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Abstract 

In this paper, it is demonstrated that the so-called electric-
LC (ELC) resonators, and their dual counterparts, the 
magnetic-LC (MLC) resonators, are useful for the selective 
suppression of either the differential or the common mode 
in microstrip differential lines. The key point to mode 
suppression is the alignment of the resonator with the 
electric (differential mode) or magnetic (common mode) 
wall of the line. It is shown that by simply rotating the 
resonators 90o we can selectively choose the suppressed 
mode in the vicinity of the resonator’s fundamental 
resonance frequency. The theory is validated through full-
wave electromagnetic simulation, the lumped element 
equivalent circuit models of the proposed structures and 
experimental data.   

1. Introduction 

Split-ring resonators (SRRs) [1] and their complementary 
counterparts (CSRRs) [2] (Fig. 1) have been extensively 
used for the implementation of metamaterials and many 
devices based on them [3]. One of the applications of these 
metamaterial resonators is the selective mode suppression in 
multimode transmission lines. Specifically, SRRs etched in 
the back substrate side of a CPW with their symmetry plane 
(x-z plane) aligned with the symmetry plane of the line, are 
useful to suppress the parasitic slot mode of the line at their 
fundamental resonance, whereas they are transparent for the 
fundamental CPW (common) mode [4] [Fig. 2(a)]. On the 
other hand, CSRRs have been applied to suppress the 
common mode in microstrip differential lines and balanced 
circuits [5]. In these applications, the CSRRs must be etched 
in the ground plane with their symmetry plane aligned with 
the symmetry plane of the differential line [Fig. 2(b)].  

The key aspect to suppress either the differential or the 
common mode, keeping the other mode unaltered (or almost 
unaltered), is the perfect alignment of electric or magnetic 
walls between the line and the resonator. Thus, for the CPW 
loaded with symmetrically etched SRRs, the electric wall of 
the SRR at their symmetry plane is responsible for the slot 
mode suppression, since the CPW exhibits an electric wall at 
the symmetry plane for this mode. For a microstrip 
differential line, the symmetry plane is a magnetic wall for 

the common mode. Therefore, by symmetrically etching a 
CSRR in the ground plane, where the symmetry plane is also 
a magnetic wall, the common mode is suppressed in the 
vicinity of the fundamental CSRR resonance, whereas the 
differential mode is kept unaltered.  

SRRs/CSRRs exhibit bianisotropy [3,6,7], which means that 
they can be excited by means of a uniform axial time-
varying magnetic/electric field, and/or through an 
electric/magnetic field orthogonally applied to the symmetry 
plane of the particle. When these particles (SRRs or CSRRs) 
are loading elements of a transmission line, it is clear that 
the driving fields generated by the line are not uniform. 
Nevertheless, it has been demonstrated that both CPW and 
microstrip lines loaded with symmetrically etched SRRs and 
CSRRs, respectively, exhibit mixed coupling between the 
line and the resonators for those line modes that are 
suppressed [8]. 

 
Figure 1: Typical topology of an SRR (a) and a CSRR 
(b). A sketch of the currents and the distribution of 
charges for the SRR at the fundamental resonance is 
also indicated. Notice that the symmetry plane is an 
electric wall. From the Babinet principle, it follows that 
the CSRR exhibits a magnetic wall at the symmetry 
plane. 

 
Figure 2: CPW loaded with a symmetrically etched SRR (a) 
and microstrip differential line loaded with a symmetrically 
etched CSRR (b).  
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Figure 3: Typical topology of an ELC (a) and an MLC 
(b) resonator. The nature of the symmetry planes at the 
fundamental resonance is indicated, as well as a sketch 
of the currents and the distribution of charges for the 
ELC. 

 

In this paper, alternative resonators are considered, namely, 
the so-called electric-LC resonator, ELC [9], and its 
complementary particle, the magnetic-LC resonator, MLC 
(see Fig. 3). Such resonators are bisymmetric, one of the 
symmetry planes being a magnetic wall and the other one 
being an electric wall at the fundamental resonance. 
Moreover, the resonators are non-bianisotropic because of 
the inversion symmetry with regard to its center. The 
selective mode suppression with ELC and MLC resonators 
in microstrip differential lines is discussed on the basis of 
symmetry properties. The theory is validated through 
electromagnetic simulation, circuit simulation of the lumped 
element equivalent circuit models, and experiment. 

2. ELC and MLC resonators 

The ELC resonator was proposed by Schurig et al. for the 
implementation of resonant-type negative permittivity 
metamaterials, as an alternative to the well known wire 
media, described by the Drude model [9]. The ELC 
resonator consists of two closed inductive loops connected 
to a common capacitor. At the fundamental resonance, the 
instantaneous current is clockwise in one loop and 
counterclockwise in the other loop [see Fig. 3(a)], thus 
giving rise to a net displacement current in the central 
capacitor. Therefore, at the fundamental resonance, the 
magnetic moment associated with currents in both loops 
cancels and the particle cannot be excited by a uniform 
time-varying magnetic field applied in the axial direction 
(this is the main driven mechanism in SRRs). However, 
there is still an electric dipole moment associated with the 
capacitor. Thus, the ELC resonator can be electrically 
driven (or coupled) by means of an electric field applied in 
the particle plane in the direction orthogonal to the electric 
wall. Notice that due to charge and current symmetry, the 

vertical symmetry plane in Fig. 3(a) is a magnetic wall for 
the fundamental resonance. 

For the MLC, we can invoke the Babinet principle and 
conclude that this particle also exhibits electric and 
magnetic walls, rotated 90o as compared to those of the 
ELC. In other words, the particle cannot be excited by 
means of a uniform axial time-varying electric field (as a 
CSRR is driven), but it can be driven through a magnetic 
field orthogonally applied to the magnetic wall.  

3. Microstrip differential lines loaded with ELCs 
and MLCs 

As it was discussed before [5], if a symmetric transmission 
line is loaded with a symmetric resonator with both 
symmetry planes aligned, and the symmetry planes are of 
the same nature (electric or magnetic walls), signal 
propagation in the vicinity of the fundamental resonance is 
inhibited (i.e., a transmission zero appears). However, the 
line is transparent if such symmetry planes are distinct. In 
particular, if we consider a microstrip differential line 
loaded with an ELC or an MLC, there are 4 cases of interest 
for selective mode suppression, depicted in Figs. 4 and 5. In 
Figs. 4(a) and (b), the differential line is loaded with an 
ELC etched on the upper side of the substrate, with a 
relative orientation of 90o between the loading elements. 
According to these orientations, it is expected that the 
structure of Fig. 4(a) is transparent for the differential mode 
and produces a notch for the common mode, contrarily to 
Fig. 4(b).  
  

   

  

Figure 4: Microstrip differential line loaded with an 
ELC with the magnetic (a) and electric (b) wall aligned 
with the symmetry plane of the line. The substrate is 
Rogers RO3010 with thickness h = 1.27 mm and 
dielectric constant r = 10.2. The line dimensions are: 
line width W = 1.1 mm and line separation S = 10.4 mm, 
which corresponds to a 50 Ω even mode (common mode 
related) and odd mode (differential mode related) 
characteristic impedance. The ELC dimensions are: 
w1 = 4 mm, w2 = w3 = l1 = s = 0.2 mm, l2 = l3 = 10 mm. 
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Figure 5: Microstrip differential line loaded with an 
MLC with the electric (a) and magnetic (b) wall aligned 
with the line. The substrate is Rogers RO3010 with 
thickness h = 1.27 mm and dielectric constant r = 10.2. 
The line dimensions are: W = 1 mm and S = 5 mm, 
corresponding to a 50 Ω even mode and odd mode 
characteristic impedance without the MLC etching. The 
MLC dimensions are: w1 = 4 mm, 
w2 = w3 = l1 = s = 0.2 mm, and l2 = l3 = 10 mm. 

 
In Figs. 5(a) and 5(b), the differential line is loaded with an 
MLC resonator etched in the ground plane. In this case the 
situation is reversed since the electric and magnetic walls of 
ELCs and MLCs are interchanged. The reflection and the 
transmission coefficients for the differential (Sdd11 and Sdd21) 
and common (Scc11 and Scc21) modes of the structures of 
Figs. 4 and 5 have been inferred by means of the Agilent 
Momentum commercial software. The transmission 
coefficient results (also depicted in Figs. 4 and 5) validate 
the selective mode suppression achievable in these 
differential lines by merely rotating the resonators 90o. 

It is important to emphasize that the driving fields of the 
particles are not uniform. Indeed, in the configuration of 
Fig. 4(a), the ELC cannot be excited by the electric field 
generated by the differential line in the common mode. 
However, for this mode, the magnetic fields generated by 
the differential line have contra-directional axial 
components with regard to the midplane, sufficient to excite 
the particle. Therefore, the ELC resonator is excited by 
means of the magnetic field generated by the line under 
common mode operation. Similarly, in the configuration of 
Fig. 5(a), the MLC is excited under differential mode 
operation thanks to the electric field generated by the pair of 
lines, which is able to induce an electric dipole moment and 
a net current flow in the ground plane, across the symmetry 
plane of the differential line (or across the electric wall of 
the MLC). Thus, the terminology of these particles does not 
obey to the nature of the driving fields in the considered 
configurations (the reason is that the fields are not uniform). 
However, the original nomenclature, given by Schurig et al. 
[9] to the resonator of Fig. 3(a), i.e. ELC, is preserved. For 

coherence, the resonator of Fig. 3(b) is called MLC particle 
by the authors. 

4. Lumped element equivalent circuit models 

Let us now consider the lumped element equivalent circuit 
models of the structures of Figs. 4 and 5. In Fig. 4(a), the 
ELC can only by excited by the magnetic field generated by 
the line (common mode), but not by the electric field, due to 
the particle orientation. Similarly, for the MLC of Fig. 5(a), 
excitation under differential mode operation is only possible 
through the electric field generated by the line. In Figs. 4(b) 
and 5(b), particle excitation under differential and common 
mode, respectively, is more complex, since both electric and 
magnetic coupling between the line and the resonator must 
be considered. Let us thus start with the lumped element 
equivalent circuit models of the structures of Figs. 4(a) and 
5(a), where mixed coupling is not present.  

The model of the ELC-loaded differential line of Fig. 4(a) is 
depicted in Fig. 6(a). The electric and magnetic coupling 
between the pair of lines has been neglected due to the 
significant separation between the individual lines 
(necessary to accommodate the ELC). The per-section 
inductance and capacitance of the individual lines are 
modeled by L and C, respectively. The ELC resonator is 
modeled by the inductances Le and the capacitance Ce, and 
the magnetic coupling between the lines and the resonator is 
accounted for through the mutual inductances M. The 
equivalent circuit models for even and odd mode (common 
and differential mode related, respectively) excitation are 
depicted in Figs. 6(b) and (c). For the common mode, the 
symmetry plane is an open circuit, and the model is 
identical to that of an SRR-loaded line, giving a notch in the 
transmission coefficient at resonance [10,11]. For the 
differential mode, the symmetry plane is a short circuit and 
the ELC no longer plays an active role. Therefore, the line 
is transparent for this mode. For the ELC-loaded line of 
Fig. 7, we have extracted the circuit parameters from the 
electromagnetic simulation of the frequency response for 
the common mode following the procedure explained in 
[12]. The agreement between circuit and electromagnetic 
simulations is remarkable. Notice that the topology of the 
ELC of Fig. 7 has been modified as compared with that of 
Fig. 4 in order to reduce the electrical size of the particle at 
resonance (under these conditions the lumped element 
circuit model is valid in a wider frequency range). 
The model of the MLC-loaded differential line of Fig. 5(a) 
is depicted in Fig. 8(a). The per-section line inductance and 
capacitance are modeled, respectively, by L and C (again, 
the coupling between the line pair is not significant). 
However, notice that actually L is the line inductance with 
the presence of the MLC and C acts as the coupling 
capacitance between the lines and the MLC. The resonator 
is modeled by the inductance Lm and the capacitances Cm. 
Finally, the particle is capacitively connected to the ground 
plane through the slot ring capacitance modeled by Cg. The 
equivalent common and differential mode models are 
depicted in Figs. 8(b) and 8(c), respectively. For the 
common mode, the resonator is opened, and the resulting 

(b) 
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model is that of a transmission line with modified shunt 
capacitance. Thus, some attenuation can occur as can be 
seen in Fig. 5(a), as a consequence of the MLC etching 
(i.e., a defected ground structure) that disturbs the return 
current flowing on the ground plane modifying the line 
parameters [5]. On the other hand, for the differential mode, 
there is a short in the symmetry plane, and the circuit model 
is identical to that of a CSRR-loaded microstrip line, 
providing a notch in the transmission coefficient for such 
mode at resonance. We have considered the MLC-loaded 
line of Fig. 9, and we have extracted the circuit parameters 
for the differential mode from the electromagnetic 
simulation of the frequency response for this mode as 
reported in [13]. The agreement between circuit and 
electromagnetic simulations is also good.  
Let us now focus on the lumped element equivalent circuit 
models that result by rotating the ELC and the MLC 90o, 
that is, the models describing the structures of Figs. 4(b) 
and 5(b), where both electric and magnetic coupling must 
be considered. For the structure of Fig. 4(b), the circuit 
model is that depicted in Fig. 10(a). In this circuit, the 
magnetic coupling’s sign is provided by the dot convention 
to avoid any ambiguity. The resonator has been rotated, and 
the coupling capacitances, Ca, have been added to account 
for electric coupling. Indeed, since the symmetry plane in 
the configuration of the structure of Fig. 4(b) is an electric 
wall for the differential mode, electric coupling is the main 
driving mechanism of the ELC for this mode (the magnetic 
coupling is not able to induce resonant currents by itself). 
The circuit models for the common and differential modes 
are depicted in Figs. 10(b) and 10(c), respectively, where it 
is clear that the common mode is not able to excite the 
particle and the structure is transparent for this mode. 
Conversely, the differential mode produces a notch in the 

 

 
Figure 6: (a) Lumped element equivalent circuit model 
of the ELC-loaded differential line of Fig. 4(a); (b) 
circuit model for the even mode; (c) circuit model for 
the odd mode. 

 
Figure 7: Frequency response (common mode) for the 
structure of Fig. 4(a) with l1 = 2 mm and w1 = 8 mm and 
for its circuit model of Fig. 6(b). The circuit parameters 
are: L = 4.57 nH, C = 2.2 pF, Le = 4.57 nH, 
Ce = 8.14 pF, and M = 1 nH.  

 

   
Figure 8: (a) Lumped element equivalent circuit model 
of the MLC-loaded differential line of Fig. 5(a); (b) 
circuit model for the even mode; (c) circuit model for 
the odd mode. 

 
Figure 9: Frequency response (differential mode) for the 
structure of Fig. 5(a) with l1 = 2 mm and w1 = 8 mm and 
for its circuit model of Fig. 8(c). The circuit parameters 
are: L = 6.07 nH, C = 1.53 pF, 4Cm + Cg/2= 7.47 pF, and 
Lm = 3.71 nH. 
 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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transmission coefficient, as the equivalent circuit model of 
such mode confirms. In order to match the frequency 
response for the circuit model (differential mode) to that 
inferred from the electromagnetic simulation, we have 
considered the structure of Fig. 11 and we have tuned the 
coupling capacitance, readjusting slightly the rest of 
parameters corresponding to Fig. 7 (the geometries of the 
differential line and the ELC are identical). As can be seen, 
the agreement is reasonably good. 

  

 
Figure 10: (a) Lumped element equivalent circuit model 
of the ELC-loaded differential line of Fig. 4(b); (b) 
circuit model for the even mode; (c) circuit model for 
the odd mode. 
 

 
Figure 11: Frequency response (differential mode) for 
the structure shown in Fig. 4(b) with l1 = 2 mm and 
w1 = 8 mm and for its circuit model in Fig. 10(c). The 
circuit parameters are: L = 4.09 nH, C = 1.88 pF, 
Le = 4.62 nH, Ce = 8.04 pF, M = 1.12 nH, and 
Ca = 0.44 pF. 

 
The MLC-loaded differential line of Fig. 5(b) is modeled 
by the circuit of Fig. 12(a). This is obtained by rotating the 
particle and splitting the coupling capacitances. Moreover, 

magnetic coupling has been introduced and is accounted for 
by the mutual inductances M. The equivalent circuit models 
for the common and differential modes, which are shown 
respectively in Figs. 12(b) and 12(c), indicate that the 
structure is transparent for the differential mode, whereas a 
notch appears for the common mode. For the latter mode, 
the magnetic coupling to the strip connecting the two inner 
halves of the MLC is absolutely necessary to excite the 
particle. Otherwise, resonance could not be driven 
exclusively through the electric coupling. Notice also that, 
by applying the magnetic wall concept, the resulting mutual 
inductance in Fig. 12(b) is twice that considered in 
Fig. 12(a). Conversely, an electric wall in Fig. 10(a) does 
not scale the mutual inductance, as can be appreciated in 
Fig. 10(c). Again, the electromagnetic simulation for the 
common mode is compared to the circuit simulation for 
such mode (Fig. 13), and the agreement is also good, thus 
confirming the validity of the proposed model. 

 

 
Figure 12: (a) Lumped element equivalent circuit model 
of the MLC-loaded differential line of Fig. 5(b); (b) 
circuit model for the even mode; (c) circuit model for 
the odd mode. 

 
Figure 13: Frequency response (common mode) for the 
structure shown in Fig. 5(b) with l1 = 2 mm and 
w1 = 8 mm and for its circuit model in Fig. 12(b). The 
circuit parameters are: L = 9.3 nH, C = 1.53 pF, 
Lm = 3.64 nH, and Cm = 0.93 pF, Cg = 7.5 pF, and 
M = 0.5 nH. 

(a) 

(b) 

(c) 
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Finally, it is worth to highlight that all the proposed 
structures are symmetric with regard to the ports (i.e., 
Scc11 = Scc22 and Sdd11 = Sdd22), and their corresponding 
circuits as well.  

5. Applications 

The proposed structures can be useful for common mode 
suppression in differential lines and balanced circuits [5], for 
differential notch/stopband filters, or for the implementation 
of sensors based on symmetry properties [14]. Specifically, 
with a circular structure based on the configurations of 
Fig. 4, it is possible to implement a rotation sensor in 
microstrip technology similar to that based on the CPW 
structure reported in [14]. On the other hand, as compared 
with the structures used in [5], based on CSRRs, the 
structure of Fig. 4(a) is able to suppress the common mode 
keeping the ground plane unaltered. However, this solution 
seems to be not so suitable for common mode suppression 
because of its inherent narrow-band rejection. On the 
contrary, a narrow balanced stopband filter with low 
insertion loss in the transmission bands can be useful in 
order to suppress undesired differential signals. To this end, 
we have designed an order-3 balanced stopband filter based 
on the structure of Fig. 5(a). The filter is composed of three 
cascaded MLCs with slightly different longitudinal 
dimensions to widen the stopband. A photograph of the 
fabricated filter and the frequency response are shown in 
Fig. 14. The measured response exhibits a rejection of more 
than 20 dB for differential signals over a fractional 
bandwidth of 14.3% centered at 1.3 GHz. 

6. Conclusions 

In conclusion, it has been demonstrated that the differential 
and common modes in microstrip differential lines can be 
selectively suppressed by loading the lines with either ELC 
or MLC bisymmetric resonators. Key to this selective mode 
suppression at the fundamental resonance frequency of the 
particles is the presence of a magnetic and an electric wall, 
orthogonally oriented, in these resonators. Hence, it is 
possible to either suppress the common or the differential 
mode by simply rotating the considered particle (ELC or 
MLC) 90o. We have proposed lumped element circuit 
models for microstrip differential lines loaded with both 
resonators for the two considered orientations, and the 
agreement between the frequency responses inferred from 
circuit and electromagnetic simulations is good. Finally, 
potential applications have been highlighted, and a 
differential stopband filter has been presented.  
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Figure 14: (a) Photograph and (b) differential mode 
frequency response for the designed differential 
stopband filter. The substrate is Rogers RO3010 with 
h = 1.27 mm, r = 10.2, and loss tangent tan(δ) = 0.0023. 
Line dimensions are: W = 1.6 mm and S = 5 mm (not 
corresponding to a 50 Ω odd mode impedance), 
designed to mitigate the passband insertion loss due to 
the presence of the resonators. MLC dimensions are: 
w1 = 8 mm, w2 =  l1 = s = 0.2 mm, w3 = 0.8 mm, 
l2 = [13.2, 15.1, 17.6] mm, and l3 = 10 mm. The inter-
resonator distance is 0.2 mm. 
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