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Abstract

The present work developed a model for the desonpbf a full-scale WWTP
(Manresa, Catalonia, Spain) for further plant upgsa based on the systematic
parameter calibration of the ASM2d model using ahoé@ology based on the Fisher
Information Matrix (FIM). The influent was charadieed for the application of the
ASM2d and the confidence interval of the calibrgbedameters was also assessed. No
expert knowledge was necessary for model calibvaiod a huge available plant
database was converted into more useful informafidre effect of the influent and
operating variables on the model fit was also swdising these variables as calibrating
parameters and keeping the ASM2d kinetic and stoeétric parameters, which
traditionally are the calibration parameters, &irtidefault values. Such an “inversion”
of the traditional way of model fitting allowed dwating the sensitivity of the main
model outputs regarding to the influent and todperating variables changes. This new
approach is able to evaluate the capacity of tlegatipnal variables used by the WWTP
feedback control loops to overcome external distnces in the influent and
Kinetic/stoichiometric model parameters uncertagitiln addition, the study of the
influence of operating variables on the model otggarovides useful information to

select input and output variables in decentral@satrol structures.

Keywords: ASM2d, EBPR, FIM, full-scale WWTP, calibration, inént

characterization, modelling.
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Nomenclature

A?I0
ASM
BOD5
CCF
COD
DO
EBPR
FIM
GAO
IWA
PAO
PCCF
PID
SRT
TKN
TN
TSS
VCF
WWTP

WERF

Anaerobic, Anoxic and Aerobic (WWTP configuoat)

Activated Sludge Models

Biological Oxygen Demand (5 days)
Calibration Cost Function

Chemical Oxygen Demand
Dissolved Oxygen

Enhanced Biological Phosphorus Removal
Fisher Information Matrix

Glycogen Accumulating Organisms
International Water Association
Phosphorus Accumulating Organisms
Preliminary Calibration Cost Function
Proportional-Integral-Derivative controller
Sludge Retention Time

Total Kjeldahl Nitrogen

Total Nitrogen

Total Suspended Solids

Validation Cost Function

Wastewater Treatment Plant

Water Environment Research Foundation
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1. Introduction

Modelling wastewater treatment plants (WWTP) is tlledamental stone to improve
WWTP performance through identifying bottlenecksl aroposing modifications of
existent plants or to design a completely new &asides the experimental knowledge,
mathematical models are a set of tools for preaicplant behaviour under different
conditions from the ordinary outlook of the WWTP wmder unexpected operational
scenarios [1]. The models are also useful for cimgngrocess concepts and developing
new plant configurations [2]. The operation of WWTIR based on the behaviour of
different microorganisms, which are responsible Balogical nutrient (nitrogen and
phosphorus) and organic matter (carbon) removalh $uocesses are well described by
the IWA models ASM1, ASM2, ASM2d and ASM3, even ugb other models have
been used and accepted in practical and scientididia as the TUD-P model [3-5] or
the ASM3 EAWAG Bio-P [6]. ASM2d model is being usé&d many researches
concerning WWTP due to including the most importaiotogical processes of ordinary
heterotrophic biomass, heterotrophic PAO biomaskratmifiers. Ferrer et al. [7] used
this model to fit full-scale WWTP data and theret@luate different configurations for
improving nutrient removal. Ingildsen et al. [8]libaated the ASM2d model for the
Avedgre WWTP (Denmark) to support a control stratieg maintaining the enhanced
biological phosphorus removal (EBPR) process atd/&or long periods. Xie et al. [9]
also used ASM2d to simulate and optimize a fulles€arrousel WWTP. Garcia-Usach
et al. [10] or Machado et al. [11] successfully duis®sSM2d for describing EBPR
process at pilot scale.

WWTP models are also useful for studying and proygpseveral control strategies in
order to guarantee the effluent quality with orheiit external disturbances (storm

events, peaks of pollutants in the influent...). Efftuent quality is the main goal of the
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control structures, where ammonium, nitrate andsphorus are the main pollutants
that should be kept at lower values to avoid thiophication effect. Nevertheless,
dissolved oxygen (DO) and the sludge residence (BR) are the inventory variables
that should be controlled first [12]. To control m@nium concentration, a cascade
controller which calculates the DO setpoint in #&eobic basin using the error between
the desired ammonium concentration and the realsunement in the effluent is
designed [13]. An ammonium feedback-feedforward trodler also could be
implemented if the ammonium influent load is estedlaor measured [14]. Nitrate
removal is accomplished by the denitrification m®ges which depend on the readily
organic matter available in an anoxic zone andnibh@te concentration. Two ways of
controlling the nitrate concentration at the effiues adding external carbon source and
changing the nitrate recycle from the aerobic b&sithe anoxic one in most of WWTP
[15, 16]. It is worth noticing that the measuredl dlne manipulated variables also have
uncertainties, like recycling flow measurements dis$olved oxygen concentrations.
All the abovementioned control applications using/WW°P models should be preceded
by a correlation analysis of the available manifadavariables not to add internal
disturbances to control the effluent quality.

Despite all the cited models are essential tootsirfgoroving many aspects of the
wastewater treatment, they are structured on kiregtd stoichiometric parameters that
should be identified for better accuracy. Besidlesir state variables are not exactly the
same as the information obtained from laboratoafyams periodically performed in the
WWTP. Therefore, it is necessary, first, to consae daily plant measurements of
the influent into model states and, second, tdocate parameters using plant data and
lab assays (batch tests with the plant biomasshdriiterature it is possible to find a

methodology to accomplish the first task before tio@med [17], although the influent
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identifiability linked to its variability has noteceived much attention. The parameter
calibration could be performed using protocols regmin the literature [18, 19] as the
protocols developed by STOWA [20], BIOMATH [21], VRE [22], HSG [23] or
Mannina et al. [24, 25]. All these protocols aregat posing well the goals of the
calibration, systematically treat the plant datthgeed and have a validation step with
different data from those used to calibrate the eho®©n the other hand, only
BIOMATH, WERF or Mannina et al. protocols pay atien to the parameter subset
selection to maximize the information mined frone {hlant data. Machado et al. [11],
developed an alternative calibration methodologlled the “seeds methodology”,
using criteria derived from the Fisher Informatibfatrix (FIM) to avoid overfitting.
Although the hydraulics modelling and a detailednbiss characterization are not
emphasized in this last method as in the HSG a@MBITH protocols, respectively,
the usage of a large amount of available plant datmbined with a systematic
procedure to find the most identifiable parametsubset, without testing all the
possible parameters combinations, are the strengththe “seeds methodology’.
Unfortunately, the performance of all the abovenwer@d protocols is affected by
uncertainties from different sources during the el task. Refsgaard et al. [26]
pointed out that several error sources affect tedity of model simulation results: (i)
context and framing; (ii) input uncertainty; (iipnodel structure uncertainty; (iv)
parameter uncertainty and (v) model technical uagdy. Sin et al. [27] deepened in
the uncertainty analysis, concluding that both imetic/stoichiometric/influent
fractionation related parameters as well as hydrslahass transfer related parameters
induced significant uncertainty in the predictedf@enance of WWTP. Moreover,
Cierkens et al. [28] studied the effect of theuefit data frequency on the calibration

guality and output uncertainty of the WWTP model fi
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Uncertainty assessment of kinetic and stoichiometrodel parameters of ASM1 and
ASM2 has been applied for full-scale WWTP as in Kiaa et al. [29], who evaluated
the model reliability identifying the crucial aspeavhere higher uncertainty rely and
more efforts should be provided in terms of bottadgthering and modelling practises.
The uncertainty associated to operation and dgmgameters of WWTP have also been
studied [30] showing that they are the most semsitparameters for some
benchmarking studies. Finally, Belia et al. [31]iped out that identifying and
quantifying the uncertainties involved in a newigesr plant upgrade becomes crucial
because WWTP are required to operate with increasedyy efficiency and close to
their limits. They also note the need for the depeient of a protocol to include
uncertainty evaluations in model-based design gichésation projects.

To consider some kind of those commented uncei¢airdin the modelling task and
concentrating effort at the calibration step, thespnt work developed an AS model for
the Manresa WWTP (Manresa, Catalonia, Spain) basethe systematic parameter
calibration of the ASM2d model using the “seeds hudblogy” for further plant
upgrades, as the insertion of the EBPR and thgul@dia new control structure for the
plant. The influent was characterized as requirgdhe ASM2d and the parameters
were selected, calibrated and their confidencervate were assessed as stated in the
“seeds methodology”. The calibration parametersewdvided into three groups: the
traditional kinetic/stoichiometric parameter gro@ld group); the influent factors
representing errors/uncertainties of the influeharacterization (I group) and the
operational variable factors (O group), consideriegors/uncertainties on the
measurement of the operational variables. The puoeeassessed, in addition to the
conventional calibration of the K group, influemtdaoperational variables uncertainties

in two additional calibrations: i) influent vectof states in the ASM2d model (I group)
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was used as calibration parameters while paramefefsand O groups were kept at
their default values and ii) the O group was usedadibrating parameters while K and |
groups kept constant. Such “inversion” of the tiiadal model fit procedure allowed to
evaluate the quality of the influent charactermatand to observe the set of operating
variables which has the less number of uncorrelatetbles amongst themselves for

better designing a decentralized control structorehe WWTP.

2. Material and Methods

2.1 Brief description of the Manresa WWTP

The average flow rate of Manresa WWTP is 27,000dniThis WWTP (Figure 1)
consists of a pre-treatment (gross and grit remyppamary treatment with a clarifier, a
secondary stage (biological removal) and a possdrtery stage (chlorination). There
are two main treatment lines in the secondary s{&ggure 2). Each line has three
anoxic reactors (1460 Inand one aerobic reactor made up by two parts3ef 3.
Each reactor has approximately 7 m of depth. Adssing through the anoxic zone, the
bulk liquid is mixed and is again divided to feda taerobic zone. Air is bubbled from
the bottom of the aerobic tanks with membrane défg, allowing biological oxidation
of the organic matter and ammonium. An internalyce pipe connects the aerobic
zone to the anoxic one in order to bring the rettat be denitrified in the anoxic zone.
At the end of the secondary stage two settlersragpahe biomass from the treated
effluent. Settled biomass returns to the entrafidheoanoxic reactor by an Archimedes
screw. The excess of sludge is anaerobically digeahd sent to a composting plant.
The effluent, after leaving the secondary settlan be chlorinated and it is disposed to

the environment at the Cardener River.
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It is worth noticing that experimentally is obseaivereferential flux of the inlet mass
stream to one of the main treatment lines. Thegmas of DO (0.5-1.0 mg/L) at the end
of the anoxic reactors indicates that the dergition is not occurring at the maximum
intensity because there is a lack of organic mattémprove the nitrate reduction and a
poor mixing is taking place. Also, a non-homogersespatial distribution of DO was
observed along the aerobic reactors, not only albegnfluent path but also in depth.
Daily analyses of COD, BODS5, total suspended sqit8S), NH', NOs, PQ*, total
Kjeldahl nitrogen (TKN) and total nitrogen (TN) gperformed at the influent and the
effluent of the secondary treatment. The daily cosie samples are collected from the
full-scale WWTP by sampling every 2 hours. The osysgtem variable measured in
each reactor of the secondary treatment is thecb&&entration. .

The air supply system is composed by 4 air blowetls 100,000 Nrii¥d of capacity,
whose motor speed are controlled by a single D@bf@ek controller in the aerobic
basins. The aerobic zone of each water line hasotwiine DO sensors, one of them
placed at the 25% of the path along the zone aadther one placed at 75% of the
aerobic zone. The DO PI controller uses a weightedrage of the four DO
concentrations as the measured variable, and cesifido a DO setpoint, usually equal
to 2.0 mg/L. Once computed the error between thaosd and the averaged DO, the
new setpoint speed of the blowers is calculatedhiey Pl algorithm and sent to the
devices. Physically, the air is moved to a primaeader after being discharged by the
blowers. Then, the air flow rate is divided intcotleranches. The right branch feeds the
middle part of the two aerobic zones while the lbeéinch feeds the entrance and the end

of the two aerobic zones.
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The main operation costs are electrical energy deration and pumping, sludge
treatment (anaerobic digestion and composting) @&hémical products for P

precipitation.

2.2 Influent composition and patterns

Influent composition and its variability is key armation for plant modelling and
description of changes along the year due to sehagatterns. Table 1 shows influent
properties (averages) straightforward linked to Weestewater composition in winter
and summer months for the Manresa WWTP. Considahageffluent limits of COD
(125 mg GQ/L), BOD5 (25 mg Q/L), total N (10 mg/L), ammonium (4 mg/L) and total
P (1 mg/L), defined by the local water agency (AgarCatalana de I’Aigua, ACA), the
Manresa WWTP, with average effluent flow rate of0®D ni/day, could deliver an
effluent load of 3375 kg/d, 675 kg/d, 270 kg/d, 1@#d and 27 kg/d, respectively for
these pollutants. The total P discharge load wad &g the limit of 27 kg/d, which
means an average value of 1 mg/L of P, with largggea of FeGlin 2008, 2009 and
2010. Such chemical precipitation represents a aostind 50,000 €/y, but allows
meeting the legal discharge level of the EC divecti

On summer months, contaminant loads are considelabikr than in winter months,
probably also due to the people moves from Mantesaacation locations. These
gualitatively recognized patterns can be mathemlffianalysed looking for daily,
weekly or monthly profiles that could help to impeothe tuning of feed-forward
controllers, for refusing external variations whasge feedback controllers do not deal
easily, as well as to promote a time-scheduling lo@file for dosing extra COD source

for denitrification and FeGlfor chemical P removal.

10
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2.3 Model structure

The kinetic model implemented for modelling COD,aNd P removal was the IWA
ASM2d model [5]. It has 19 state variables and &icgsses, which include nitrification
and denitrification and the PHA (poly-hydroxyalkates) accumulation process, the
latter fundamental for EBPR.

The settler model adopted was the 10 layer Taka&ackehi32]. The wastewater entrance
is at the fifth layer. At the end of the procesw effluent leaves the settler from the
upper part (the collector, layer 1) and the settienass is recycled from the bottom of
the settler (layer 10) to the feed of the biolobitaatment. The recycled biomass
(external recycle, Rhs) is reincorporated to the process, being mixegetw influent of
the biological treatment. The soluble componentshef wastewater leave the settler
with a concentration calculated considering CSTRa@ur for these compounds. The
settleability of particulate states is linked te gettling velocity which is calculated by a
double exponential function (Equation 1).

v, =, [0 ) oy (i ) Eq. 1
Where:

Vo is the settling velocity if th&tokes’ Lawcould be applied to the wastewater, [m/h];
fasis the fraction of non-settleable solids;

X\ is the inlet solid concentration, [g TSSIm

X is the solid concentration of the layefg TSS/m;

'n andr, are weights for modelling the effect of the siZdh@ particles in the settling
velocity.

Parametevs is compared to a maximum settling velocitymax Which is experimentally

determined Xt is another model parameter required as a thresrablee that indicates

11
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an upper limit in the settler capacity to prevemtozerflow of solids in the equipment.
The default values of the adopted model were:
Vo: 500 m/h . 2.86-10 f.s  2.2810°

Vsmax 250 m/h rn:  5.76-10 X: 3000 g TSS/m

2.4 Influent characterization according to the modestates

Although daily analysis of the influent is perforthas detailed in section 2.1, additional
experimental data was needed to obtain the specifaracterization required for
ASM2d. Therefore, some experiments were performéti wastewater leaving the
primary clarifier following the methodology descaib by Orhon et al. [33] as detailed
in Montpart [34]. The determined influent streanardcteristics wer& = 0.080 COD,

X, = 0.055 CODXs = 0.450 COD and& = 0.410 COD and these ratios were assumed
constant. See supplementary information S1 forildedfthis characterization.

The values of the influent variabl®sss Suna, Svos Spos Were assumed to be equal to
the experimental observations (analysis of dailjwposite samples). The variablgg
Xpua Xpao, Xep, Svo2e So2, Xa, Xuep were assumed to be zero. Hence, the inlet
heterotrophic biomass was calculated by Equation 2:

X, =COD—(S, +S,+ S + X, + Xg+ X,) Eq. 2

The variable Xyeon was not considered zero due to the presence ofichk
phosphorus precipitant agent and its value aloadithe was defined in the steady state
calibration, when the phosphorus behaviour in fflaent was evaluated. Finall «

(the plant influent alkalinity) was assumed to hadles of HC@/m®.

3. Results and Discussion

3.1 Preliminary steady-state calibration

12
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Model calibration was performed in two steps: adyjestate calibration and a dynamic
calibration. The former step was useful to mininsaeictural discrepancies between the
plant model and plant data. By its turn, the dymacdlibration involved not only the
determination of kinetic and stoichiometric paragngt but also an estimative of the
useful volumes of reactors and settlers and thegsséites of P chemical precipitant
agent and extra load of biodegradable COD requoedenitrification. Figure 3 shows
a simplified scheme of the overall calibration lidation process used in this work.
Preliminary calibration aims to reduce structuraictepancies between the model and
the experimental variables, especially to reduce thain differences between
experimental TSS and TSS model predictions. Experial data were averaged
(influent values and operational parameters like &@ flow rates) and the resultant
values were used as inputs to the simulation m@elstant inputs). A period of 1200
days was simulated with the default ASM2d paransetard the steady-state values
were used as initial values for all the simulatioperformed afterwards. TSS
concentrations in the effluent and in the wastagege stream were used as output
variables to calibrate the following parameters:

a) rp andfys (settling model parameters), to decrease therdiffees between TSS

in the effluent and the model predictions for thigput.
b) fow andfgras in order to adjust the model TSS in the effluand in the purge
(and consequently in the solids inside the aensactors).

A preliminary calibration cost function (PCCF, E¢oa 3) was employed to perform

the preliminary steady-state calibration of the WR\ffiodel.

2 m
PCCF= qu\/@(yExpk,r ~ YModelk r )2 =03

k=1 r=1

Where:
13
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324

» kis related to each output variable

e ris related to each experimental data (each ddy.Whole period studied had
m = 1200 days.

* (O is the weight to normalize the output variablascsitheir values are very
different. Ammonium was used as the reference viaughe normalization, and
hence the weights were calculated as the ratichefaverage of ammonium
concentration at the effluent to the average ofatier output variable (TSS in
the effluent and in the external recycle) as shawequation 4. The weights
used for the TSS in the effluent and in the extereeycle were, respectively,
3.637 10° and 2.404 106.

*  YexpkriS the experimental data of varialslat dayr.

*  Ymodel kIS the model output of variableat dayr.

m

1
72 yNH4,r

q = N Eqg. 4

m

1
7Zyk,r
r=1

m

Wherey, is the data of the other output variables (i =94t the effluent and s at

the purge) andhis the total number of experimental data (m = 3200

In addition, Xyeon Iin the influent was manipulated to adjust the pihage
concentrations in the effluent. The calibrated galwf the parameters werg; =
1.036-1C, fis = 2.566-10, fow = 0.1736,foras = 1.911 andfxmeon = 1.237. These
calibrated parameters were considered constantwend maintained in these values
during the dynamic calibration procedure. The valoéthe calibrated parametdts,
andforaswere also used as initial guesses in the dynaaliloration of the Operational

Variables group

14
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3.2 Development of the cost function for dynamic didration

Data from seven effluent variables were availalole rhodel calibration of Manresa
WWTP: ammonium, nitrate, phosphorus, TSS, COD, B@DB& TKN. These variables
were considered the output variables of intereatalperiod used for model calibration
was from October 2007 to May 2008. Due to its dasgygillation, COD and BOD5 were
used only for model validation. In the dynamic bedtion step, equation 5 was used as

cost function.

n

5
CCF = ZW'\/@ (yExpi,J' ™ Yvoge )2 "
i=1

=1

Where:

« iisrelated to each output variable

* | is related to each experimental data (each dayw.whole period studied had
n = 251 days.

* W is like gk« a weight to normalize all the output variablesjoithave different
units and values, using ammoniunw € 1) as a common base. Hence, the
weights were calculated as the ratio of the avecdganmonium concentration
at the effluent to the average of the other ouyauiable (NQ', PQ:*, TSS and
TKN) as shown in equation 6. The weights calculdtednitrate, phosphorus,
TSS and TKN were 0.235, 1.124, 0.091 and 0.53pexwvely.

*  YexpijiS the experimental data of variablat dayj.

*  YwmodelijiS the model output of variabiet day;.

15
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1 n

7ZyNH4,j

ns

i 10
DR
Wherey;; is the data of the other output variables (i =sN®&rss Ntkn OF PQ*) and n

is the total number of experimental data (n = 251).

The CCF value calculated with the original modeddiction (with default parameters)
was 83.46, but after the preliminary calibratioepsi{optimization of PCCF) it was
reduced to 67.68 (18.9% improvement).

The validation cost function (VCF) was calculatddoawith equation 5, but using
experimental results of years 2008 to 2010.

Due to the associated uncertainty of full-scale R\ ©perational variables, as the
plant flow rates and the DO in the aerobic basmdd also be used as parameters to
calibrate. The internal recycle, external recyald @urge flow rates data observed by
the WWTP personnel probably contain uncertaintiesréliable flowmeters are usually
available) and hence, some multiplying factors wereated to consider these
uncertainties. These factors wdegy for the purge flow rateforint for the internal
recycle flow rate anéhrasfor the external flow rate. In the case of theartainties of
the DO sensors, the multiplying factor was B@_Gain

As the influent concentrations of each model vdeateither are perfectly determined,

additional influent factors were adopted for furthadjustments in the inlet

concentration of these variables.

3.3 Parameter grouping for dynamic calibration
The full plant model has about 90 model parametans,only the 24 most sensitive

parameters were studied. This set of 24 parametassdivided into three subsets: the

16
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Kinetic/stoichiometric parameters (group K, with Jflarameters), the influent
parameters (group |, with 10 parameters) and tleeabipnal parameters (group O, with
4 parameters). In fact, only parameters of thetldafstoichiometric macro-group were
used for real model calibration. The macro-groupand O were used to obtain
additional information for process control and dauiality.

The subset of kinetic/stoichiometric parameters masle up of the growth and decay
parameters, yields and saturation constants dhalinvolved biomasses (autotrophic,
heterotrophic and PAO). When calibrating the maaligh this group, it was assumed
that the influent composition during all the cadition period was completely known, as
well as the operational parameters. This assumpt@s not strictly correct since on-
line measurements of all the ASM2d states are nexatable. On the other hand, using
the subset of influent parameters, it was assumbdt tall the default
Kinetic/stoichiometric ASM2d parameters were pdfijecorrect, as well as the
operational parameters. As determining on-linghel ASM2d variables in the influent
stream would be a very difficult and expensive tals& group | calibration was used for
obtaining additional information about the influelgta quality and to determine which
variables in the influent could be easily modifiadorder to adjust the model. At last,
using the group of operational parameters, botletldfstoichiometric parameters and
the influent composition were considered perfefitting the biological processes rates
and the incoming pollutant loads, respectively. Aget all the parameters, group O
was used for process control in the normal plaetagon. Therefore, it was determined
the parameters of this group that more easily pexvifast plant response to reject
external disturbances to the control system. Thiswkedge was obtained using the

same calibration methodology of the group K toghsup O.
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3.4 Sensitivity Analysis

Table 2 presents the overall sensitivity, calculads the sum of relative sensitivity for
ammonium, phosphate, nitrate, TKN and TSS in tfleesit (see the equations used in
the supplementary information S2). The advantagesofg the relative sensitivity for
calculating the overall sensitivity is that all tleutput variables have the same
importance.

The parameters of each macro-group that most dfiectnodel outputs were ranked in
descending order in this table. In the case ofkhgroup, the heterotrophic biomass
growth yield, the nitrification and the phosphorasemical precipitation are well
represented by the ranked paramet€gge andKgrep have almost the same impact on
the model outputs, but their impacts are less inapbthan the N removal processes.
Regarding the influent group, the ink&, P-related processes and the inlet ammonium
concentration were the most important calibratingameters. It is observed that £O
or MeOH inlet concentrations are more important tine own kinetic precipitation
parametersKpre and Kgrep of K group. These results indicate that chemical
P-precipitation and P-redissolution processes ametikally limited due to the low
phosphate and MeOH concentration in the biologieattors.

In the case of the operational parameters, theepilog rate and the DO have the most
influence on the model outputs. Nevertheless, bl jarameters of this group would
have to change considerably to affect the outpuotsthe same quantity as the
kinetic/stoichiometric or the influent parametefable 2 also shows that inlet MeOH
concentration, which could be used to control Phabal precipitation, produces more
impact on the outputs that the process controlabées considered in group O.

RegardingS- inlet concentration, which could be used for collitrg denitrification, it
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would affect the outputs in the same extent oflibst parameter of the group O, the
purge flow rate.

The previous sensitivity analysis was used to selecpossible calibration parameters
for applying the “seeds” methodology. The K gro@s 10 elements that most affect the
model outputs. No more kinetic or stoichiometricgmaeters were included since the
10" parameter of the sensitivity list (Table 2) ofsthjroup fxess) only affects the
model output less than 10% th&darameter. The | group has all the influent sttias
commonly could affect the model output. It is imjaot to remember that this group
could be of size 19, the 19 state variables oAB®2d, but the results of Table 2 show
that only the first nine affected the outputs. Hinahe O group has all the 4 variables
that are commonly used to control de WWTP procedsesase of adding external
readily organic matter to improve denitrification ghosphorus removal, such group of

parameters would have size of 5.

3.5 Dynamic calibration methodology

Dynamic calibration was performed following the hredology of the §eed%[11] and
starting from the results obtained by the prelimynaalibration and the sensitivity
analysis. This is the first reported applicatiorttog method using full-scale plant data.
The procedure uses the RDE criteria calculated fthen Fisher Information Matrix
(FIM) as the ratio of normalized D to modified Hteria (RDE). From the sensitivity
ranking, the best-ranked parameters are namedsesds”, since each one serves for
growing a parameter subset for model calibratidre Subset generation process adds to
the seed subset a parameter that presents theshiBlE= among the combination
between the current seed subset and all the otheaining best-ranked parameters of

the sensitivity rank. The process of generationpafameter subsets is automated,
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independent of the user and exclusively based othematical tools, which was

considered a necessary improvement of model ctiblbréechniques pointed out by Sin
et al. [18]. The “seed” methodology allows genemtisubsets with the maximum

capacity to explain plant behaviour with the lesssgible correlation amongst its
parameters. All the subsets generated could systaiyabe compared with each other.
The process of parameter addition repeats untilRB& decreases from the current
iteration to the previous one, for each seed. Afiat, the subset with the highest RDE
criterion is elected and the parameters valuesabeady changed to the calibrated

values during the “seed” growth.

3.6 Dynamic calibration results
Tables 3, 4 and 5 present the results of applylmg dabovementioned calibration

methodology using parameters of groups K, | ance€pectively.

3.6.1 Calibration of kinetic parameters

The 10 best subsets were selected from the testtb sSee Table 3 for details. The
common subset size is of 4 parameters. Neverthd¢lesshighest RDE value was
calculated for a subset of 6 parameters (subssted/osp). This subset produces the
lowest CCF and VCF, resulting in the most suitalbset for model calibration even
though the confidence interval of one parametesoissiderably high. As the current
plant is an A/O WWTP, no parameters related taoibéogical P-removal appear in the
10 most impacting seeds. On the other hand, ithellsubsets appeaksre or Krep,
parameters linked to the P-chemical precipitatign. and ly are present in all the
subsets, with high values of parameter confidenterval, which indicate less reliable

calibrating values. Parametefosp is the parameter that provides more information
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about the plant behaviour (lowest CCF and VCF wties parameter is inside the
calibration set), despite its lower value (0.0296)d more than 50% of confidence
interval (default ASM2d value is 0.80). Such valndicates that a poor denitrification
process is occurring in the plant caused by a ¢tdadarbon source and some amount of
DO transported from the aerobic zone to the anor& It would be recommendable to
add extra carbon source to the influent streanmdcease the efficiency of the nitrogen
removal processes.

Considering that the influent composition deterrdibg lab test and using plant data is
perfectly known along the years of calibration aralidation data, the best subset
obtained following the methodology of Machado e{H&l] amongst the kinetic group is
the subset obtained from the paramepgssp The full subset is composed by the
parameters fnos.n, Kers ba, Yh, Koz a by} with values [0.0296, 1.005, 0.2203, 0.4181,
0.1130, 0.0829]. See Figure 4 for comparisons betwhe model prediction and the
plant data. In this subset, a calibrated value.4181 forYy means that more COD is
consumed for maintenance of the heterotrophic bésmidoan the consumed for
promoting the growth of the microorganisms. It was expected this low value for this
parameter, since the default valueYpfis 0.625 [5]. However, similar values fof
around 0.45 were obtained in the other subsets filoenrest of seeds. Such an
unexpected result, probably, is derived from a latkknowledge on the influent
composition and from the optimized values for semtitation parameters obtained in
the static calibration. Nevertheleggosp Subset showed the best compromise between
explaining the plant behaviour and avoiding paramsetorrelations, with lower CCF
and VCF values.

Gross modelling errors could be corrected in thelipinary calibration step.

Nevertheless, poor BOD5 and ammonium predictionghim effluent could be an
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indication that a false denitrification rate is ooing, probably because a lack of easily
biodegradable COD is not being captured. Figurerdpares the model predictions to
the validation data, which is a completely diffdrdataset from the calibration data. In
Figure 5, the parameters subset of the best se€dbdé 3 makes the model suitable for
predicting correctly nitrate, phosphate, solids NT&d COD in the effluent stream and
the solids in Qas stream and inside the basins. The model predicterg low
ammonium and BODS5 concentration in the effluentctStesults also could indicate
dead volumes in aerobic basins not modelled as aslh spatial gradient of DO,
ignored in the current model. As a consequencealhtie regions of the aerobic basins
operate with a reasonable DO concentration (2-&n@figures 4 and 5 clearly show
that events with fast dynamics are not well cagtusgnce some plant measurements
that made up calibration and validation data sgbisave their sample time equal to one
day and the samples are integrated (each 2 houdtuene of wastewater is hold to
compose a final sample before chemical and bioatednainalysis). Besides, the plant
data presents abrupt changes which bring additioiifficulty to estimate model

parameter errors.

3.6.2 Calibration of influent parameters

Although the parameters of the influent group woodd be used to make a real fit of
the model as in a conventional calibration procedsome useful information can be
extracted from these results (Table 4). The optchizalues of parameters are factors
that multiply the influent vectors for each varialf the influent. Therefore, a value of
1.414 offsypg Of thefs) seed means that the ammonium vector of originahtpilata

increased 41.4% in order to minimize the cost fiamct
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The most common subset size is 5 or 6 parametaranteterdsak fxmeon fsnna @and
fsposare present in almost all the subsets, which atdithat each variable is explaining
the model and is not interdependent amongst @alerh. This information is also useful
to decide the influent variables where the sampéng measuring efforts should be
focused for a reliable optimization of kinetic paueters.

Table 4 also brings some other relevant remarks. imfiuent parameter group could
achieve good values of CCF and VCF in most of #sted subsets compared to the
subsets of the kinetic group. Thereby, if the wedajftthe influent parameter group (new
approach) is stronger than the kinetic one (tradéi way) on the model prediction, the
variability of the influent composition and the @rrconcerned to the characterization
procedure could explain the deviation between theeat model and the standard
model ASM2d predictions. Therefore, these resultmahstrate that the confidence of
the influent characterization is a key factor tagsider before fitting any parameter of a
given model. In this sense, the importance of uagdies associated to the influent
characterization that induce significant uncergaint the model predictions have been
already highlighted in the literature [27, 28].

Comparing the results dfrssandfxs seeds it is observed that the resulf@§sseed
explains better the outputs than the resufi@$eed, although the inclusionfef in the
former subset increases correlation among paraseber addition, the calibrating
methodology did not allow the simultaneous preseridgs andfxrssin any calibration
subset, probably due to the high correlation betvibese variables.

Finally, nitrate data are correlated to thedata, since in both created subsets where
fsnos appears (seedfsnos and fs), high parameter confidence interval values are
reported. The existence of such correlation isrbte®alized in the subset created by

thefsnosseed, which is made up only fyyoszandfsk
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3.6.3 Calibration of operational variables

Considering the operational variables, only twdedént subsets could be created (see
Table 5), which means that almost all the varialilelp to explain the experimental
observations without correlation. Nevertheless, wimserting the biomass recycle flow
rate forag INto a parameter calibration subset, a strongetation to the internal
recycle flow rate was added. It indicates that irpassible control structure for
controlling simultaneously N, P and COD removag thiomass recycle flow rate and
the internal recycle flow rate could not be changddthe same time or their
modifications should be done in different magnitutieavoid its interaction.

Table 5 also shows that operational variables conpdove model fit, i.e., the observed
variability with respect ASM2d prediction with defé parameters could be explained
considering that the operational variables werewelt measured. This is an important
problem in any model fit using full-scale WWTP datéhere there are gradients and
time variability of operational variables, which dot have the same homogeneity and

reliability than in a controlled pilot WWTP.

3.7 Remarks
The “seeds” methodology applied to different groofp parameters, not only the
traditional kinetic and stoichiometric ones, isav@l approach and allows:
 To automate the parameter subset selection, anovaprent in the model
calibration techniques, pointed out by Sin et B8][ The usage of the sensitivity
analysis is similar to that found in BIOMATH protuc[21]. The “seed”
methodology searches for the minimal number of ipatars that explains the

plant data with the less possible correlation amsbtige calibration parameters.
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The utilization of a higher number of parametersira®ther works [24, 36]
provides a good model fit, but it is not usuallyparted by a study of its
correlation, which weakens its mathematical vajidats it is likely disregarding
overfitting problems that could reduce the modeljtive capacity.

To measure, in some extent, the influent statels higgher uncertainties, which
aid to concentrate efforts in programming speciixperiments to better
characterize these input variables (load disturégncSuch an uncertainty
measurement is in agreement to the philosophy &MRATH [21], STOWA
[20] and WERF [22] protocols, which are supporteaongst other premises, on
an excellent influent characterization.

To identify the most correlated operational vamsbhot to add them together
inside a control structure with decentralized colférs (e.g. PID controllers), to
avoid internal conflicts with the different contlobps. Also, observing the CCF
and the confidence intervals of the best subseksarid O groups, it is possible
to infer if some control structure designed basedhe group O will be able to
compensate kinetic/stoichiometric uncertaintiesceithe industrial controllers
are model-based controllers, which means that tmrallers performance are
dependent of the model accuracy. In the studied, dags operational variables
of Manresa WWTP are able to keep the plant undstable operating point
since the CCF of subsets of the O group are loten the K group as well as

the confidence intervals.

4. Conclusions
The ASM2d model was calibrated for the Manresa WWCT&alonia, Spain) using the

“seeds” methodology, which permits to calibrate eledwith the lowest number of
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parameters, avoiding the correlation among the npar@s optimized. As a novel
approach in ASM model calibration, the uncertaioty the influent characterization
could be evaluated fixing the kinetic and operatlorariables at their default/common
values and varying multipliers of the influent vacwntil reach the best objective
function value and lower correlation amongst thibcation parameters (multipliers).
One of the advantages of this novel approach watetdify what influent states should
be better characterized. In terms of process chrhre applied methodology was able
to identify the most correlated operational vamghlaiding to build decentralized

control structures with less internal conflicts argst all the WWTP feedback loops.
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728 Fig. 1 Scale map of the Manresa WWTP
729

730 Fig. 2 Monitored variables of the Manresa WWTP seconti@gtment
731

732  Fig. 3 Simplified scheme of the overall calibration /idation process

733

734  Fig. 4 Model predictions using the best seed (subset frmseed)vos ) and plant data
735 (calibration data). For checking the parameter eslused in this simulation, see Table
736 3

737

738 Fig. 5Model predictions using the best subset (from s$ggg¢hb) and the validation data
739 (plant data)

740

741
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742

743

744  Table 1: Average influent composition.

Winter (Average

Summer (Average

Property
Temperature = 13°C) Temperature = 27°C)
pH 7.9 7.6
NH," [mg N/L] 33 20
BOD5 [mg/L] 290 170
COD [mg/L] 600 460
Total N [mg N/L] 53 33
NOs [mg N/L] 3.5 2.0
Total P, [mg P/L] 8.0 5.5
TKN [mg N/L]

48 33

(Kjeldahl nitrogen)
Zn [mg Zn/L] 0.8 0.5

745
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748

749
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Table 2: Relative sensitivity of the weighted sum of amnuonj phosphate, nitrate,

TKN and TSS in the effluent, for all the three goewf parameters.

Kinetic / Stoichiometric Group (K group)

Short Related biomass or
Order Parameter Sensitivity
Description process
1 Yy Yield coefficient for X;. Heterotrophic 756
2 Ha Maximum growth rate of X Autotrophic 678
3 ba Rate for lysis of %X Autotrophic 634
Saturation coefficient of substrate
4 KnHaA Autotrophic 412
NH," for nitrification on Qa4
Chemical phosphate
5 Kpre Precipitation constant 150
precipitation
Saturation coefficient of ©
6 Koza Autotrophic 149
for nitrification on Qs
Chemical phosphate
7 KRrep Solubilisation constant 148
precipitation
8 by Rate for lysis of X Heterotrophic 97
Saturation coefficient of alkalinity
9 KaLk A Autotrophic 73
for nitrification on Qs
10 NNo3,D Reduction factor for denitrification Heterotrophic 51
Influent Group (I group)
Short Related biomass or
Order Parameter Sensitivity
Description process
Multiplying factor of Xs representing ar
Influent
1 fys uncertainty on the estimated inletg?> 670
characterization
fraction
Influent
2 fxrss Multiplying factor of the inlet Xssvector. 555
characterization
Multiplying factor of the inlet Xeon Influent
3 fxmeon 439
vector. characterization
4 fspoa Multiplying factor of the inlet Sy, vector. Influent 429
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753

754

755

characterization

Influent
5 fsnma Multiplying factor of the inlet Q4 vector. 393
characterization
Influent
6 fse Multiplying factor of the inlet Svector. 247
characterization
Influent
7 fsalk Multiplying factor of the inlet § ¢ vector. 169
characterization
Influent
8 fs) Multiplying factor of the inlet Svector. 160
characterization
Influent
9 fsnos Multiplying factor of the inlet go3 vector. 87
characterization
Influent
10 fsa Multiplying factor of the inlet g vector. 0
characterization
Operational Group (O group)
Short Related biomass or
Order Parameter Sensitivity
Description process
Multiplying factor of Qy representing ar
1 fow Process control 297
uncertainty on the measured value f.Q
Multiplying factor of DO concentration ol
2 DO_Gain the aerobic basins representing Process control 180
uncertainty on the measured value of DO
Multiplying factor of Qynt representing ar
3 foriINT Process control 135
uncertainty on the measured value @f\@.
Multiplying factor of Qyas representing ar
4 foras Process control 116

uncertainty on the measured value QL&
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Table 3: Results of the calibration methodology for thegtia Group K.
Seed
Items
Y Ha ba Knra,a Kpre Koz, Kren by Kaik.a Nnos,D
NNos,D
Koz,
YH HA bA KNH4,A KPRE K KRED bH KALK.A KPRE
PRE
ba Yy Yh Kpre Ha Ha Krep Kere ba
Parameters Yy
Kpre Kpre Kpre Yh Yh y Yu YA Yu Vi
H
by by by by by . by Yu by Koz,a
A by
0.029¢
0.089
0.452 0.908 0.168 1.616 1.013 1008 0.593 0.101 0.895 1.005
Optimized 0.168 0.448 0.452 1.011 0.908 0 '4105 0.908 0.593 1.011 0.2203
Values 1.045 1.013 1.045 0.457 0.448 0'0786 0.448 0.908 0.449 0.4181
0.104 0.102 0.104 0.108 0.102 ’ 0.101 0.448 0.103 0.1130
0.2277
0.0829
52
68
Parameter 22 3 & 6 9 o 66 16 9
Confidence 26 22 9 3 o 9
Interval 9 9 21 26 ) 27 25 22
(%) 59 64 59 48 64 5 66 27 61 114
52
Norm of
Parameter
Confidence 64 70 64 53 70 103 72 72 68 138
Interval
(%)
normD 1.581¢"  4.721C¢% 15610  5.4610%  4.72.10% 1.81.1C* 1.021¢¥  1.021C%  1.481C"  9.4¢-10%
modE 393.4: 62.61 393.4: 46.31 62.61 491.8( 69.0¢ 69.0¢ 69.5€ 1420.9:
RDECc 4.0z1C" 75810 4.0z.10% 1.1610° 75810  3.661CF 1.471¢"  1.47.1¢%  2.0¢10° 6.61-10%
CCF 663 66.2 663 651 66.2 655 66.2 66.2 66.4 63.
VCF 172.1 172.1 172.1 170.¢ 172.1 171.2 172.1 172.1 172.¢ 167.1
Janus 1.28¢ 1.28¢ 1.28¢ 1.29¢ 1.28¢ 1.29: 1.28¢ 1.28¢ 1.28¢ 1.29¢
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763

764 Table 4: Results of the calibration methodology for the @rad.

765

766

Seeds
Items
fXS fXTSS f><MeOH fSPO4 fSNH4 fSF fSALK fSI fSNO3 fSA
fSI
fXTSS fSF fSALK fSPO4
fXS f><MeOH fSPO4 fSNH4
fSF fXTSS fSF fSNHA
fSNHA fSNHA fSNH4 fSPO4
Paramet fsnma fonria fxrss fsak fsnos
fSPO4 fSALK fSALK fSALK -
ers fsak fsak fsnHa fxs fse
fsaik fxs fxs fxs
fSPOA fSPOA fSPO4 fXMeOH
f><MeOH fSPO4 fXMeOH fXMeOH
f><MeOH f><MeOH fXMeOH fSF
fSNO3
6.835
0.537 2.861 1.126 0.706
1.038 0.936 0.758 1.116
2.861 0.537 2.861 1.414
1.116 1.116 1.116 0.758
Optimize 1.433 1.433 0.537 1.266 1.009
0.758 0.949 0.949 0.949 -
d Values 1.126 1.126 1.433 1.361 0.929
0.949 1.038 1.038 1.038
0.708 0.708 0.708 1.229
0.936 0.758 0.936 0.936
1.223 1.223 1.223 2.472
0.144
7
Paramet 26 16 6
10 10 4 12
er 16 26 16
4 10 5
Confiden 26 35
10 13 -
ce 5 9
6 912
Interval 12 12 12
10 10 10 10 18
(%) 11 11 11
96
Norm of
Paramet
er
Confiden 18 35 18 18 18 35 35 101 36 -
ce
Interval
(%)
1.336-16 9.148-16
normD 5 2.635-16° 1.336-16° 1.336-16° 1.336-16° 2.635.16° 2.635-1&° s 16598 -
modE 99.320 1480.73 99.320 99.320 99.320 1480.73 1480.73 1138.80 18.66 -
1.345-16 8.033-16
RDEc . 1.779-18 1.345.1¢* 1.345.1¢* 1.345.1¢* 1.779-16° 1.779-1& . 889 -
CCF 66.1 63.6 66.1 66.1 66.1 63.6 63.6 55.8 67.6 -
VCF 170.9 168.4 170.8 170.8 170.8 168.4 168.4 162.3 172.3 -
Janus 1.289 1.311 1.289 1.289 1.289 1.311 1.311 1.371 1.278 -
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767

768 Table 5: Results of the calibration methodology for the Gr®.

Seeds
ltems .
fQW DO_Galn erint fQRAS
fQRAS
fQ DO Gain fQyi
" - - DO_Gain
Parameters fQrint fQuw fQw 0
DO_Gain FQuin DO_Gain i
fQw
2.781
- 0.344 0.931 0.389
Optimized 0.925
0.389 0.344 0.344
Values 0.122
0.931 0.389 0.931
0.388
15
Parameter 8 11 18 ”
Confidence 18 8 8 -
Interval (%) 11 18 11 .
Norm of
Parameter
. 23 22 22 99
Confidence
Interval (%)
normD 1.61-18 1.61-18 1.61-18 3.26-10°
modE 13.78 13.78 13.78 193.77
RDEc 1.17-168 1.17-168 1.17-168 1.680-16
CCF 62.3 62.3 62.3 62.2
VCF 168.9 168.9 168.9 168.9
Janus 1.322 1.322 1.322 1.323
769
770
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Lab scale experiments
with wastewater from the
full scale plant

[

Influent Characterization

A) Plant data (DO concentrations
and pollutant and TSS
concentrations measured at the
effluent and other points of the
plant)

B) Dimensional data of the plant
(physical characteristics)

Preliminary Calibration

To match the effluent and the external
recycle TSS data. Settling model
parameters identified as well as the
uncertainty factors of the external
recycle and purge flowrates.

Parameter grouping (K, | and O)
and
Sensitivity Analysis

3 groups of parameters and the
defined rank of sensitivity

Dynamic Calibration (FIM calculations +
optimization for calibration) and
Validation

Model with calibrated parameters and the
confidence interval well defined.

Fig. 3 Simplified scheme of the overall calibration /idation process
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814 S1. Influent Characterization Procedure

815 Orhon et al [1] developed a method to determine the value§pfX;, Xs and S
816 (ASM2d states) in the effluent, using the well-knomeasurement of the COLX
817 variables are the particulate variables wisiieariables indicate soluble variables. Such

818 method allows making an interface between the C&DASM2d state variables.

819 The experimental determination §fandX; is performed in two parallel CSTR reactors,
820 one of them fed with raw WWTP influent and the otbae fed with filtered WWTP
821 influent. Both reactors operate as long as alldiodogical reactions have been ceased
822 and daily analysis of total COD and the soluble Ca® performed. At a sufficient
823 time, both values of COD of the two systems willdpproximately constant. At the end
824  of the experiment, the relationship between thieainand final values of total COD and

825 soluble COD of both systems will help to estimgtandX;.

826 Xsis present at the beginning of the experimentdactor 1 (with raw influent, without
827 filtering) and it is not for reactor 2 (with filted WW). At the end of the experiment, in
828 both systemXsandS: no longer exist, differently d& andXp that are produced by the
829 microorganisms along the experiment ting.and Xp are, respectively, soluble and
830 particulate residual biodegradable matter, prodafcimicroorganism activity.X, is
831 present at the end of the experiment only in reattgno filtered WW). With these

832 observations, it is possible to write a systemapfagions as follows:

833
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834

835

836

837

838

839

840

841

842
843

844

845

846
847

848

Reactor 1 (Fed with raw wastewater) Reactor 2 (fddfiltered wastewater)
Cio=Sko + Xgo Eq.S[1C, =S, Eq. S.4
C =X, +S,+Xp +S, EQ.S.2 C,,=X,,+S,,+ Xp, +Sp, Eq. S.5
S,=S,+S, Eq. Si3S,,=S,+S,, Eq. S|6

Variable G means the total substrate concentration in rea®means total soluble
substrate. The lowercase “0” in equations S.1 addvigans “initial value” for variables
in reactor 1 and 2, respectively. In equations&h@ S.3 the lowercase “1” means the
values at the end of the experiment in reactorhk. Jame notation is used for reactor 2,
in equations S.5 and S.6. For a better understgradithe whole experiment, Figure S.1

shows an illustration of the evolution of total C@bd total soluble COD.

Using the equations S.1 to SX,is determined with equation S.7.

X, = (CTl_Srl)_{[CTZ _Srz] grrj:grri]} Eq. S.7

A similar procedure is performed to determie

S=S,- [Sfl"sfz Eq. S.8
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851

852

853

854

855

856

857

858

859

860

861

862

S value can be obtained by taking the value of tetdlible COD of reactor 2 at the
beginning of the experiment for determiniXgandS and subtracting the value &f

(obtained by Eq. S.8).

Sk = COD gpupe gitered wwy ~ Sy Eq. S.9

Finally, Xs is determined by using measures of total COD acta 1.

Xs=DQO,yy '(SA +S.+S5 + XI) Eqg. S.10

In Eq. S.105, should be considered null (no conditions of fertimgnXs to produceSa

in the urban sewage system) and the rest of vasakére already determined.

Reactor N° 1
R No: 1 1000 4
eactor No PO
800 A
® AC;=Crg-Cry=Cog-Spy-Xpy
Aigua residual 600 -
» ° ° ‘,_CT1=SP1+S,+XP1+X,
400 ¢
TT\ @] Cri-Sr=Xp1+X
; 2007 © o (o] S1,=Sp, 1S,
le) @ T11=op1 S
£ o
8 Reactor N° 2
A 500
Reactor No: 2 400 3 .
300 10 ° AC1,=S1p"Cr2=Seo-Spo~Xp2 l
Aigua residual filtrad 200 - o ) '/_CTZ:SPZ+S‘+XPZ
_—
(o]
o Cro-S12=Xe,
ES 100 4 ~
o) S12=Sp2*S
(e0] ©)
O T T T T T T
0 10 20 30 40 50 60
Temps (dies)

Figure S.1:lllustration of the lab scale reactors, total Cé@m total soluble COD data
for determining $ and X fractions in the secondary stage influent in a WBNT

(= Total COD,o Total soluble COD).
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S.2. Sensitivity Analysis

Sensitivity analysis allows making a ranking of tm®st important parameters that
affect the outputs. Relative sensitivity of an autp (y;) respect a parameter(§) is
defined as [2],

_9 dy
Y, de

3
Eq. S.11

Norton [3] proposed the utilization of algebraicnsivity analysis because the
numerical value of sensitivity applies only forgesific change from a specific value of
g;, while the former provides algebraic relations.niuical values of sensitivity are
generally much less informative than an algebraiation, but algebraic sensitivity
analysis is not feasible if the equations of thedetaare complicated as in ASM2d.
Therefore, the derivatives of equation S.11 werterdgned numerically by the finite
differences method. The central difference appragith 10* (0.01%) as perturbation
factor was used for the sensitivity calculationseaich tested parameter around the
default ASM2d value. This perturbation factor watested because it produced equal
derivative values with forward and backward firdiferences [4].

The overall sensitivity of a parameter was caladaby adding absolute values of
individual sensitivities. In our case, 5 output ishles were declared (phosphate,
ammonium, nitrate, TSS and TKN concentrations atdffluent). Hence, the overall

sensitivity value of a parametefOS) was calculated with equation S.12.

o :‘SJVPOA‘+‘SLNH4

+1Sin0] *[S1.x74 *[Sima Eq. S.12
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S.3. The Fisher Information Matrix and Parameter Canfidence Interval

The FIM summarizes the importance of each modelmater over the outputs, since it
measures the variation of output variables caugea\lariation of model parameters [5,

6]. Algebraically, the FIM is represented by eqoats.13.

N
FIM =Y, (k) [ Y] (k)
=1 Eq. S.13

For a FIM calculated for output variables and p parameters, it sxap matrix, where
k represents each sampling data po@, is ther x r covariance matrix of the

measurement noisé is the vector op parametersN is the total number of samples

andYjyis thep x r output sensitivity function matrix, expressed lyation S.14.

Y, (t) :[

OY(tﬂo)}
26" |,

Eq. S.14
where & is the complete model parameter vector used flmulzding the derivatives
and & is the transposed parameter vector, which its etesnare being studied. In the
present study, the derivative shown in equatiod s numerically obtained by finite
differences using a perturbation factor of“1@s in the sensitivity calculations.
Mathematically was proved that the FIM provideswadr bound of the parameter error
covariance matrix [7] as shown by equation S.15.

cov(g,)= FIM ™ Eq. S.15

This FIM property was used for calculating the cd@rfice intervald§ with equation

S.16 for a given parametér([8].

AB, =t, _,./cOVE)) Eq. S.16
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wheret is the statistical t-student with = 95% of confidence antl-p degrees of
freedom (number of experimental data points mipysarameters), and cof] was
assumed aBIM ™.

As can be observed, the calculation of the paranegter covariance matrix using the
FIM involves its inversion. To be invertible, thdM- should have a determinant
different from zero and should not be ill-conditoh To match these requirements any
pair of matrix columns should not be very simil&s each column of the matrix
represents a parameter, the determinant and thitioonnumber of the FIM provides a
reasonable measurement of the correlation of afsparameters. Hence, parameters
less correlated will easily provide a diagonal-doamt matrix. The FIM determinant (D
criterion) and the ratio between the highest aral ldwest FIM eigenvalue (modE
criterion) can be used as criteria for parametbssuselection. A modE criterion value
close to the unity indicates that all the involvyearameters independently affect the
outputs while the shape of the confidence regiminslar to a circle (2 parameters) or a
sphere (3 parameters) and not ellipses and eliips@is occur with correlated
parameters. A high D criterion value means lowduesof the diagonal elements of the
covariance matrix, and as a consequence, lowerdande intervals of the parameters.
As the D criterion is dependent on the magnitudehef involved parameters, this

criterion was normalized (normD) according to Equas.17.

_ 2
normD= D [, | Eq. S.17

where |¢|| is the Euclidean norm of the parameter vectochSiormalization works as
a scaling factor and allows comparisons among s$sibsigth the same size but with
different parameters.

From the system engineering point of view, it igportant to include in the parameter

subset those parameters that maximize the D cnitennd minimize the modE criterion.
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Hence, the ratio between the normD and the modterieri (RDE criterion) was
proposed [9] as an interesting index to define stgbsf parameters for calibration. The
RDE criterion (Equation S.18) establishes the ciypac a parameter subset to explain
experimental data coupled to low uncertainty ingbmated parameters.

normD
modE Eq. S.18

RDE =
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