
57 recycling for Spain (Sevigné et al., 2013). Finally, the present study focuses on GHG
58 emissions because the world's aluminium industry contributes approximately 1% of the
59 total anthropogenic GHG emissions (JRC, 2007; Menzie et al., 2010), but it has been
60 reported that recycling of aluminium products requires as little as 5% of the energy and
61 emits only 5% of the greenhouse gas (GHG) of primary production (IAI, 2009).

62

63 2. MATERIALS AND METHODS

64 The methodology proposed in this study consists of two steps. First, a dynamic MFA is
65 conducted in order to monitor trends and changes in the dynamics of raw materials,
66 products and waste, and second, MFA results are integrated into the consequential life
67 cycle inventory (LCI) modeling to project the cause and effect relationships over the
68 economy to quantify the GHG emissions associated with recycling. In the following
69 sections, the methodologies used for the quantifications of flows and stocks (2.1) and
70 for the quantification of GHG emissions (2.2) are explained.

71


72 2.1. Dynamic Material Flow Analysis (MFA)

73 We have applied a dynamic MFA in Spain for 15 years to obtain not only a picture at a
74 specific time but also an overview of the evolution in the recent past of the whole cycle
75 of aluminium to determine changes and trends in raw materials and waste markets and
76 to observe the influence of the accumulated stock; altogether, this information can be
77 useful to anticipate scenarios in the near future. The aluminium life cycle is divided into
78 the following nine processes: bauxite mining [A], alumina production [B], primary
79 aluminium production [C], secondary aluminium production [D], ingot cast production
80 [E], semifinished products fabrication [F], finished products manufacturing [G], use [H]
81 and waste management [I]. Every life cycle process produces aluminium-containing
82 products (ACP) classified as: bauxite (a); alumina (b); primary aluminium (c);
83 secondary aluminium (d); ingot (e); semifinished products (f); finished products (g); end
84 of life products (h); old scrap (i) and new scrap (j). Some of the ACPs are also classified
85 in several subtypes. In the Appendix A, Figure A.1 summarizes graphically the process
86 and flows, while table A.1 summarizes the definitions associated with the ACPs
87 considered in this study.

88 2.1.1. Accounting methods for flows and stocks

89 There are several flows associated with each life cycle process, and except for the use
90 process, the total input of each process, consisting of flows from previous life processes
91 and imports, should be equal to the total output, comprising flows to the next life
92 process, loss and exports. Figure 1 summarizes the mass balance, where LP= Life
93 Processes; i= indicator for life processes; j=indicator for the studied years; INPUT=
94 ACP demanded by life process i in year j; production=ACP produced in life process i in
95 year j; Loss=ACP discarded from life process i in year j; Import= ACP imports

96 generated from life process i in year j; Export= ACP exports generated from life process
97 i in year j; consumption=ACP consumed from life process i in year j.

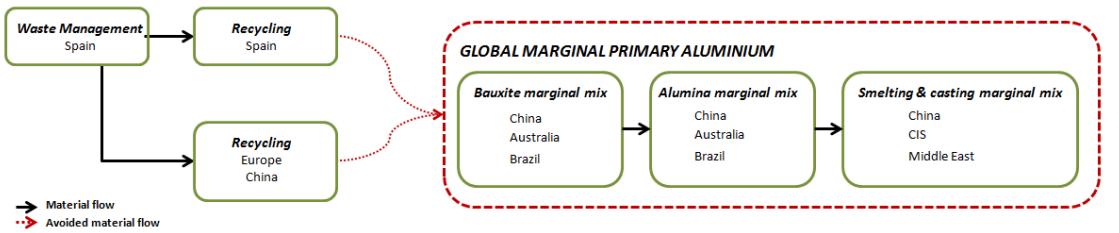
98

99 **Figure 1:** Schematic diagram of mass balance for each LP

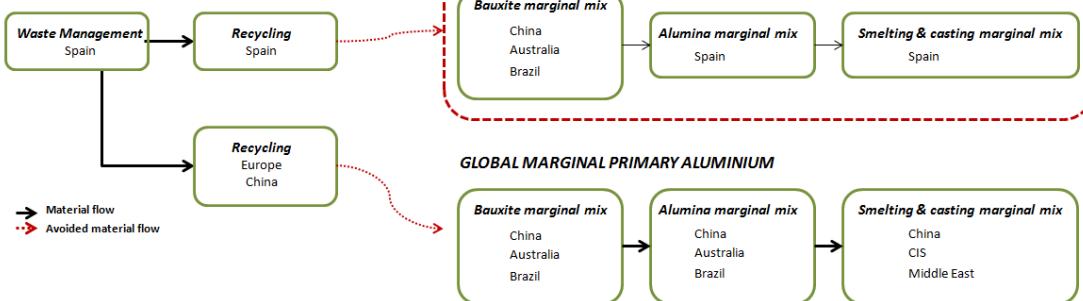
100

101 Each flow is calculated in three ways; it is calculated directly based on statistics,
102 calculated by combining statistics with coefficients and deduced using the mass
103 balance. Details on data collection and sources and explanations of assumptions, as well
104 as stock calculations, are given in the Appendix A.

105


106 2.2. Consequential Life Cycle Assessment (CLCA)

107 Recycling has been the subject of debate in the field of aluminium LCAs, and many
108 approaches have been proposed to evaluate its impact (Liu and Müller, 2012), but the
109 debate has become polarized (Dubreil et al., 2010). Recent publications from the
110 aluminium industry (EAA, 2007; Atherton 2007) recommend using the end-of life
111 approach to credit the environmental benefits resulting from recycling by accounting for
112 the avoided primary production (Atherton 2007). Conversely, some authors have noted
113 that the recycled content approach is more appropriate because the old scrap can only be
114 reintroduced into the production chain for cast alloys, so it is not clear that primary
115 production is avoided (McMillan et al., 2012; Blomberg and Söderholm, 2009). In this
116 work, however, the results of the MFA have allowed observation of the dynamics of
117 supply and demand of old scrap to and from Spain, and we observed that, in recent
118 years, the increase in old scrap collection in Spain has been associated with an increase


119 of export flows because demand has decreased. Thus, the use of collected old scrap will
120 not affect the amount of old scrap for recycling. Additionally, the price elasticity of the
121 old scrap supply is low or inelastic (Frees, 2008; Blomberg and Söderholm, 2009). For
122 both these reasons, we decided that primary aluminium should be credited by recycling.
123 The second key issue in consequential LCI modeling is the identification of the affected
124 technology, also called the marginal technology (Weidema, 2009). This means
125 determining which type of primary production is most sensitive to the supply and
126 demand dynamic for primary aluminium, which will also be affected by recycling. The
127 production of primary aluminium can be divided into three main stages: bauxite mining,
128 production of alumina and aluminium smelter (electrolysis), and the geographical
129 locations of these technologies are not necessary in the same country as the studied
130 system (i.e., Spain) (Schmidt, 2012). In this regard, Schmidt and Thrane identified the
131 marginal supply of primary aluminium and stated that in the long term, because
132 aluminium production is assumed to continue to increase and the aluminium market is
133 global, the marginal suppliers are assumed to be the most competitive (Schmidt and
134 Thrane, 2009) in the global market. Their study concluded by analyzing different
135 possibilities, the most likely of which being the scenario in which the majority of
136 bauxite mining is distributed between in China, Australia and Brazil, alumina marginal
137 production is also dominated by China, Australia and Brazil, and smelting and casting
138 marginal production will be situated in China, Russia, and the Middle East (for more
139 details on this identification, please see Schmidt and Thrane, 2009).
140 In this paper, the production of primary aluminium identified by Schmidt and Thrane
141 (Schmidt and Thrane, 2009) is selected as the global marginal primary aluminium
142 production. Thus, we have defined scenario A-global, a global model of the aluminium
143 market in which every additional ton of old scrap collected in Spain for recycling will

144 avoid a corresponding amount of global marginal primary aluminium production. There
145 remain, however, significant uncertainties associated with this finding. In addition,
146 Spain is also a primary aluminium producer, so it is possible that the old scrap collected
147 in Spain for recycling will avoid the need for the production of primary aluminium in
148 Spain. We defined this alternative as scenario B-local. Nevertheless, there is no bauxite
149 mining in Spain, and the MFA has revealed that during 1995-2010, Spain's main
150 imports of bauxite were from Guinea (datacomex, 2013), a trend that will most likely
151 continue in future years. However, there is no quality data on bauxite mining in Guinea,
152 so the identified marginal mix is considered as the global marginal bauxite producer
153 with an average transport of bauxite from Guinea to Spain (around 5,000 km).
154 For this study, the system limits have been expanded to include the export of old scrap,
155 its recycling process and the avoided production related to recycling. In this sense, we
156 used export data from 2010 (i.e., percentages and destinations in Europe and China),
157 and we assumed that international recycling will avoid global marginal primary
158 aluminium production, as this scrap is traded in a global market.
159 In summary, scenario A-global assumes that recycling conducted in Spain and also
160 internationally would avoid marginal global primary aluminium production, while
161 scenario B-local assumes that recycling in Spain would avoid Spanish primary
162 aluminium production, but international recycling would avoid marginal global primary
163 aluminium production. Figure 2 summarizes graphically both scenarios, and detailed
164 information and explanations of the data and calculations are provided in the Appendix
165 B.

166 **SCENARIO A-GLOBAL**

167 **SCENARIO B-LOCAL**

168 **Figure 2: Global marginal primary aluminium production and Spanish marginal**
 168 **primary aluminium production**

169 **3. RESULTS**

170 **3.1. Dynamic MFA of aluminium flows and stocks from 1995 to 2010**

171 **3.1.1. Domestic production and consumption of aluminium products**

172 In figure 3, production and consumption of alumina, primary aluminium and secondary

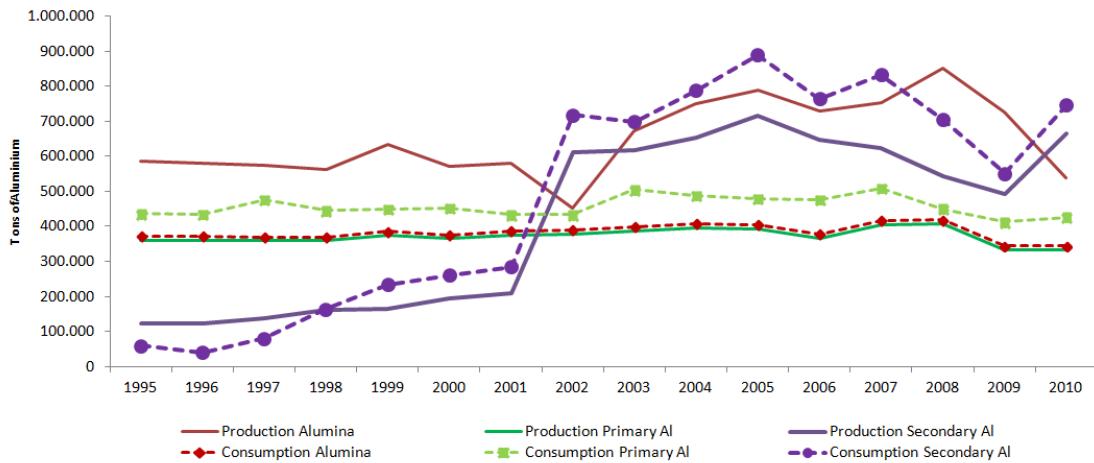
173 aluminium in Spain from 1995 to 2010 are shown. Because there is no bauxite suitable

174 for alumina production in Spain, its consumption is not shown in the figure. The

175 production of alumina is variable, decreasing by 8.1% from 1995 until 2002 and

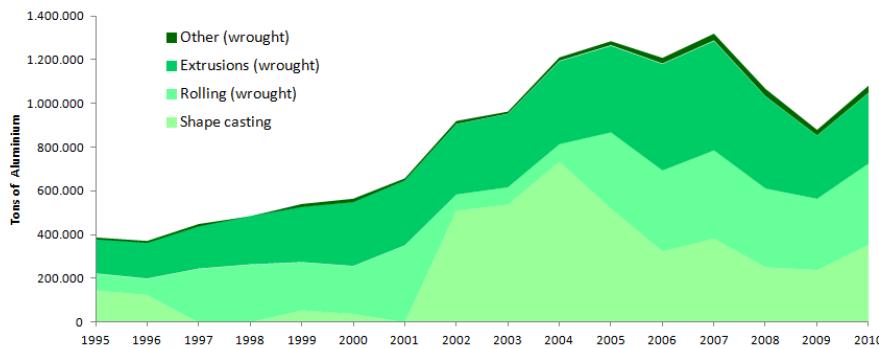
176 increasing by 88.5% from 2002 until 2007, with another decrease of 36.8% from 2007

177 until 2010. However, during this period, the consumption of alumina remained stable at


178 approximately 400,000 (tons of aluminium content per year), parallel to primary

179 aluminium consumption. Between 1995 and 2010 secondary aluminium production

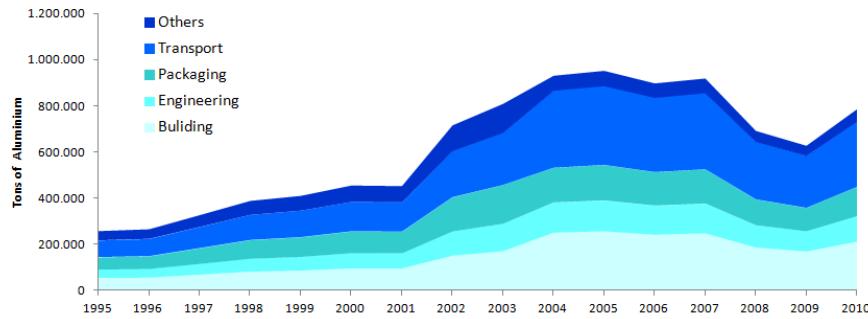
180 increased considerably, with an important increase in 2002, when production increased


181

182 from 200,000 tons to more than 600,000 tons. In fact, until 2002, the production of
183 primary aluminium was twice that of secondary aluminium, while from 2005 the
184 production of secondary aluminium was twice that of primary aluminium. Consumption
185 of secondary aluminium was higher than production during the entire study period.

186
187 **Figure 3:** Production and consumption of alumina, primary aluminium and secondary
188 aluminium expressed in tons from 1995 to 2010 for Spain

189
190 Aluminium enters semifinished product mainly in the form of aluminium alloys, which
191 are divided into wrought alloys, which generally comprise rolled products, extruded
192 products and other fabricated products, and casting alloys. In this study, the
193 semifinished products were classified by production method into rolling, extrusion,
194 shape casting and others (see Figure 4), and the final products were classified into 5
195 end-use markets in building, transport, packaging, engineering and others (see Figure
196 5).

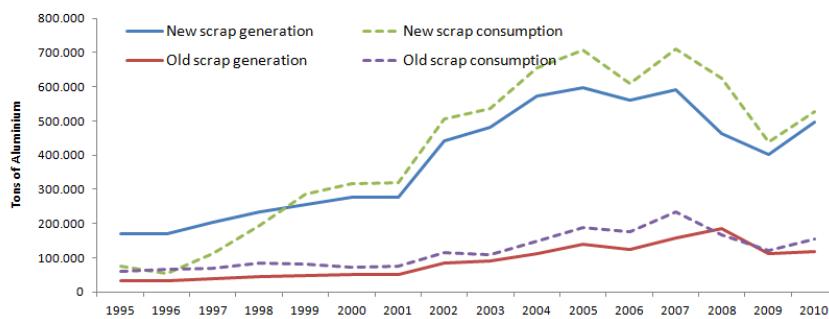


197

198 **Figure 4:** Production of semifinished products expressed in tons from 1995 to 2010 for
199 Spain

200

201 Figure 4 shows that the total amount of semifinished product increased more or less
202 continuously until 2007 and decreased after 2009. Wrought products dominated the
203 production of semifinished products until 2001, but in 2002, the production of shape
204 cast products increased considerably. In general, most of the shape casting is used for
205 the transport sector (Cullen and Allwood, 2013; Mathieu and Brissaud, 2013; Boin and
206 Betram, 2006), and it is estimated that the net weight of aluminium in an average
207 vehicle steadily increased by 15% from 1993 to 2003 (EAA, 2006b). Figure 5 shows
208 that the production of aluminium products for transport has also increased from 2002,
209 possibly explaining the increase in shape casting previously observed. The building and
210 engineering sectors also increased their production from 2002 to 2007 by 63.5% and
211 27.7%, respectively.


212

213 **Figure 5:** Production of final products by end use market expressed in tons from 1995
 214 to 2010 in Spain

215

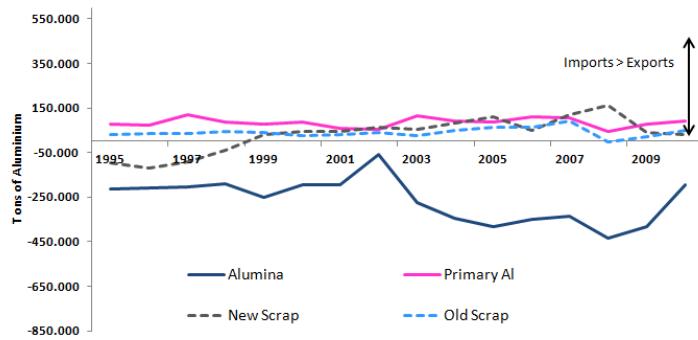
216 3.1.2. Scrap generation and consumption

217 After collection, new and old scrap is converted into secondary aluminium through
 218 refining and remelting. Figure 6 presents data on new and old scrap generation and
 219 consumption from 1995 to 2010; both new and old scrap generation and consumption
 220 have tripled since 1995. The increase in new scrap generation could correspond to the
 221 increase of semifinished and final products, as losses incurred during their production
 222 are classified as new scrap and reintroduced into the production chain. The increase in
 223 old scrap generation could correspond to improvements in waste collection, as well as
 224 the development of the Packaging Waste Directive (EU, 1994) and the End of Life
 225 Vehicle Directive (EU, 2000).

228 **Figure 6:** Old and new scrap collection and consumption expressed in tons of
229 aluminium from 1995 to 2010 for Spain

231 Table 1 presents the packaging consumption and the waste packaging collection from
232 1999 to 2010, as well as the selective collection rate defined as the relation between
233 waste packaging collected versus packaging consumed (Ecoembes, 2013, Arpal, 2013),
234 which has increased considerably over the years. Nevertheless, packaging consumption
235 decreased more or less constantly from 2002 to 2010. The aluminium content in
236 domestic packaging has decreased gradually from 1965 to the present, which could
237 justify the decrease in the weight of packaging consumed (Arpal, 2012). Conversely, the
238 weight of packaging waste collected has increased regardless of individual weight,
239 revealing the benefits of better selective collections and selection processes in waste
240 treatment plants and improved waste recovery in incineration plants. The authors have
241 found no statistics regarding the aluminium recovered from End of Life Vehicles
242 (ELVs) in Spain, but data on total ELVs can be found from 2005 to 2010 showing that
243 82.5% recycling was achieved in 2010 (Eurostat, 2012).

245 **Table 1:** Packaging consumed, waste packaging collected and selective collection rate
 246 in tons of aluminium and percentage, respectively, from 1999 to 2010


	Packaging consumed (tons Al)	Waste packaging collected (tons Al)	Selective collection rate (%)
1999	45,961	1,542	3.36
2000	49,113	5,240	10.67
2001	57,907	7,668	13.24
2002	64,694	11,062	17.10
2003	45,656	11,710	25.65
2004	47,153	10,427	22.11
2005	50,187	10,231	20.39
2006	49,986	12,216	24.44
2007	52,416	14,145	26.99
2008	41,066	13,393	32.61
2009	40,584	13,412	33.05
2010	41,971	14,819	35.51

247

248

249 3.1.3. Trade of aluminium products

250 To observe the trade of aluminium products in detail, the bauxite trade was excluded in
 251 Figure 7. Figure 7 represents the commercial balance, defined as the difference between
 252 imports and exports of aluminium products; thus, lines above the horizontal axis
 253 indicate that there were higher imports than exports. Between 1995 and 2010, Spain
 254 experienced an excess of alumina production, which was exported, mainly to The
 255 Netherlands. During the same period, however, the positive balance of primary
 256 aluminium indicates that Spain experienced a deficit of primary aluminium and thus
 257 imported aluminium, mainly from Russia and Africa (datacomex, 2013).

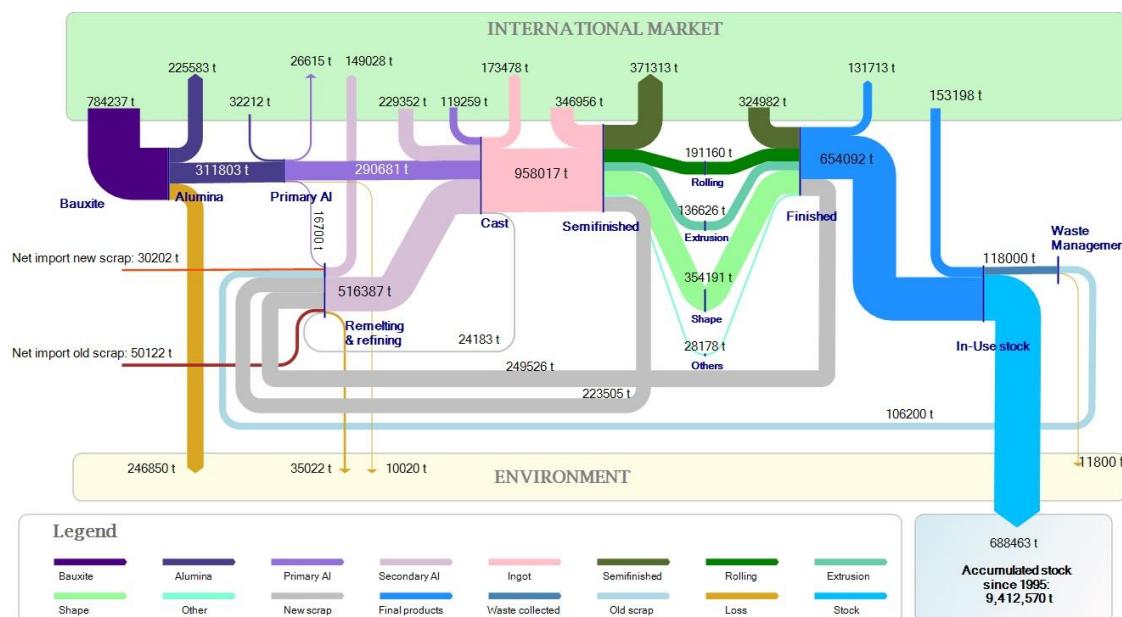
258

259 **Figure 7:** Commercial balances of aluminium in primary forms, new scrap and old
260 scrap expressed in tons from 1995 to 2010 for Spain

261 In the case of secondary aluminium, divided into new and old scrap, we note that the
262 new scrap commercial balance is negative during 1995-1999 because the excess of new
263 scrap was exported. Since 1999, this trend was reversed, due most likely to increased
264 secondary aluminium demand, and since 2008, there was a constant increase in new
265 scrap imports (mainly from Germany) (datacomex, 2013). Old scrap consumption was
266 higher than the supply for most of the study period, so Spain imported old scrap over
267 this period; in the last year, the commercial balance approached zero, indicating that
268 similar quantities of import and exports were traded. The most important change within
269 the old scrap material trade is that while in 1995, old scrap was primarily exported to
270 Europe (88%), the export flow has been shifting constantly to Asiatic countries (41% in
271 2010) (datacomex, 2013).

272

273 3.1.4. Stock of aluminium


274 Because the lifetime of many metal products can be between less than one year and
275 more than 50 years, there has been an accumulation of metal in use since the start of the
276 industry (JRC, 2010). There are no data available for Spain before 1995; therefore, our

277 stock calculations are underestimated, considering that the aluminium industry existed
 278 for many years before the study period. However, in 2010, we calculated an
 279 accumulated stock since 1995 of 9,412,570 tons of aluminium, which represents
 280 approximately 11 years of supply of secondary aluminium at current consumption rates.
 281 Therefore, in subsequent years, this in-use stock will be an important source of old
 282 scrap to use in domestic production or to export abroad.

283

284 3.1.5. MFA for Spain in 2010

285 Figure 8 presents the flows, processes, stocks and losses included in each life cycle
 286 phase of aluminium. Figure 8 starts in 2010 because this year represents the most
 287 current situation. The arrows to and from the upper green rectangle represent
 288 movements to and from the international markets, and the arrows to the lower yellow
 289 rectangle represent movement to the environment.

290

291 **Figure 8:** Aluminium value chain for Spain in 2010

292

293 3.2. Greenhouse Gas Emissions (GHG) of old aluminium recycling

294 Table 2 presents the GHG emissions for the waste management stage and recycling
 295 stage with same export percentages of old scrap as in 2010 (12.5% in China and 12.5%
 296 in Europe). Around 69% of the emissions due to waste management and recycling took
 297 place in Spain, while the rest were emitted abroad. Though the same data inventory for
 298 recycling was used for both Asia and Europe (i.e., the electricity needed for recycling),
 299 the results for the two countries are different due to the marginal electricity mixes
 300 considered for both regions; Asia has more contributions from coal primary energy.
 301 More information on the inventory and marginal electricity mixes can found in the
 302 Appendix B in Table B.1 and B.3.

303

304 **Table 2:** GHG emissions in kg CO₂ eq. by ton of collected old scrap aluminium in
 305 Spain when 75% of old scrap is recycled in Spain, 12.5% in China and 12.5% in Europe

	kg CO ₂ eq. t ⁻¹
Waste Management-Spain	105
Collection & sorting	94
National transport	11
Recycling	980
International transport	113
Recycling in Spain	629
Recycling in Europe	111
Recycling in Asia	127
TOTAL (kg CO₂ eq. t⁻¹)	1,085

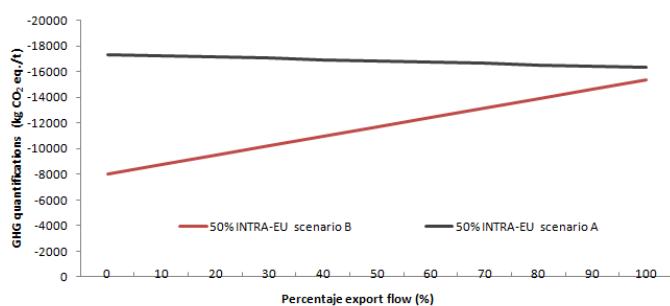
306

307

308 Table 3 presents the GHG quantifications for the scenarios A-global and B-local. We
 309 observe that the values obtained are very different because of the smelting and casting
 310 process (highlighted in grey). The smelting process is a high electricity consumer, and
 311 principal differences in the GHG results are due to the marginal electricity mix sources.

312 The marginal electricity mix of scenario A-global has higher contributions of coal than
313 that of scenario B-local (see Table B.1 to B.3 in Appendix B). In fact, the emissions in
314 scenario A-global are almost double those found for scenario B-local.

315


316 **Table 3:** GHG emissions avoided in kg CO₂ eq. by ton of collected old scrap aluminium
317 in Spain for scenario A-global and B-local when 75% of old scrap is recycled in Spain,
318 12.5% in China and the remaining 12.5% in Europe

	Scenario A (global) kg CO ₂ eq. t ⁻¹	Scenario B (local) kg CO ₂ eq. t ⁻¹
Waste Management & recycling (see Table 2)	1,085	1,085
Primary aluminium	-18,213	-9,012
Smelting process & casting	-15,891	-6,915
Alumina	-1,640	-1,548
Anode	-334	-379
Bauxite	-30	-30
International transport	-318	-139
GHG quantifications for old scrap recycling	-17,128	-7,927

319

320 In both scenarios, similar GHG emissions are obtained for the alumina, anode and
321 bauxite stages. We have observed that the emissions due to transport of old scrap to
322 Asia and Europe contributes approximately 10% of the total emissions (see Table 2),
323 similar to the entire emissions generated in Spain due to collection and sorting. If these
324 emissions are compared to the whole GHG emissions from the market, including the
325 avoided primary production, their contribution decreases up to 2%. Although the total
326 contribution from the export of old aluminium scrap is small, we projected that in the
327 future, export flows will most likely increase. Therefore, in Figure 9, we have evaluated
328 the influence of the export flow on the GHG emitted by assessing the GHG emissions

329 when the export flow varies between 0% and 100% and when 50% is recycled intra-EU
330 and 50% extra-EU (China). The variations obtained in scenario A-global are less than
331 6%, while in scenario B, the variation is higher than 89%. This is due to the marginal
332 process considered in both scenarios. In Scenario A-global, both Spanish recycling and
333 international recycling avoid the global marginal primary production, and therefore,
334 greater export flows increase the international transport stage, what has very little
335 weight comparing to emissions due to the smelting process. However, in scenario B,
336 when recycling occurs in Spain, Spanish primary production is the avoided process, but
337 when recycling occurs outside of Spain, the global marginal production is avoided.
338 Thus, increasing the export flows prevents more emissions because the global marginal
339 production is decreased.

340
341 **Figure 9:** GHG quantification variations (in CO₂ eq. per ton of old scrap collected in
342 Spain) for an export flow of 0% and 100%

343

344 4. DISCUSSION

345 4.1. Supply and demand of aluminium flows

346 Looking at the past trend of aluminium flows, we have observed that in the last few
347 decades, Spain has been an exporter of alumina. It has simultaneously experienced a

348 lack of primary aluminium, which had to be imported (from 18% in 1995 to 28% in
349 2010, relative to primary aluminium consumption). Additionally, there have been
350 changes in the export flows of old scrap from Europe to Asia. Similar trends were
351 detected and projected for Europe, including an increase in primary aluminium imports
352 and old scrap exports over the period 2030-2050 (EAA, 2012a). In fact, the European
353 Aluminium Association (EAA) has noted that Europe's imports of primary aluminium
354 are due to European primary producers' lack of economic competitiveness, mainly due
355 to the price of electricity, which is the critical factor in the production of aluminium.
356 Large uncertainties are besetting the industry, and if the current situation is not reversed,
357 Europe and Spain will become increasingly dependent on imported primary aluminium.
358 This may, in the long run, also negatively affect the fabrication of semifinished products
359 (EAA, 2012a), an industry that contributes heavily to aluminium recycling. In this
360 sense, the MFA has revealed that in recent years, more old scrap was available in Spain
361 due to improvements in recovery and collection, and the amount available is expected to
362 increase in the coming years due to in-use stock products reaching their end of life,
363 especially in the transport sector.
364 At the global scale, approximately 75% of the aluminium produced is still in stock
365 (approximately 700 Mt) (Rombach, 2013), so cities have likely become huge reserves
366 of anthropogenic aluminium that will be an exploitable source in the future (Ciacci et
367 al., 2013). However, an increase in the efficiency of old scrap collection has a
368 significantly smaller impact on the relative availability of secondary raw materials than
369 the growth in future demands for aluminium (Rombach, 2013). The demand for both
370 primary and secondary aluminium is projected to increase in the future, especially
371 demand for secondary aluminium due to the increasing application of aluminium in
372 light vehicles. It has been predicted that the aluminium industry will be displaced to

373 developing countries (Menzie et al., 2010; JRC, 2007). Thus, if the primary aluminium
374 industry is affected and consequently the semifinished industry, but at the same time
375 more old scrap is available due to more stock at the end of its life, the export of old
376 scrap will increase in the future to countries with high demand, which are almost all
377 derived from developing China.

378 4.2. Benefits of recycling in terms of CO₂ eq.

379 Regarding the GHG consequences of the projected situation, we note the importance of
380 considering the trade, as the avoided primary aluminium production will determine the
381 benefits of aluminium recycling, and depending on the marginal source considered,
382 important differences were obtained. Environmental reports on aluminium smelters that
383 consider this perspective are very limited (Damgaard, 2009). However, a few studies
384 (McMillan, 2012; Schmidt and Thrane, 2009; Koch and Harnisch, 2002) have explored
385 the regional variances for primary aluminium production where the main influence was
386 the energy source and results varied from 5.9 kg CO₂ eq. kg⁻¹ of primary aluminium for
387 a new smelter in Greenland with a hydropower energy supplier (Schmidt and Thrane,
388 2009) to 22.5 kg CO₂ eq. kg⁻¹ of primary aluminium in Asia as a result of the region's
389 intensive use of coal fired electricity generation (McMillan, 2012). Those results agree
390 well with our result that 18 kg of CO₂ eq. kg⁻¹ will be emitted for global marginal
391 primary aluminium production traded in a global market, and 11 kg of CO₂ eq. kg⁻¹ will
392 result from the Spanish primary aluminium production.

393 As far as we know, there is no study that quantifies GHG emissions due to old scrap
394 recycling by considering different marginal sources of primary aluminium or taking into
395 account the dynamics of the market for the old scrap. In most cases, primary aluminium
396 production is considered to be avoided by recycling, but previous studies have been
397 limited to national boundaries and nationally or regionally averaged data. The values

398 reported varied between -11,100 kg CO₂ eq. per ton of old scrap (Prognos, 2008) to -
399 3,540 kg CO₂ eq. per ton of old scrap (BIR, 2008); and from -14,958 kg CO₂ eq. per ton
400 (US EPA, 2006) to -9,074 kg CO₂ eq. per ton (AEA, 2001) of aluminium cans
401 collected. If this study was limited to the Spanish boundaries and averaged inventory
402 data, the GHG emissions avoided would be estimated to be around -8,971 kg CO₂ eq. t⁻¹
403 per ton of old scrap collected.

404 However, as this study reflects, reality is much more complex, and to consider that
405 neither the primary and secondary aluminium industries nor the resulting GHG
406 estimates are affected by the market dynamics is incorrect and incomplete. Therefore, it
407 is necessary that the method for accounting for the GHG impact of recycling reflect the
408 market mechanisms, especially if the GHG estimates are to inform waste management
409 policies and strategies. The GHG estimates obtained in this study vary between -17,000
410 kg of CO₂ eq. t⁻¹ of old scrap collected to -10,000 of CO₂ eq. t⁻¹ of old scrap collected,
411 depending on whether the situation is more global or local, respectively. This difference
412 is significant enough to warrant further exploration. For example, assuming that Spain
413 collects a constant amount of approximately 118,000 tons of old scrap annually, the two
414 scenarios produce very different results and conclusions. In addition, the importance of
415 including market dynamics is highlighted when export flows are taken into account. As
416 demonstrated by Figure 9, if the amount of old scrap exported increases, the GHG
417 estimate also increases due to the global marginal primary aluminium substitution (i.e.,
418 higher benefits of recycling are obtained).

419 Recycling should be promoted because it means less energy consumption and thus leads
420 to significant savings in GHG emissions compared to primary production, which is
421 confirmed by the results of this study. On the other hand, when the global trade is
422 considered, higher GHG savings result because more polluting primary production is

423 avoided as a consequence of recycling. In this sense, we have forecast an increase in the
424 export flows what will provide greater GHG savings in a global market. However, it
425 should be noted that the efforts made in recent years to increase collection rates and
426 improve collection systems are not being rewarded because the benefits of recycling are
427 occurring in other countries. Moreover, the results suggest that if the market rules
428 remain the same, efforts to reduce the impacts associated with primary production will
429 be lost as production moves to other countries with higher environmental impacts.
430 These results were obtained by analyzing the impacts of recycling old scrap, but as the
431 MFA reflects, this process's life cycle is interrelated with other processes (i.e., primary
432 aluminium production or semifinished production), so evaluating the consequences in
433 terms of the GHG emissions due to other life processes (for example, the effects of
434 primary aluminium imports) could lead to different results or to an increase in the
435 estimate of global GHG emissions. Therefore, although this analysis predicts greater
436 GHG savings due to the globalization of the old scrap market, export flows are against
437 the objectives of the CE, and from a material point of view, it is essential to reverse the
438 increasing trend in the export of aluminium scrap because it allows importers in other
439 regions to capture a key resource.

440 5. CONCLUSION

441 The integration of the MFA and CLCA is an effective method for evaluating the
442 aluminium flows and estimating GHG emissions within a market context. For the case
443 of Spain but also for Europe, where similar trends were reported and projected (Menzie
444 et al., 2010; JRC, 2007), this methodology has allowed us to observe the trends in past
445 years in the aluminium industry and forecast that if the current trend is not reversed, the
446 primary aluminium industry will be displaced to developing countries and old scrap
447 exports will therefore increase. In fact, developed countries in the 21st century are

448 becoming the major suppliers that provide raw materials to developing countries. In this
449 regard, the GHG results show that the increase in old scrap exports avoids more GHG
450 emissions than if the old scrap is recycled locally, providing up to 89% more in GHG
451 savings. However, the displacement of primary aluminium production implies a loss of
452 local industry, and the export of old scrap should be considered as the loss of a key
453 resource that, in the long term, will also affect the semifinished products industry in a
454 “cascade effect”. Moreover, in the medium and long term, both Spain and Europe as a
455 whole will have to deal with significant quantities of old scrap from in-use stock, and if
456 there is no consolidated industry, this valuable resource will be lost. To achieve a CE
457 with a systemic change in the use and recovery of resources in the economy, different
458 strategies should be proposed for the waste management system and the recycling and
459 primary industries in order to adapt the industry to the future material and quality flows
460 and to reduce import dependence and the loss of material through the export of old
461 scrap.

462

463 **ACKNOWLEDGMENT**

464 The authors would like to thank the project “Ecotech Sudoe: international network in
465 life cycle analysis and ecodesign for environmental technology innovation”
466 (SOE2/P2/E377) for its financial support

467

468 REFERENCES

469 1. *Aluminium recycling in Europe. The road to high quality products.* European
470 Aluminium Association (EAA) and Organization of European Aluminium Refiners
471 and Remelters (OEA). Brussels, 2006a

472 2. *Aluminium recycling in LCA.* European Aluminium Association (EAA), Brussels,
473 2007. Available in: http://www.alueurope.eu/wp-content/uploads/2011/09/Alu_recycling_LCA.pdf

475 3. *An aluminium 2050 roadmap to low-carbon Europe. Lightening the road.* European
476 Aluminium Association (EAA). Brussels, 2012a

477 4. Asociación para el reciclado de aluminio (ARPAL). Datos de recuperación 2001-
478 2010. Madrid, 2013. Available in: http://aluminio.org/?page_id=177

479 5. Atherton, J. Declaration by the metals industry on recycling principles. *International
480 Journal of Life Cycle Assessment*, 2007, 12, 59-60

481 6. Blomberg, J. and Södelhorm, P. The economics of secondary aluminium supply: an
482 econometric analysis based on European data. *Resources, conservation & recycling*,
483 2009, 35, 455-63

484 7. Boin, U.M.J. and Bertram, M. Melting standardized aluminium scrap: a mass
485 balance model for Europe. *Journal of the Minerals, Metals and Materials Society*,
486 2005, 57(8):26-33

487 8. Chen, W.Q. and Graedel, T.E. Dynamic analysis of aluminium stocks and flows in
488 the United States: 1900–2009. *Ecological Economics*, 2012, 81, 92-102

489 9. Chen, W.Q. and Shi, L. Analysis of aluminium stocks and flows in mainland China
490 from 1950 to 2009: exploring the dynamics driving the rapid increase in China's
491 aluminium production. *Resources, conservation & recycling*, 2012, 65, 18-28

492 10. Ciacci L, Chen W, Passarini F, Eckelman M, Vassura I, Morselli L. Historial
493 evolution of anthropogenic aluminium stocks and flows in Italy. *Resources,*
494 *Conservation and Recycling*, 2013, 72, 1-8

495 11. *CO₂ reduction potential for articulated trucks*. European Aluminium Association
496 (EAA). Brussels, 2006b

497 12. Cullen, J.M. and Allwood, J.M. Mapping the global Flow of Aluminium: from
498 liquid aluminium to end-use goods. *Environmental Science and Technology*, 2013,
499 47, 3057: 64

500 13. Damgaard, A., Larsen, A.W., Christensen, T. Recycling of metals: accounting of
501 greenhouse gases emissions and global warming contributions. *Waste Management*
502 and *Research*, 2009, 27, 773-80

503 14. Directive 94/62/CE of the European Parliament and of the Council on packaging
504 and packaging waste. Brussels, Belgium: European Union (EU); 1994

505 15. Directive of the European Parliament and of the Council on end-of-life vehicles.
506 Brussels, Belgium: European Union (EU); 2000.

507 16. Dubreil A, Young SB, Atherton J, Gloria TP. Metals recycling maps and allocation
508 procedures in life cycle assessment. *International Journal of Life Cycle Assessment*,
509 2010, 15, 621-34

510 17. Ecoembes. Informes por municipios y CCAA. Madrid, 2013. Available in:
511 <http://www.ecoembes.com/es/sobre-ecoembes/reciclaje-en-datos/Paginas/reciclaje-en-datos.aspx>

513 18. *Engaging for sustainable growth*. Activity report 2012. European Aluminium
514 Association (EAA). Brussels, 2012b

515 19. Estadísticas del comercio exterior español (DataComex). Ministerio de Economía y
516 Competitividad (<http://datacomex.comercio.es> Accessed April 2013)

517 20. *End-of-waste Criteria for Aluminium and Aluminium Alloy Scrap: Technical*
518 *Proposals*. Joint Research Centre (JRC), 2010, Institute for Prospective
519 Technological Studies, Sevilla

520 21. Eurostat. End of Life Vehicles (ELV) statistics. Brussels, 2012. Available in:
521 http://epp.eurostat.ec.europa.eu/portal/page/portal/waste/key_waste_streams/end_of
522 life_vehicles_elvs

523 22. Frees, N. Crediting aluminium recycling in LCA by demand or disposal.
524 *International Journal of Life Cycle Assessment*, 2008, 13 (3) 212–218

525 23. Gardner, P. Extended Producer Responsibility for packaging and printed paper in
526 the United States. *Journal of Industrial Ecology*, 2013, 17 (2), 170-1

527 24. *Global Aluminium Recycling: a cornerstone of sustainable development*.
528 International Aluminium Institute (IAI). London, 2009.

529 25. Koch, M. and Harnisch, J. CO₂ emissions related to the electricity consumption in
530 the European primary aluminium production. *International Journal of Life Cycle
531 Assessment*, 2002, 5, 283-9

532 26. Liu, G. and Müller, D.B. Addressing sustainability in the aluminium industry: a
533 critical review of life cycle assessment. *Journal of Cleaner Production*, 2012, 35,
534 108-17

535 27. Liu, G. and Müller, D.B. Mapping the global journey of anthropogenic aluminium: a
536 trade-linked multilevel material flow analysis. *Environmental Science and
537 Technology*. Forthcoming 2013

538 28. *Manifesto for a resource-efficient Europe*. European Commission (EC). Brussels,
539 2012a

540 29. *Material resource and waste-2012 Update. The European Environment State and
541 Outlook 2010*. European Environmental Agency (EEA). Copenhagen, 2012

542 30. Mathieu F and Brissaud D. Enf-of-life product-specific material flow analysis.

543 Application to Aluminium coming from end-of-life commercial vehicles in Europe.

544 *Resource, Conservation and Recycling*, 2010, 55, 92-10

545 31. McMillan, C.A. Modeling Temporal Aluminium Material Flows and Greenhouse

546 Gas Emissions to Evaluate Metals Recycling Allocation in Life Cycle Assessment.

547 Michigan. Center for Sustainable Systems, University of Michigan, February 2011.

548 Report No. CSS11-05

549 32. Menzie, W.D, Barry, J.J, Bleiwas, D.I, Bray, E.L, Goonan, T.G, Matos, Grecia. *The*

550 *global flow of aluminium from 2006 through 2025*. U.S. Geological Survey Open-

551 File Report 2010-1256, 73 p., available at <http://pubs.usgs.gov/of/2010/1256/>

552 33. *Prospective study of the world aluminium industry*. Joint Research Centre (JRC),

553 2007, Institute for Prospective Technological Studies, Sevilla

554 34. *Reciclado de aluminio. Formación de formadores*. Asociación para el reciclado del

555 aluminio (ARPAL). Madrid, 2012

556 35. *Report on the environmental benefits of recycling*, Bureau of International

557 Recycling (BIR), Brussels, 2008:
www.bir.org/assets/Documents/publications/brochures/BIR_CO2_report.pdf

559 36. *Resource savings and CO₂ reduction potential in waste management in Europe and*

560 *the possible contribution to the CO₂ reduction target in 2020*; Prognos AG, Berlin,

561 2008;
http://www.prognos.com/fileadmin/pdf/aktuelles/Results_CO2_wasteproject.pdf

563 37. Rombach, G. Raw material supply by aluminium recycling-efficiency evaluation

564 and long-term availability. *Acta Materialia*, 2013, 61, 1012-20

565 38. Schmidt, J. and Thrane, M. Life cycle assessment of aluminium production in new

566 Alcoa smelter in Greenland. 2-0, LCA. 2009

567 39. Sevigné Itoiz, E., Gasol, C.M., Farreny, R., Gabarrell, X., Rieradevall, J. CO2ZW:
568 Carbon Footprint Tool for Municipal Solid Waste Management for Policy Options
569 in Europe. Inventory of Mediterranean Countries. *Energy Policy* 2013, 56, 623–632

570 40. *Solid Waste Management and Greenhouse Gases. A Life Cycle Assessment of*
571 *Emissions and Sinks*; U.S. Environmental Protection Agency (US EPA), 2006

572 41. The Standing Committee of the National People's Congress (NPSCS). *Circular*
573 *Economy Promotion Law of the People's Republic of China*. (2008). Order of the
574 President of the People's Republic of China No. 4

575 42. *Waste Management options and Climate Change: Final Report*. AEA Technology
576 Report for European Commission DG Environemnt, AEA Technology, 2001;
577 http://ec.europa.eu/environment/waste/studies/pdf/climate_change.pdf

578 43. Weidema, B.P.; Ekvall, T.; Heijungs, R. *Guidelines for applications of deepened*
579 *and broadened LCA*. (Deliverable D18 of work package 5 of the CALCAS project,
580 2009)

581 44. *Working Group I. Circular Economy / Greening the Economy. First Report to*
582 *Sherpas*. European Resource Efficient Platform. European Commission (EC).
583 Brussels, 2012b