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Summary 34 

 35 

 Plant function requires effective mechanisms regulating water transport at a 36 

variety of scales. Here we develop a new theoretical framework describing plant 37 

responses to drying soil, based on the relationship between midday and predawn 38 

leaf water potentials. The intercept of the relationship () characterizes 39 

maximum transpiration rate per unit of hydraulic transport capacity; whereas the 40 

slope ( measures the relative sensitivity of transpiration rate and plant 41 

hydraulic conductance to declining water availability.  42 

 This framework was applied to a newly compiled global database of leaf water 43 

potentials to estimate the values of  and  for 102 plant species.  44 

 Our results show that our characterization of drought responses is largely 45 

consistent within species, and that parameters  and  show meaningful 46 

associations with climate across species. Parameter  was ≤ 1 in most species, 47 

indicating a tight coordination between the gas and the liquid phases of water 48 

transport, in which canopy transpiration tended to decline faster than hydraulic 49 

conductance during drought, thus reducing the pressure drop through the plant.  50 

 The quantitative framework presented here offers a new way of characterizing 51 

water transport regulation in plants that can be used to assess their vulnerability 52 

to drought under current and future climate conditions.  53 

 54 

 55 

Keywords: Drought stress, Isohydric/anisohydric behaviour, Leaf water potential, Plant 56 

hydraulics, Stomatal responses, Water availability, Water transport, Xylem embolism 57 
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Introduction 67 

Plants are able to survive and function under extremely variable environmental 68 

conditions, including dramatic changes in soil water availability and atmospheric 69 

evaporative demand. This could not be achieved without powerful regulatory 70 

mechanisms allowing plants to modulate water transport in response to those changes. 71 

At relatively short time scales (i.e., less than seasonal) this regulation is primarily 72 

physiological rather than structural, and takes place mostly at two sites within the soil-73 

plant-atmosphere continuum (SPAC): stomata and the hydraulic transport system 74 

connecting the soil with the leaves (Sperry et al., 2002). Several components of the 75 

hydraulic system of plants are known to vary as a function of water availability, 76 

including the hydraulic conductivity of roots and the root-soil interface (e.g., Maurel et 77 

al., 2010), as well as the xylem and extraxylary tissues (Hacke, 2014). The xylem is one 78 

of the plant tissues where largest hydraulic conductivity losses occur during drought, 79 

and it is certainly the tissue where these losses have been more thoroughly studied 80 

(Tyree & Zimmermann, 2002). 81 

 82 

The xylem of plants offers a low resistance pathway for water movement from roots to 83 

the evaporation sites in leaves. Certain stress factors, such as drought and freezing, 84 

induce the formation of emboli in xylem conduits, resulting in an overall loss of plant 85 

hydraulic conductance and, therefore, increasing the pressure drop required to sustain a 86 

certain transpiration rate (Tyree & Sperry, 1988; Tyree & Zimmermann, 2002). Under 87 

severe water deficit hydraulic failure may result in the complete loss of plant hydraulic 88 

conductance and the consequent desiccation of aboveground tissues (Choat et al., 89 

2012), eventually leading to drought-induced mortality (McDowell et al., 2008). 90 

Although there seems to be a certain level of reversibility in xylem embolism, even at 91 

relatively short timescales (Zwieniecki & Holbrook, 2009; Brodersen et al., 2010), most 92 

of the evidence for novel refilling is controversial and should be treated with caution, as 93 

it could be affected by measurement artifacts (Sperry, 2013; Rockwell et al., 2014). 94 

 95 

Stomata provide the most obvious mechanism allowing plants to control water transport 96 

and loss under drought conditions. The aperture of stomata responds to both 97 

atmospheric water demand and soil water content through a complex array of processes 98 

that eventually result in changes in the turgor pressure of the guard cells that form the 99 

pores or that of adjacent epidermal cells (Buckley, 2005). Plants have been classified 100 
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into two broad categories based on the ability of stomata to regulate leaf water potential 101 

(L) (Stocker, 1956; Jones, 1998; Tardieu & Simonneau, 1998). Isohydric species 102 

adjust their stomatal opening in such a way as to maintain midday L relatively stable 103 

as environmental conditions change. On the contrary, anisohydric species have a less 104 

strict stomatal control, with no discernible threshold of minimum L. As a result, the L 105 

of anisohydric species tracks environmental fluctuations whereas in isohydric species 106 

L is highly buffered against those fluctuations. The fact that most plants are likely to 107 

lay somewhere in between these two extreme theoretical behaviours is problematic if 108 

the iso-anisohydric dichotomy is to be used to characterize drought response strategies, 109 

and has lead to inconsistent classifications of the same species across or even within 110 

studies (e.g., Domec & Johnson, 2012). However, the iso-anisohydric categorization has 111 

been used as a central tenet to describe different strategies by which plants cope with 112 

drought stress and also to characterize the mechanisms underlying drought-induced 113 

mortality in plants (McDowell et al., 2008).  114 

 115 

Overall, plant responses to limited water availability are complex and include 116 

adjustments at a variety of organizational (stomata, leaf, whole plant…) and time scales 117 

(Chaves et al., 2003; Maseda & Fernández, 2006). This variety of behaviours and the 118 

multiplicity of exceptions to any tentative general rule likely explain why a definitive 119 

classification of plant water-use strategies and responses to drought has remained 120 

somewhat elusive, despite the huge research effort that has been devoted to that topic. 121 

Our first objective here is to develop a new theoretical framework to describe plant 122 

responses to drying soil conditions based on the relationship between two commonly 123 

measured ecophysiological parameters: midday and predawn leaf water potentials. 124 

Secondly, we apply this scheme to a newly compiled global database of leaf water 125 

potentials. 126 

 127 

Theoretical framework 128 

Under steady-state conditions, water transport through the xylem (J) must balance 129 

transpiration losses from leaves (E). This equality can be expressed as (Whitehead et al., 130 

1984):  131 

 132 

  JAkDAgE sLSSLL        (Eqn 1) 133 
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 134 

where gL is leaf conductance for water vapour, D is the vapour pressure deficit of the 135 

atmosphere, kS is whole plant hydraulic conductance per unit of basal sapwood cross-136 

sectional area, AL and AS are leaf area and basal sapwood area,  and L and s are the 137 

water potential in leaves and in the soil, respectively. The gravitational component of 138 

the water potential gradient is omitted for simplicity and for consistency with the 139 

nomenclature used below. We also assume here that steady-state conditions are a 140 

reasonable approximation at seasonal or longer timescales, whereas capacitance needs 141 

to be considered when studying shorter-term responses (Meinzer et al., 2009). 142 

 143 

Eqn 1 above can be rearranged to obtain: 144 

 145 

SS

LL

SS

sL
Ak

DAg

Ak

E







 .      (Eqn 2) 146 

 147 

As soil drought develops (i.e., s declines, becoming more negative), some of the plant 148 

parameters in Eqn 2 remain constant or vary typically over relatively long time scales 149 

(AS, AL), whereas others can vary in the short term. In particular, kS is likely to decline 150 

due to the occurrence of xylem embolism (among other processes) and gL will be 151 

reduced by stomatal closure. The changes in kS and gL with drought have been described 152 

using many different equations (e.g., Pammenter & Willigen, 1998, for kS; Oren et al., 153 

1999; and Granier et al., 2000, for gL). Here, we describe both relationships as a 154 

function of s. These functions are not intended to model a direct mechanistic link, but 155 

to capture a strong empirical pattern that arises from potentially complex mechanisms. 156 

Our argument only requires that an overall response of kS and gL to s (fk and fg, 157 

respectively) can be defined. Eqn 2 can thus be rewritten as: 158 

 159 
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, (Eqn 3) 160 

 161 

where  is a measure of (maximum) transpiration rate per unit of water transport 162 

capacity or, equivalently, the leaf water potential at s (the pressure drop or 163 

‘pulling’ capacity of the plant when there is plenty of water available in the soil), fg and 164 
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fk are the functions describing the reductions in gL and kS, respectively, with declining 165 

s, and  is the ratio of these functions. Several types of fg and fk functions have been 166 

used in the literature, with two-parameter sigmoid or Weibull functions being among 167 

the most frequent (e.g., Neufeld et al., 1992; Pammenter & Willigen, 1998; Sperry et 168 

al., 1998; Hoffmann et al., 2011).  169 

Note that when s = 0 by definition fg = fk = 1, so that is the intercept of the 170 

relationship in Eqn 3. Interestingly, if is assumed to be relatively constant, at the 171 

temporal scales of interest, compared to gL and kS, it follows that the relative sensitivity 172 

of stomata and plant hydraulic conductance to declining soil water potentials (fg / fk) 173 

determines whether the water potential gradient in the plant declines, increases or stays 174 

approximately constant as drought progresses (Fig. 1). In more general terms (i.e., 175 

without making any assumptions on how or where water transport is regulated), Eqns 2 176 

and 3 imply that the pressure drop in the plant will increase if hydraulic conductance 177 

declines faster than transpiration rate as drought progresses, whereas it will be reduced 178 

if transpiration rate declines faster than plant hydraulic conductance. 179 

If it is assumed that the function in Eqn 3 is approximately linear within biologically 180 

reasonable ranges of water potentials, the relationship between L and s becomes also 181 

a linear function and its slope () determines the magnitude of the reduction in L as s 182 

declines (see Supporting Information, Notes S1): 183 

 184 

  sssL   .       (Eqn 4) 185 

 186 

In this equation the value of  determines the behaviour of plants according to the 187 

classical iso/anisohydry paradigm. A  = 0 implies strict isohydry (constant L as s 188 

declines), whereas  = 1 would imply strict anisohydry (the difference between L and 189 

s stays constant). Note that two other behaviours are possible (cf. Fig. 1): for  > 1 190 

there is extreme anisohydry, implying an increase in the pressure drop through the plant 191 

as s declines; whereas 0 <  < 1 implies a sort of partial isohydry, by which the 192 

difference between L and s is reduced as s declines (please note that our 193 

nomenclature differs from that proposed by Franks et al. (2007) to describe similar 194 

forms to control water status). 195 
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We aimed at using this theoretical framework and a newly developed global database of 196 

leaf water potentials to test the following hypotheses: (1) the relationship described in 197 

Eqn 3 can be approximated by a linear function, as expressed in Eqn 4, and its 198 

parameters are mostly consistent within species (within limits of statistical 199 

detectability); (2) the slope () of the relationship between L and s is close to 1 in 200 

most species, reflecting a close coordination between stomatal and hydraulic responses 201 

to drought; (3) variation in  across species would reflect differences in environmental 202 

conditions and plant hydraulic traits, so that low values of  (transpiration reduced 203 

much faster than plant hydraulic conductance during drought) will occur in 204 

environments characterized by high evaporative demands or in species showing large 205 

pressure drops under well watered conditions (low ) and high vulnerability to xylem 206 

embolism (overcompensation). 207 

 208 

 209 

Material and methods 210 

 211 

Literature searches 212 

A literature search was conducted in July 2010 using Google Scholar and the terms: 213 

(leaf OR needle) + midday + “predawn water potential”. All the > 400 references in the 214 

initial list were checked for measured values of leaf water potential. The software 215 

TechDig (Version 2.0, Ronald B Jones) was used to retrieve individual data points from 216 

published figures. The following criteria were used to include individual papers in the 217 

final database: (1) they had to be published in the primary scientific literature; (2) no 218 

direct modifications of water potentials in the plant were conducted, whereas 219 

experimental treatments such as irrigation or drought simulation were allowed; (3) leaf 220 

water potentials had been monitored over a period of more than one month (i.e., short 221 

term studies focusing on diurnal changes were excluded); (4) predawn and midday 222 

water potentials were measured concurrently over time and the number of data pairs 223 

was > 5. One study (Hamerlynck et al., 2000) was not considered because it was unique 224 

in showing consistently lower (more negative) predawn than midday leaf water 225 

potentials, suggesting that the measurements were conducted under very particular 226 

conditions that may not be representative. In all the analyses midday (MD) and 227 

predawn leaf water potentials (PD) were used as proxies of L and s, respectively. In 228 
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doing so we assumed that plant and soil water potential equilibrate overnight, which is 229 

not always the case (Donovan et al., 2003). 230 

 231 

A total of 83 articles fulfilled the previous criteria and were included in our database 232 

(see Table S1). In most cases the studies were conducted in natural conditions in the 233 

field (83%), although some studies carried out on crop fields, potted plants or 234 

experimental containers were included. An additional filtering was carried out at the 235 

species level, so that only species for which the overall range of predawn leaf water 236 

potential was > 0.6 MPa were retained. The final database contained data for 102 237 

species sampled in five continents (see Fig. S1), including representatives from the 238 

Temperate (N = 44, including one Boreal species), Mediterranean (N = 33), Tropical (N 239 

= 15) and Desert (N = 10) biomes. All Tropical species except one corresponded to the 240 

Dry Tropical biome (Table S1). The predominance of species from relatively dry 241 

regions corresponds to the fact that leaf water potentials have been widely used to study 242 

plant responses to drought, whereas they have been measured less frequently in wet 243 

environments (e.g., Tropical rainforests). Regarding growth habits and functional types 244 

15 species were conifers, 46 were angiosperm trees (broadleaves), 28 angiosperm 245 

shrubs and 13 were herbaceous (see Table S1). 246 

 247 

Additional datasets 248 

Average climatic variables for the reference period 1961-1990 for each study location 249 

were obtained from the CRU CL 2.0 gridded dataset, with a spatial resolution of 10’ 250 

(New et al. 2002). The following variables were considered: mean annual temperature 251 

(MAT), mean summer temperature (June-August in the Northern hemisphere and 252 

December-February in the Southern hemisphere, MST), mean diurnal temperature range 253 

(MDTR), mean annual precipitation (MAP), coefficient of variation of monthly 254 

precipitation (CVMP), mean summer precipitation (June-August, MSP), mean annual 255 

vapour pressure difference (MAD), and mean summer vapour pressure difference (June-256 

August, MSD). These values were averaged across all the locations in which each 257 

species had been sampled to obtain a mean value for each species. A preliminary 258 

analysis including correlation and principal component analyses showed that some of 259 

the previous climatic variables contained highly redundant information and we selected 260 

MAT, CVMP, MSP and MSD as four relatively independent (r < 0.5 in all cases) 261 

climate descriptors. These four variables were used in all further analyses. 262 
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 263 

Wood hydraulic traits were obtained from the Xylem Functional Traits dataset compiled 264 

by Choat et al. (2012). The following variables were extracted from the database (the 265 

number of common species with our dataset, which determined the sample size of the 266 

corresponding analyses, is also given for each variable): the water potential at which 267 

50% of hydraulic conductivity is lost due to xylem embolism (P50) (N = 49), the water 268 

potential at which 88% of hydraulic conductivity is lost due to xylem embolism (P88) (N 269 

= 47), the slope of the vulnerability curve (N = 48), maximum specific hydraulic 270 

conductivity (KS) (N = 41), maximum leaf-specific hydraulic conductivity (KL) (N = 271 

27), and leaf-to-sapwood area ratio (AL:AS) (N = 25). All variables correspond to 272 

measurements taken on branches. When more than one value was available for a given 273 

species the values were averaged to obtain a single, representative value per species.  274 

 275 

Data analysis 276 

Mixed linear models were used to fit the (seasonal) relationship between predawn and 277 

midday leaf water potential within and across species (Figs 1 and 2). Species and the 278 

combination of study by treatment nested within species were included as random 279 

effects and the species-specific slopes and intercepts of the model were allowed to co-280 

vary. By treatment here we refer to sets of plants of a given species that were measured 281 

under different environmental conditions in a particular study, regardless of the nature 282 

of the treatment (e.g., different experimental drought treatments, but also different 283 

measured populations in observational studies). In a preliminary analysis, different one-284 

parameter functions were used to fit the relationship between MD and PD, including 285 

linear, logarithmic and exponential relationships. However, a linear function gave a 286 

much better fit in terms of AIC and explained variance (see also Fig. 2) and was finally 287 

selected. Higher order functions (e.g., quadratic) were also tried but were abandoned 288 

because the resulting model coefficients were highly correlated between each other (r = 289 

0.99), indicating that they could not be resolved with the empirical data available. The 290 

species-level random coefficients of the fitted model were used to estimate the value of 291 

the intercept ( and slope () of the relationship between MD and PD for each 292 

species in our dataset.  293 

 294 

In order to test for the consistency of the estimated parameter values within species, we 295 

selected all those species for which we had data for at least two study by treatment 296 
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combinations. For this subset of species (N = 61) we ran a variance components analysis 297 

based on the same mixed model described above. Additionally, for each of these species 298 

(separately) we ran a linear model (without random effects) of the relationship between 299 

predawn and midday leaf water potentials in which study by treatment combinations 300 

(ranging between 2 and 21, depending on the species) were introduced as a fixed factor 301 

affecting the intercept and the slope of the relationship. This model was compared to the 302 

base model assuming homogeneous intercept and slope across study by treatment 303 

combinations.  304 

 305 

We used linear models to study the relationships between the species-level parameters 306 

 and  and the climatic variables described above. For hydraulic traits we used 307 

correlation analysis to study their association with parameters  and  Factors coding 308 

for functional type (conifer, angiosperm tree, angiosperm shrub, herbaceous) and biome 309 

(Temperate, Mediterranean, Tropical, Desert) were also included in models. In all cases, 310 

we compared these base models with the equivalent model including phylogenetic 311 

effects, by means of phylogenetic generalized least squares (PGLS; Paradis, 2006). In 312 

addition, phylogenetic effects on response variables were explored using the coefficient 313 

 as a measure of phylogenetic correlation (Freckleton et al., 2002), based on a 314 

Brownian motion evolutionary model (λ = 0 indicates evolution of traits independent of 315 

phylogeny, whereas λ =1 indicates that traits have evolved according to a Brownian 316 

motion model) and Moran’s autocorrelation index I applied to different taxonomic 317 

levels (Paradis, 2006). 318 

 319 

A phylogenetic tree for the study species was constructed in Phylomatic 2 (Webb & 320 

Donoghue, 2005), http://phylodiversity.net/phylomatic/html/pm2_form.html), starting 321 

from an updated megatree based on a recent classification by the Angiosperm 322 

Phylogeny Group (APGIII; https://github.com/camwebb/tree-of-323 

trees/blob/master/megatrees/R20100701.new). Phylogenetic relationships within 324 

families were resolved using published phylogenies for Anacardiaceae (Pell, 2004; 325 

Wannan, 2006), Asteraceae (Bayer & Starr, 1998; Roberts & Urbatsch, 2004), 326 

Betulaceae (Chen et al., 1999), Ericaceae (Kron et al., 2002), Oleaceae (Wallander & 327 

Albert, 2000), Pinaceae (Wang et al., 2000; Gernandt et al., 2005), Poaceae (Hsiao et 328 

al., 1995; Hilu et al., 1999; Catalán et al., 2004) and Rosaceae (Potter et al., 2007). 329 
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Additional phylogenetic trees were used to solve other politomies at genus level for 330 

Acacia (Miller & Bayer, 2001; Bouchenak-Khelladi et al., 2010), Populus (Hamzeh & 331 

Dayanandan, 2004) and Quercus (Manos et al., 1999; Bellarosa et al., 2005). Family-332 

level politomies only remained unresolved for Poaceae; some politomies within genera 333 

for Acacia, Quercus, Ceanothus and Rhamnus were also left unresolved. 334 

 335 

We fitted each PGLS model assuming an Ornstein–Uhlenbeck (OU) model of character 336 

evolution. All analyses were conducted with the software R (v. 2.12, the R Foundation 337 

for Statistical Computing) using the packages nlme, lme4, ape, ade4 and pglm3.2. The 338 

residuals of all reported models showed no obvious pattern. Significance for all 339 

statistical analyses was accepted at  = 0.05. The R
2
 (explained variance) of the mixed 340 

models was estimated including both fixed and random factors using a likelihood ratio 341 

statistic (Magee, 1990). 342 

 343 

 344 

Results 345 

The study species covered a wide range of minimum predawn leaf water potentials 346 

(PD,min), ranging from -0.7 MPa in the Tropical tree Schima wallichii to -11.4 MPa in 347 

the Mediterranean shrub Rhamnus crocea. PD,min was affected by functional type, with 348 

significantly lower values in shrubs (2.3–3.0 MPa more negative than the other 349 

functional types, on average); and it also varied by biome, with Mediterranean species 350 

showing the lowest PD,min, followed by Desert species and by Temperate and Tropical 351 

species, the latter two having similar values (Fig. S2).  352 

 353 

Our linear model of the relationship between predawn and midday leaf water potentials 354 

(Eqn 4) provided a good fit to the data. Overall, the model explained 90% of the 355 

variability in MD. The overall slope of the relationship between midday and predawn 356 

water potential was 0.86 MPa·MPa
-1

 (i.e., a value < 1 implies that the pressure drop 357 

through the plant diminishes with drought), and varied across species between 0.19 for 358 

Acacia etbaica (a Tropical tree) and 1.36 MPa·MPa
-1

 for Prosopis glandulosa (a Desert 359 

tree). The value of the intercept ( varied substantially across species, ranging between 360 

-3.2 (Balanites aegyptiaca, a Tropical tree) and -0.2 MPa (Eragrostis curvula, a 361 

Tropical grass).  362 
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 363 

Overall, the estimated  values for most species was consistent with either strict 364 

anisohydry ( ≈ 1, N = 55) or partial isohydry (0 <  < 1, N = 42). Only five species 365 

showed  values significantly greater than 1 (extreme anisohydry) and none showed 366 

strict isohydry as defined in this study (≈ 0) (Figs 3 and S3). In 80 of 102 species 367 

(78%) estimated  < 1, implying a faster decline of canopy transpiration than plant 368 

hydraulic conductance (hence a decline in the plant pressure drop) in response to drying 369 

soil, although the value of  was not significantly different from 1 in all cases (Fig. S3). 370 

The slope parameter  was unaffected by functional type or biome (P > 0.05 in all 371 

cases). The intercept was also similar across functional types (P > 0.05), but its value 372 

was ~0.4 MPa lower (i.e., more negative) in Desert species compared to either 373 

Temperate or Mediterranean ones (P < 0.05), while Tropical species showed 374 

intermediate values (see Fig. S2).  375 

 376 

There were 61 species for which measurements were available for different studies or 377 

treatments. Parameter  differed significantly across study by treatment combinations 378 

(i.e., within species) in 20 of the corresponding linear models, whereas  was different 379 

across study by treatment combinations in only 8 of 61 cases. A variance components 380 

analysis on the mixed model fitting the relationship between predawn and midday leaf 381 

water potentials but using only the data for this 61 species showed that the species level 382 

accounted for 56% of the total variance in midday leaf water potential, compared to 383 

10% explained by different study by treatment combinations within species. Finally, an 384 

error analysis to assess the error in the estimation of  and  as a function of sample 385 

size (number of PD, MD data pairs) revealed that these values could be estimated 386 

relatively well using sample sizes of 8 data pairs or more (Notes S2). Taken as a whole, 387 

and considering the large variability in measured water potentials, these results indicate 388 

that the obtained parameter values were largely consistent within species and can be 389 

used to characterize species responses to varying soil water availability.  390 

 391 

With regard to phylogenetic effects, similar results were obtained for the two fitted 392 

parameters, indicating no evidence of phylogenetic correlation (see also Fig. S4). For , 393 

= 0.16, which was significantly different from 1 (
2
 = 46.7, P < 0.001) but not from 0 394 

(
2
 = 1.1, P = 0.29); and for  the estimated  was 0.04, which was again significantly 395 
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different from 1 (
2
 = 50.9, P < 0.001) but not from 0

2
 = 0.2, P = 0.67). The same 396 

test applied to PD,min showed a higher value of  = 0.84, which was significantly 397 

different from 0 (
2
 = 5.8, P = 0.02) but not from 1 (

2
 = 1.0, P = 0.33). These results 398 

were largely consistent with those of autocorrelative models showing significant 399 

Moran’s I indices at the genus and family levels for L,min (I ~ 0.6 in both cases), non-400 

significant values for the slope parameter () and significant values only at the family 401 

level for I = 0.18).  402 

 403 

The parameters  and  were significantly related to each other (slope = 0.29, r = 0.74, 404 

P < 0.001; Fig. 4), regardless of whether phylogenetic effects were taken into account. 405 

The result was also very similar (slope = 0.28, r = 0.68, P < 0.001) if the relationship 406 

between midday and predawn leaf water potentials (Eqn 4) was fitted using centered 407 

instead of raw PD values (results not shown). The parameters  and  were both 408 

unrelated to the minimum predawn leaf water potential measured on each species 409 

(PD,min), regardless of whether phylogenetic effects were included or not (P > 0.05 in 410 

all cases). However,  and  were clearly associated to climate and these relationships 411 

were robust to phylogenetic effects (Fig. 5, Table 1). Parameter  declined with annual 412 

temperature and summer vapour pressure deficit and increased as a function of annual 413 

precipitation variability and summer precipitation (Table 1b), whereas  was negatively 414 

related to mean summer vapour pressure deficit (Table 1a). Adding functional type into 415 

the relationships between parameters  and  and climate resulted in non-significant 416 

coefficients for functional types and nearly identical coefficients for climate variables 417 

(results not shown). 418 

 419 

Parameter  was negatively related to the vulnerability to xylem embolism at the 420 

species level, with lower  values occurring in more vulnerable species (i.e., more 421 

vulnerable species showed a greater reduction in their pressure drop than more resistant 422 

ones as PD declined; Fig. 6). There was also a strong relationship with the slope of the 423 

vulnerability curve, so that the relationship was tighter between  and the water 424 

potential causing 88% embolism (P88) than with the water potential causing 50% loss of 425 

hydraulic conductivity (P50). These relationships remained significant and very similar 426 

if phylogenetic effects were included in the models (results not shown). In all cases, the 427 

fit of the models worsened if functional type or biome were included as additional 428 
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factors (with effects on the intercept and slope). There was no significant association 429 

between  and specific hydraulic conductivity (KS), leaf-specific hydraulic conductivity 430 

(KL) or leaf-to-sapwood area ratio (AL:AS) (P > 0.4 in all cases). Finally, parameter  431 

was unrelated to any of the hydraulic traits considered in this study (P > 0.1 in all 432 

cases). 433 

 434 

 435 

Discussion 436 

In this paper we propose a simple and novel approach to study water transport 437 

regulation in plants, based on the relationship between midday and predawn leaf water 438 

potentials. This relationship is characterized using two parameters: an intercept () 439 

measuring the transpiration stream relative to the plant hydraulic capacity under well 440 

watered conditions (or, equivalently, the leaf water potential at s,) and a slope () 441 

characterizing the relative sensitivity of transpiration rate and plant hydraulic 442 

conductance to declining soil water potential (Eqn 4). We postulate that this latter 443 

parameter is more relevant than either stomatal sensitivity to drought or vulnerability to 444 

xylem embolism in determining the temporal dynamics of leaf water potentials and that 445 

our analysis provides synthetic, quantitative measures that can be used to characterize 446 

water use strategies and drought responses in plants.  447 

 448 

The link between stomatal function and plant hydraulics  449 

At the core of our approach is the realization that the response of the plant’s water 450 

potential gradient to declining soil water availability is not determined directly by 451 

stomatal sensitivity to drought or, more generally, to the sensitivity of transpiration rate 452 

to drought, but by the ratio between this sensitivity and the vulnerability of the plant 453 

hydraulic system (due to, e.g., xylem embolism). This fact has several important 454 

implications, as it makes the link between stomatal function and the dynamics of leaf 455 

water potential (in terms, for instance, of the isohydric vs. anisohydric strategies) less 456 

straightforward than implied in previous reports (e.g., Jones, 1998; Tardieu & 457 

Simonneau, 1998). In our view, a plant with highly sensitive stomata closing at 458 

relatively high water potentials could still show a strict anisohydric behaviour (i.e., ever 459 

declining leaf water potentials until the minimum tolerable value is reached at any given 460 
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point in the plant’s hydraulic continuum) provided that its hydraulic transport system is 461 

even more sensitive than stomata to declining water availability (Fig. 1).  462 

 463 

The notion that leaf gas exchange and plant hydraulics are tightly linked is not new 464 

(Meinzer, 2002; Sperry et al., 2002; Mencuccini, 2003). Previous studies have shown 465 

that xylem hydraulic conductivity is positively related to leaf photosynthetic capacity 466 

(e.g, Brodribb & Feild, 2000) and stomatal conductance (e.g., Nardini & Salleo, 2000; 467 

Zhang & Cao, 2009; Héroult et al., 2013) across species, and also that tree species with 468 

higher vulnerability to xylem embolism tend to have higher stomatal conductance 469 

(Maherali et al., 2006). What is less abundant in the literature is the direct comparison 470 

between stomatal and plant hydraulic responses to declining water potential. In one of 471 

the few articles taking this approach, Brodribb et al. (2003) found that the water 472 

potential inducing 50% stomatal closure was linearly correlated with the water potential 473 

inducing a 20% loss of xylem hydraulic conductivity in the stem, and that the slope of 474 

the corresponding relationship was close to one, implying that stomatal conductance 475 

was more sensitive to water potential than stem hydraulic conductivity. Similar results 476 

were obtained by Arango-Velez et al. (2011) across poplar clones.  477 

 478 

We believe that Eqns 3 and 4 above provide a quantitative framework to interpret the 479 

close coordination between stomatal regulation and plant hydraulics. Our results show 480 

that stomatal closure tends to occur somewhat faster than hydraulic conductivity loss in 481 

response to declining soil water potential, as implied by the slope () values, which 482 

were slightly below 1 in most species (Figs 3 and S3). Very shallow slope values (  483 

0) would imply a safe strategy in terms of embolism avoidance, as stomata would close 484 

completely before substantial loss of hydraulic conductivity is observed. However, such 485 

a strategy would incur a high cost in terms of reduced carbon gain and it is thus likely to 486 

be selected against. At the opposite extreme,  > 1 implies that hydraulic transport 487 

limitations (e.g., xylem embolism) occur faster than stomatal closure in response to 488 

declining water potential. This result was observed in nearly one fourth of the species in 489 

our database (although the standard error of the estimated slopes included 1 for 17 of 490 

these 22 species; Figs 3 and S3). Such a strategy might seem disadvantageous because 491 

stomatal conductance loss is more easily reversed than hydraulic conductivity loss in 492 

the xylem, which may eventually lead to whole-plant mortality through hydraulic 493 
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failure (Tyree & Sperry, 1988; McDowell et al., 2008). However, some level of xylem 494 

embolism may be advantageous in terms of maximizing transpiration and assimilation 495 

rates (Jones & Sutherland, 1991; Manzoni et al., 2013a), and may occur in 496 

phreatophytes with direct access to ground water (e.g., Prosopis glandulosa; Fig. S3) or 497 

in other cases where extremely low s values are unlikely to occur. A value of  > 1 498 

could also occur during the process of disconnecting hydraulically from the soil in 499 

drought-deciduous species. 500 

 501 

Climatic and hydraulic correlates of the regulation of leaf water potential 502 

Our two descriptors of the relationship between predawn and midday leaf water 503 

potentials (parameters  and ) were associated to climate at the species level (Fig. 5). 504 

Overall, species living in drier areas (high temperature and evaporative demand, 505 

consistently low rainfall) tended to have higher pressure drops under well watered 506 

conditions (more negative values of ). This result implies a greater gradient of water 507 

potential within the plant at drier sites, even under well-watered conditions. This pattern 508 

is likely related to the fact that plant species growing in drier environments are generally 509 

able to sustain more negative water potentials (Maherali et al., 2004; Choat et al., 2012; 510 

Manzoni et al., 2013b) and tend to have lower hydraulic conductivity (Manzoni et al., 511 

2013b; but see Maherali et al., 2004). The fact that  responded only to D, with lower 512 

values (more sensitive stomata relative to the hydraulic transport system) at sites with 513 

higher evaporative demands, is consistent with the well known negative relationship 514 

between stomatal conductance and D (e.g., Oren et al., 1999). Similarly, the tight and 515 

positive relationship between  and  (Fig. 4) may be interpreted analogously to the 516 

association between reference stomatal conductance (at D = 1 kPa) and the (absolute) 517 

sensitivity of stomatal conductance to D (Oren et al., 1999); that is, species with higher 518 

transpiration per unit of hydraulic transport capacity (more negative values of ) require 519 

a stricter regulation of water loss to limit the decline in L as soil water availability 520 

declines (lower ). 521 

 522 

The negative relationship between  and the vulnerability to xylem embolism (Fig. 6) 523 

implies that species with more vulnerable xylem tend to compensate by having even 524 

more sensitive stomata. Regardless of the mechanism behind this relationship (Nardini 525 

& Salleo, 2000) its end result is the prevention of catastrophic levels of hydraulic 526 
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conductivity loss. The fact that the parameters  and  did not show a significant 527 

phylogenetic signal contrasts with previous results showing that there is some level of 528 

phylogenetic conservatism in the vulnerability to xylem embolism (Maherali et al., 529 

2004). It should be noted, however, that this result might be confounded to some degree 530 

by the tight association between  and  (Fig. 4). When we tried to isolate the effect of 531 

the relative sensitivity of stomata and the hydraulic system using Eqn S5 (cf. Notes S1), 532 

the corresponding parameter (cgk in Notes S1) showed phylogenetic conservatism (= 533 

0.32, significantly different from 0 and from 1). A tight phylogenetic coordination 534 

between  and  would also tend to blur the phylogenetic signal in either parameter.  535 

 536 

Limitations and potentialities  537 

The approach proposed here, as any similar attempt, is based on several assumptions. 538 

Perhaps the most important one is that a response to soil (or predawn) water potential 539 

can be defined for both plant hydraulic conductance and stomatal conductance or, more 540 

generally, transpiration rate. This seems to be the case for the xylem, as embolism is 541 

believed to be a direct response to water potential (Tyree & Zimmermann, 2002). Note 542 

also that we do not make any particular assumption as to where hydraulic conductivity 543 

losses start to develop and, as long as an overall relationship between whole-plant 544 

hydraulic conductance and predawn water potential can be defined, our approach should 545 

be robust regardless of where the main hydraulic bottleneck is (cf. Jackson et al., 2000; 546 

Johnson et al., 2011; Nardini et al., 2012). A similar reasoning can be applied to 547 

stomatal conductance, although the situation is even more complex there as stomata 548 

respond to soil water availability and leaf water status through a complex set of 549 

chemical and hydromechanic signals (Buckley, 2005; Damour et al., 2010).  550 

 551 

In addition, the fact that leaf area may vary at the temporal scale of our analysis and that 552 

vapour pressure deficit (D) frequently co-varies with soil water potential implies that we 553 

are not necessarily characterizing a stomatal response to soil water potential, but an 554 

overall response of transpiration rate to water availability (cf. Eqns 2 and 3). It is also 555 

well known that soil and plant water potentials may not be in equilibrium, particularly 556 

in dry soils (Donovan et al., 2003). However, this decoupling is likely to affect in a 557 

similar way the responses for both transpiration and plant hydraulic conductance. The 558 

previous considerations do not invalidate our analysis but altogether they imply that the 559 
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 < 1 values observed in most species should be interpreted to mean that water loss 560 

regulation begins before hydraulic transport limitations start to occur, not necessarily 561 

that stomata are more sensitive than the hydraulic system to water potential measured at 562 

one particular point within the SPAC.  563 

 564 

Another important assumption is that a linear function is a reasonable approximation of 565 

the relationship between predawn and midday leaf water potential within species (Eqn 566 

4). Although this is largely consistent with the empirical data used in this study (Fig. 2) 567 

and statistically robust towards alternative assumptions, it seems clear that highly non-568 

linear relationships are possible, particularly when the hydraulic system is much more 569 

sensitive than stomata or when stomatal conductance is close to zero (Notes S1). Our 570 

results show that a linear function is a good descriptor of the relationship in Eqn 3, and 571 

the best one using only two parameters. More complex functions (e.g., with three 572 

parameters) can be used in further studies focusing on drought responses on one or a 573 

few intensively studied species. Importantly, the interpretation of the resulting 574 

functions, even if more complex than those assumed here, would still be consistent with 575 

our general framework, as their shape would always reflect the relative sensitivity of 576 

transpiration rate and hydraulic conductance to declining water potentials. Note, 577 

however, that the use of more complex functions is at the expense of simplicity and 578 

generality, and could not be applied to our global water potentials database because 579 

most individual datasets lacked the required level of detail. 580 

 581 

Finally, our framework is based on the assumption that steady-state conditions are a 582 

reasonable approximation of water flow through plants at seasonal time scales. The 583 

importance of hydraulic capacitance is undeniable (e.g., Meinzer et al., 2009), 584 

particularly at relatively short time scales, and could influence the shape of the 585 

relationship between MD and PD even at the longer time scales considered here. 586 

However, our approach seems a reasonable first approximation and it is consistent with 587 

previous synthesis efforts at comparable temporal scales (e.g., Oren et al., 1999; 588 

Manzoni et al., 2013).     589 

 590 

An important advantage of our approach is that it is based on predawn and midday leaf 591 

water potentials, perhaps the most commonly measured variables in ecophysiological 592 

studies (e.g., Bhaskar & Ackerly, 2006). In addition, our analyses demonstrate that the 593 
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estimated parameters ( and ) show meaningful associations with climate variables 594 

and are largely consistent within species, implying that they can be used to characterize 595 

species behaviour (see also Notes S2). In that regard, the slope parameter  provides a 596 

quantitative index to locate species along the continuum between isohydric ( ≈ 0) and 597 

anisohydric ( ≈ 1) behaviour and a more precise characterization of drought responses 598 

than the qualitative approaches used thus far. The fact that  explicitly relates stomatal 599 

sensitivity to plant hydraulic vulnerability to drought provides a useful descriptor in the 600 

context of studying the mechanism of drought-induced mortality in plants, as it directly 601 

relates to the carbon starvation and hydraulic failure hypotheses and their interaction 602 

(McDowell et al., 2008; McDowell, 2011). It helps to explain, for instance, why species 603 

with a stronger stomatal control are not necessarily less prone to hydraulic failure (cf. 604 

Martínez-Vilalta et al., 2003; Meinzer et al., 2009; Nardini et al., 2013), as they may 605 

reach very high levels of xylem embolism (measured for example as the P88) before 606 

their stomata are completely closed (measured as the point at which PD = MD, Fig. 1). 607 

In that regard, our analysis could be expanded to include a third parameter to 608 

characterize species: PD at cessation of gas exchange. This value could be estimated as 609 

/(1-) for relatively isohydric species ( < 1) and as the water potential causing 100% 610 

loss of hydraulic conductivity for anisohydric species ( ≥ 1). 611 

 612 

We are still far from completely understanding plant strategies to cope with drought and 613 

clearly there is no single metric that is able to synthesize the plethora of responses 614 

observed across species. At the same time, however, climate change is increasing 615 

drought stress over many regions of the Earth and reports of drought (and heat) related 616 

forest die-off are becoming widespread (Allen et al., 2010). In this context, we need to 617 

identify the species and populations that are more likely to be vulnerable to increased 618 

drought and there is an urgent need to develop simple but reliable metrics that could be 619 

used in the context of dynamic global vegetation models (Bartlett et al., 2012; Choat et 620 

al., 2012; Klein et al., 2014). We are convinced that the analyses presented here will 621 

facilitate characterizing drought responses of plants and will therefore provide a 622 

valuable and fruitful addition to these efforts. 623 

 624 
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Tables 985 

 986 

Table 1. Models of parameters  (Table 1a) and  (Table 1b) of the relationship 987 

between predawn and midday leaf water potentials as a function of climatic variables. 988 

MAT = mean annual temperature; CVMP = coefficient of variation of monthly 989 

precipitation; MSP = mean summer precipitation; MSD = mean summer vapour 990 

pressure difference. Significant relationships are marked with asterisks (*: 0.05 > P > 991 

0.01, **: 0.01 > P > 0.001, ***: P < 0.001; ns: not significant).  992 

 993 

(a) Response variable:  994 

 

Explanatory 

variables 

Without phylogenetic effects Including phylogenetic effects 

Coefficient 

±standard error 

t-value Coefficient 

±standard error 

t-value 

Intercept  0.96 ±0.08  12.12
***

  0.96 ±0.08  12.12
***

 

MAT -0.0036 ±0.0046 -0.78
 ns

 -0.0036 ±0.0046 -0.78
 ns

 

CVMP  0.0010 ±0.0008  1.30
 ns

  0.0010 ±0.0008  1.30
 ns

 

MSP  0.0001 ±0.0002  0.44
 ns

  0.0001 ±0.0002  0.44
 ns

 

MSD -0.14 ±0.04  -3.60*** -0.14 ±0.04  -3.60*** 

 Model AIC = 15.3; R
2
 = 0.15 Model AIC = 17.3 

 995 

(b) Response variable:  996 

 

Explanatory 

variables 

Without phylogenetic effects Including phylogenetic effects 

Coefficient 

±standard error 

t-value Coefficient 

±standard error 

t-value 

Intercept -1.01 ±0.19 -5.24*** -1.01 ±0.19 -5.24*** 

MAT -0.032 ±0.011 -2.86** -0.032 ±0.011 -2.88** 

CVMP  0.0053 ±0.0019  2.76**  0.0053 ±0.0019  2.77** 

MSP  0.0013 ±0.0005  2.54*  0.0013 ±0.0005  2.55* 

MSD -0.28 ±0.09 -3.06** -0.28 ±0.09 -3.05** 

 Model AIC = 188.3; R
2
 = 0.22 Model AIC = 190.2 

 997 

 998 

 999 
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Figure captions 1000 

 1001 

Figure 1. Relationship between predawn and midday leaf water potentials according to 1002 

our theoretical model, which assumes a linear relationship. Four different behaviours 1003 

are depicted, all sharing the same intercept (): strict isohydric ( = 0), partial isohydric 1004 

(0 <  < 1), strict anisohydric ( = 1), and extreme anisohydric ( > 1). The point of 1005 

cessation of gas exchange is also represented: for isohydric behaviours it occurs when 1006 

PD = MD; for anisohydric relationships it occurs when MD reaches the water 1007 

potential inducing complete loss of plant hydraulic conductance. The 1:1 line is also 1008 

depicted.  1009 

 1010 

Figure 2. Relationship between predawn and midday leaf water potentials for all the 1011 

species included in this study. Three species representative of contrasting responses are 1012 

highlighted in colour: Salix gooddingii, with rapidly shrinking water potential difference 1013 

as predawn water potential declines (~isohydric); Ceanothus crassifolius, with nearly 1014 

constant difference between predawn and midday water potentials (~anisohydric); and 1015 

Prosopis glandulosa, with increasing water potential difference as predawn water 1016 

potential declines (~extreme anisohydric). 1017 

 1018 

Figure 3. Frequency histogram of the type of water potential regulation according to the 1019 

observed  values (cf. Fig. 1). Species are classified as strict isohydric if the confidence 1020 

interval of  (CI, defined as the estimated  value ± 1 standard error) included 0, as 1021 

strict anisohydric if the CI included 1, as partial isohydric if 0 <  < 1 and the CI did not 1022 

include 0 or 1, and as extreme anisohydric if  > 1 and its CI did not include 1. 1023 

 1024 

Figure 4. Relationship between the estimated values of parameters  and . Each data 1025 

point corresponds to a different species (N = 102). 1026 

 1027 

Figure 5. Relationship between  and  and climate variables, including mean annual 1028 

temperature (MAT), the coefficient of variation of monthly precipitation (CVMP), mean 1029 

summer precipitation (June-August, MSP), and mean summer vapour pressure 1030 

difference (June-August, MSD). Each data point corresponds to a different species (N = 1031 

102). Fitted functions correspond to significant coefficients as estimated in the 1032 
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corresponding linear models of  or  as a function of all four climate variables (see 1033 

text). 1034 

 1035 

Figure 6. Relationship between  and two different measures of vulnerability to xylem 1036 

embolism: P50, the water potential causing a 50% loss in xylem hydraulic conductivity; 1037 

and P88, the water potential causing a 88% loss in xylem hydraulic conductivity. Each 1038 

data point corresponds to a different species (N = 102). Simple regression curves are 1039 

fitted to the data in each panel. 1040 
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Figure 2. 1085 
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Figure 3 1105 
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