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Abstract 13 

The present work developed a model for the description of a full-scale WWTP 14 

(Manresa, Catalonia, Spain) for further plant upgrades based on the systematic 15 

parameter calibration of the ASM2d model using a methodology based on the Fisher 16 

Information Matrix (FIM). The influent was characterized for the application of the 17 

ASM2d and the confidence interval of the calibrated parameters was also assessed. No 18 

expert knowledge was necessary for model calibration and a huge available plant 19 

database was converted into more useful information. The effect of the influent and 20 

operating variables on the model fit was also studied using these variables as calibrating 21 

parameters and keeping the ASM2d kinetic and stoichiometric parameters, which 22 

traditionally are the calibration parameters, at their default values. Such an “inversion” 23 

of the traditional way of model fitting allowed evaluating the sensitivity of the main 24 

model outputs regarding to the influent and to the operating variables changes. This new 25 

approach is able to evaluate the capacity of the operational variables used by the WWTP 26 

feedback control loops to overcome external disturbances in the influent and 27 

kinetic/stoichiometric model parameters uncertainties. In addition, the study of the 28 

influence of operating variables on the model outputs provides useful information to 29 

select input and output variables in decentralized control structures. 30 

 31 

Keywords: ASM2d, EBPR, FIM, full-scale WWTP, calibration, influent 32 

characterization, modelling. 33 
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 35 

Nomenclature 36 

A2/O  Anaerobic, Anoxic and Aerobic (WWTP configuration) 37 

ASM  Activated Sludge Models 38 

BOD5  Biological Oxygen Demand (5 days) 39 

CCF  Calibration Cost Function 40 

COD  Chemical Oxygen Demand 41 

DO  Dissolved Oxygen 42 

EBPR  Enhanced Biological Phosphorus Removal 43 

FIM  Fisher Information Matrix 44 

GAO  Glycogen Accumulating Organisms 45 

IWA  International Water Association 46 

PAO  Phosphorus Accumulating Organisms 47 

PCCF  Preliminary Calibration Cost Function 48 

PID  Proportional-Integral-Derivative controller 49 

SRT  Sludge Retention Time 50 

TKN  Total Kjeldahl Nitrogen  51 

TN   Total Nitrogen 52 

TSS  Total Suspended Solids 53 

VCF  Validation Cost Function 54 

WWTP Wastewater Treatment Plant 55 

WERF  Water Environment Research Foundation 56 

57 
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1. Introduction  58 

Modelling wastewater treatment plants (WWTP) is the fundamental stone to improve 59 

WWTP performance through identifying bottlenecks and proposing modifications of 60 

existent plants or to design a completely new one. Besides the experimental knowledge, 61 

mathematical models are a set of tools for predicting plant behaviour under different 62 

conditions from the ordinary outlook of the WWTP or under unexpected operational 63 

scenarios [1]. The models are also useful for changing process concepts and developing 64 

new plant configurations [2]. The operation of WWTPs is based on the behaviour of 65 

different microorganisms, which are responsible for biological nutrient (nitrogen and 66 

phosphorus) and organic matter (carbon) removal. Such processes are well described by 67 

the IWA models ASM1, ASM2, ASM2d and ASM3, even though other models have 68 

been used and accepted in practical and scientific media as the TUD-P model [3–5] or 69 

the ASM3 EAWAG Bio-P [6]. ASM2d model is being used in many researches 70 

concerning WWTP due to including the most important biological processes of ordinary 71 

heterotrophic biomass, heterotrophic PAO biomass and nitrifiers. Ferrer et al. [7] used 72 

this model to fit full-scale WWTP data and then to evaluate different configurations for 73 

improving nutrient removal. Ingildsen et al. [8] calibrated the ASM2d model for the 74 

Avedøre WWTP (Denmark) to support a control strategy for maintaining the enhanced 75 

biological phosphorus removal (EBPR) process activated for long periods. Xie et al. [9] 76 

also used ASM2d to simulate and optimize a full-scale Carrousel WWTP. García-Usach 77 

et al. [10] or Machado et al. [11] successfully used ASM2d for describing EBPR 78 

process at pilot scale. 79 

WWTP models are also useful for studying and proposing several control strategies in 80 

order to guarantee the effluent quality with or without external disturbances (storm 81 

events, peaks of pollutants in the influent…). The effluent quality is the main goal of the 82 
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control structures, where ammonium, nitrate and phosphorus are the main pollutants 83 

that should be kept at lower values to avoid the eutrophication effect. Nevertheless, 84 

dissolved oxygen (DO) and the sludge residence time (SRT) are the inventory variables 85 

that should be controlled first [12]. To control ammonium concentration, a cascade 86 

controller which calculates the DO setpoint in the aerobic basin using the error between 87 

the desired ammonium concentration and the real measurement in the effluent is 88 

designed [13]. An ammonium feedback-feedforward controller also could be 89 

implemented if the ammonium influent load is estimated or measured [14]. Nitrate 90 

removal is accomplished by the denitrification processes which depend on the readily 91 

organic matter available in an anoxic zone and the nitrate concentration. Two ways of 92 

controlling the nitrate concentration at the effluent is adding external carbon source and 93 

changing the nitrate recycle from the aerobic basin to the anoxic one in most of WWTP 94 

[15, 16]. It is worth noticing that the measured and the manipulated variables also have 95 

uncertainties, like recycling flow measurements and dissolved oxygen concentrations. 96 

All the abovementioned control applications using WWTP models should be preceded 97 

by a correlation analysis of the available manipulated variables not to add internal 98 

disturbances to control the effluent quality. 99 

Despite all the cited models are essential tools for improving many aspects of the 100 

wastewater treatment, they are structured on kinetic and stoichiometric parameters that 101 

should be identified for better accuracy. Besides, their state variables are not exactly the 102 

same as the information obtained from laboratory analysis periodically performed in the 103 

WWTP. Therefore, it is necessary, first, to convert some daily plant measurements of 104 

the influent into model states and, second, to calibrate parameters using plant data and 105 

lab assays (batch tests with the plant biomass). In the literature it is possible to find a 106 

methodology to accomplish the first task before mentioned [17], although the influent 107 
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identifiability linked to its variability has not received much attention. The parameter 108 

calibration could be performed using protocols reported in the literature [18, 19] as the 109 

protocols developed by STOWA [20], BIOMATH [21], WERF [22], HSG [23] or 110 

Mannina et al. [24, 25]. All these protocols are good at posing well the goals of the 111 

calibration, systematically treat the plant data gathered and have a validation step with 112 

different data from those used to calibrate the model. On the other hand, only 113 

BIOMATH, WERF or Mannina et al. protocols pay attention to the parameter subset 114 

selection to maximize the information mined from the plant data. Machado et al. [11], 115 

developed an alternative calibration methodology, called the “seeds methodology”, 116 

using criteria derived from the Fisher Information Matrix (FIM) to avoid overfitting. 117 

Although the hydraulics modelling and a detailed biomass characterization are not 118 

emphasized in this last method as in the HSG and BIOMATH protocols, respectively, 119 

the usage of a large amount of available plant data combined with a systematic 120 

procedure to find the most identifiable parameters subset, without testing all the 121 

possible parameters combinations, are the strengths of the “seeds methodology”. 122 

Unfortunately, the performance of all the abovementioned protocols is affected by 123 

uncertainties from different sources during the modelling task. Refsgaard et al. [26] 124 

pointed out that several error sources affect the quality of model simulation results: (i) 125 

context and framing; (ii) input uncertainty; (iii) model structure uncertainty; (iv) 126 

parameter uncertainty and (v) model technical uncertainty. Sin et al. [27] deepened in 127 

the uncertainty analysis, concluding that both biokinetic/stoichiometric/influent 128 

fractionation related parameters as well as hydraulics/mass transfer related parameters 129 

induced significant uncertainty in the predicted performance of WWTP. Moreover, 130 

Cierkens et al. [28] studied the effect of the influent data frequency on the calibration 131 

quality and output uncertainty of the WWTP model fit.  132 
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Uncertainty assessment of kinetic and stoichiometric model parameters of ASM1 and 133 

ASM2 has been applied for full-scale WWTP as in Mannina et al. [29], who evaluated 134 

the model reliability identifying the crucial aspects where higher uncertainty rely and 135 

more efforts should be provided in terms of both data gathering and modelling practises. 136 

The uncertainty associated to operation and design parameters of WWTP have also been 137 

studied [30] showing that they are the most sensitive parameters for some 138 

benchmarking studies. Finally, Belia et al. [31] pointed out that identifying and 139 

quantifying the uncertainties involved in a new design or plant upgrade becomes crucial 140 

because WWTP are required to operate with increased energy efficiency and close to 141 

their limits. They also note the need for the development of a protocol to include 142 

uncertainty evaluations in model-based design and optimisation projects. 143 

To consider some kind of those commented uncertainties on the modelling task and 144 

concentrating effort at the calibration step, the present work developed an AS model for 145 

the Manresa WWTP (Manresa, Catalonia, Spain) based on the systematic parameter 146 

calibration of the ASM2d model using the “seeds methodology” for further plant 147 

upgrades, as the insertion of the EBPR and the design of a new control structure for the 148 

plant. The influent was characterized as required by the ASM2d and the parameters 149 

were selected, calibrated and their confidence intervals were assessed as stated in the 150 

“seeds methodology”. The calibration parameters were divided into three groups: the 151 

traditional kinetic/stoichiometric parameter group (K group); the influent factors 152 

representing errors/uncertainties of the influent characterization (I group) and the 153 

operational variable factors (O group), considering errors/uncertainties on the 154 

measurement of the operational variables. The procedure assessed, in addition to the 155 

conventional calibration of the K group, influent and operational variables uncertainties 156 

in two additional calibrations: i) influent vector of states in the ASM2d model (I group) 157 
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was used as calibration parameters while parameters of K and O groups were kept at 158 

their default values and ii) the O group was used as calibrating parameters while K and I 159 

groups kept constant. Such “inversion” of the traditional model fit procedure allowed to 160 

evaluate the quality of the influent characterization and to observe the set of operating 161 

variables which has the less number of uncorrelated variables amongst themselves for 162 

better designing a decentralized control structure for the WWTP. 163 

 164 

2. Material and Methods 165 

2.1 Brief description of the Manresa WWTP 166 

The average flow rate of Manresa WWTP is 27,000 m3/d. This WWTP (Figure 1) 167 

consists of a pre-treatment (gross and grit removal), primary treatment with a clarifier, a 168 

secondary stage (biological removal) and a possible tertiary stage (chlorination). There 169 

are two main treatment lines in the secondary stage (Figure 2). Each line has three 170 

anoxic reactors (1460 m3) and one aerobic reactor made up by two parts of 3391 m3. 171 

Each reactor has approximately 7 m of depth. After passing through the anoxic zone, the 172 

bulk liquid is mixed and is again divided to feed the aerobic zone. Air is bubbled from 173 

the bottom of the aerobic tanks with membrane diffusers, allowing biological oxidation 174 

of the organic matter and ammonium. An internal recycle pipe connects the aerobic 175 

zone to the anoxic one in order to bring the nitrate to be denitrified in the anoxic zone. 176 

At the end of the secondary stage two settlers separate the biomass from the treated 177 

effluent. Settled biomass returns to the entrance of the anoxic reactor by an Archimedes 178 

screw. The excess of sludge is anaerobically digested and sent to a composting plant. 179 

The effluent, after leaving the secondary settler, can be chlorinated and it is disposed to 180 

the environment at the Cardener River. 181 
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It is worth noticing that experimentally is observed preferential flux of the inlet mass 182 

stream to one of the main treatment lines. The presence of DO (0.5-1.0 mg/L) at the end 183 

of the anoxic reactors indicates that the denitrification is not occurring at the maximum 184 

intensity because there is a lack of organic matter to improve the nitrate reduction and a 185 

poor mixing is taking place. Also, a non-homogeneous spatial distribution of DO was 186 

observed along the aerobic reactors, not only along the influent path but also in depth. 187 

Daily analyses of COD, BOD5, total suspended solids (TSS), NH4
+, NO3

-, PO4
3-, total 188 

Kjeldahl nitrogen (TKN) and total nitrogen (TN) are performed at the influent and the 189 

effluent of the secondary treatment. The daily composite samples are collected from the 190 

full-scale WWTP by sampling every 2 hours. The only system variable measured in 191 

each reactor of the secondary treatment is the TSS concentration. . 192 

The air supply system is composed by 4 air blowers with 100,000 Nm3/d of capacity, 193 

whose motor speed are controlled by a single DO feedback controller in the aerobic 194 

basins. The aerobic zone of each water line has two on-line DO sensors, one of them 195 

placed at the 25% of the path along the zone and the other one placed at 75% of the 196 

aerobic zone. The DO PI controller uses a weighted average of the four DO 197 

concentrations as the measured variable, and compares it to a DO setpoint, usually equal 198 

to 2.0 mg/L. Once computed the error between the setpoint and the averaged DO, the 199 

new setpoint speed of the blowers is calculated by the PI algorithm and sent to the 200 

devices. Physically, the air is moved to a primary header after being discharged by the 201 

blowers. Then, the air flow rate is divided into two branches. The right branch feeds the 202 

middle part of the two aerobic zones while the left branch feeds the entrance and the end 203 

of the two aerobic zones. 204 
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The main operation costs are electrical energy for aeration and pumping, sludge 205 

treatment (anaerobic digestion and composting) and chemical products for P 206 

precipitation. 207 

 208 

2.2 Influent composition and patterns 209 

Influent composition and its variability is key information for plant modelling and 210 

description of changes along the year due to seasonal patterns. Table 1 shows influent 211 

properties (averages) straightforward linked to the wastewater composition in winter 212 

and summer months for the Manresa WWTP. Considering the effluent limits of COD 213 

(125 mg O2/L), BOD5 (25 mg O2/L), total N (10 mg/L), ammonium (4 mg/L) and total 214 

P (1 mg/L), defined by the local water agency (Agència Catalana de l’Aigua, ACA), the 215 

Manresa WWTP, with average effluent flow rate of 27,000 m3/day, could deliver an 216 

effluent load of 3375 kg/d, 675 kg/d, 270 kg/d, 108 kg/d and 27 kg/d, respectively for 217 

these pollutants. The total P discharge load was kept at the limit of 27 kg/d, which 218 

means an average value of 1 mg/L of P, with large usage of FeCl3 in 2008, 2009 and 219 

2010. Such chemical precipitation represents a cost around 50,000 €/y, but allows 220 

meeting the legal discharge level of the EC directive. 221 

On summer months, contaminant loads are considerably lower than in winter months, 222 

probably also due to the people moves from Manresa to vacation locations. These 223 

qualitatively recognized patterns can be mathematically analysed looking for daily, 224 

weekly or monthly profiles that could help to improve the tuning of feed-forward 225 

controllers, for refusing external variations whose pure feedback controllers do not deal 226 

easily, as well as to promote a time-scheduling load profile for dosing extra COD source 227 

for denitrification and FeCl3 for chemical P removal. 228 

 229 
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2.3 Model structure 230 

The kinetic model implemented for modelling COD, N and P removal was the IWA 231 

ASM2d model [5]. It has 19 state variables and 21 processes, which include nitrification 232 

and denitrification and the PHA (poly-hydroxyalkanoates) accumulation process, the 233 

latter fundamental for EBPR.  234 

The settler model adopted was the 10 layer Takács model [32]. The wastewater entrance 235 

is at the fifth layer. At the end of the process, the effluent leaves the settler from the 236 

upper part (the collector, layer 1) and the settled biomass is recycled from the bottom of 237 

the settler (layer 10) to the feed of the biological treatment. The recycled biomass 238 

(external recycle, QRAS) is reincorporated to the process, being mixed to new influent of 239 

the biological treatment. The soluble components of the wastewater leave the settler 240 

with a concentration calculated considering CSTR behaviour for these compounds. The 241 

settleability of particulate states is linked to the settling velocity which is calculated by a 242 

double exponential function (Equation 1).  243 

( ) ( )INnsipINnsih
XfXrXfXr

s evevv
⋅−−⋅−− ⋅−⋅= 00       Eq. 1 244 

Where:  245 

v0 is the settling velocity if the Stokes’ Law could be applied to the wastewater, [m/h]; 246 

fns is the fraction of non-settleable solids; 247 

XIN is the inlet solid concentration, [g TSS/m3]; 248 

Xi is the solid concentration of the layer i, [g TSS/m3]; 249 

rh and rp are weights for modelling the effect of the size of the particles in the settling 250 

velocity. 251 

Parameter vs is compared to a maximum settling velocity, vs,max, which is experimentally 252 

determined. Xt is another model parameter required as a threshold value that indicates 253 
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an upper limit in the settler capacity to prevent an overflow of solids in the equipment. 254 

The default values of the adopted model were:  255 

v0:  500 m/h 

vsmax: 250 m/h 

rp: 2.86·10-3 

rh: 5.76·10-4 

fns: 2.28 10-3 

Xt: 3000 g TSS/m3 

 256 

2.4 Influent characterization according to the model states 257 

Although daily analysis of the influent is performed as detailed in section 2.1, additional 258 

experimental data was needed to obtain the specific characterization required for 259 

ASM2d. Therefore, some experiments were performed with wastewater leaving the 260 

primary clarifier following the methodology described by Orhon et al. [33] as detailed 261 

in Montpart [34]. The determined influent stream characteristics were SI = 0.080 COD, 262 

XI = 0.055 COD, XS = 0.450 COD and SF = 0.410 COD and these ratios were assumed 263 

constant. See supplementary information S1 for details of this characterization. 264 

The values of the influent variables XTSS, SNH4, SNO3, SPO4 were assumed to be equal to 265 

the experimental observations (analysis of daily composite samples). The variables SA, 266 

XPHA, XPAO, XPP, SN2, SO2, XA, XMEP were assumed to be zero. Hence, the inlet 267 

heterotrophic biomass was calculated by Equation 2: 268 

)( ASIFAIH XXXSSSCODX +++++−=      Eq. 2 269 

The variable XMEOH was not considered zero due to the presence of chemical 270 

phosphorus precipitant agent and its value along the time was defined in the steady state 271 

calibration, when the phosphorus behaviour in the effluent was evaluated. Finally, SALK 272 

(the plant influent alkalinity) was assumed to be 7 moles of HCO3
-/m3.  273 

 274 

3. Results and Discussion 275 

3.1 Preliminary steady-state calibration 276 
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Model calibration was performed in two steps: a steady-state calibration and a dynamic 277 

calibration. The former step was useful to minimize structural discrepancies between the 278 

plant model and plant data. By its turn, the dynamic calibration involved not only the 279 

determination of kinetic and stoichiometric parameters, but also an estimative of the 280 

useful volumes of reactors and settlers and the necessities of P chemical precipitant 281 

agent and extra load of biodegradable COD required for denitrification. Figure 3 shows 282 

a simplified scheme of the overall calibration / validation process used in this work. 283 

Preliminary calibration aims to reduce structural discrepancies between the model and 284 

the experimental variables, especially to reduce the main differences between 285 

experimental TSS and TSS model predictions. Experimental data were averaged 286 

(influent values and operational parameters like DO and flow rates) and the resultant 287 

values were used as inputs to the simulation model (constant inputs). A period of 1200 288 

days was simulated with the default ASM2d parameters and the steady-state values 289 

were used as initial values for all the simulations performed afterwards. TSS 290 

concentrations in the effluent and in the wastage purge stream were used as output 291 

variables to calibrate the following parameters: 292 

a) rp and fns (settling model parameters), to decrease the differences between TSS 293 

in the effluent and the model predictions for this output. 294 

b) fQw and fQRAS, in order to adjust the model TSS in the effluent and in the purge 295 

(and consequently in the solids inside the aerobic reactors). 296 

A preliminary calibration cost function (PCCF, Equation 3) was employed to perform 297 

the preliminary steady-state calibration of the WWTP model. 298 

( )∑ ∑
= =

−⋅=
2

1 1

2
,,

k

m

r
rkModelrkExpk yyqPCCF       Eq. 3 299 

 300 

Where: 301 



14 
 

• k is related to each output variable 302 

• r is related to each experimental data (each day). The whole period studied had 303 

m = 1200 days. 304 

• qk is the weight to normalize the output variables since their values are very 305 

different. Ammonium was used as the reference value for the normalization, and 306 

hence the weights were calculated as the ratio of the average of ammonium 307 

concentration at the effluent to the average of the other output variable (TSS in 308 

the effluent and in the external recycle) as shown in equation 4. The weights 309 

used for the TSS in the effluent and in the external recycle were, respectively, 310 

3.637 10-4 and 2.404 10-4. 311 

• yExp k,r is the experimental data of variable k at day r. 312 

• yModel k,r is the model output of variable k at day r. 313 

∑

∑

=

== m

r
rk

m

r
rNH

k

y
m

y
mq

1
,

1
,

1

1
4

         Eq. 4  314 

Where yk,r is the data of the other output variables (i = XTSS at the effluent and XTSS at 315 

the purge) and m is the total number of experimental data (m = 1200). 316 

 317 

In addition, XMeOH in the influent was manipulated to adjust the phosphate 318 

concentrations in the effluent. The calibrated values of the parameters were: rP = 319 

1.036·10-2, fns = 2.566·10-3, fQw = 0.1736, fQRAS = 1.911 and fXMeOH = 1.237. These 320 

calibrated parameters were considered constant and were maintained in these values 321 

during the dynamic calibration procedure. The values of the calibrated parameters fQw 322 

and fQRAS were also used as initial guesses in the dynamic calibration of the Operational 323 

Variables group 324 
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 325 

3.2 Development of the cost function for dynamic calibration 326 

Data from seven effluent variables were available for model calibration of Manresa 327 

WWTP: ammonium, nitrate, phosphorus, TSS, COD, BOD5 and TKN. These variables 328 

were considered the output variables of interest. Data period used for model calibration 329 

was from October 2007 to May 2008. Due to its daily oscillation, COD and BOD5 were 330 

used only for model validation. In the dynamic calibration step, equation 5 was used as 331 

cost function. 332 

 333 

( )∑ ∑
= =

−⋅=
5

1 1

2
,,

i

n

j
jiModeljiExpi yywCCF        Eq. 5 334 

 335 

Where: 336 

• i is related to each output variable 337 

• j is related to each experimental data (each day). The whole period studied had  338 

n = 251 days. 339 

• wi is like qk a weight to normalize all the output variables, which have different 340 

units and values, using ammonium (w = 1) as a common base. Hence, the 341 

weights were calculated as the ratio of the average of ammonium concentration 342 

at the effluent to the average of the other output variable (NO3
-, PO4

3-, TSS and 343 

TKN) as shown in equation 6. The weights calculated for nitrate, phosphorus, 344 

TSS and TKN were 0.235, 1.124, 0.091 and 0.532, respectively. 345 

• yExp i,j is the experimental data of variable i at day j. 346 

• yModel i,j is the model output of variable i at day j. 347 
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         Eq. 6  348 

Where yi,j is the data of the other output variables (i = NO3
-, XTSS, NTKN or PO4

3-) and n 349 

is the total number of experimental data (n = 251).  350 

The CCF value calculated with the original model prediction (with default parameters) 351 

was 83.46, but after the preliminary calibration step (optimization of PCCF) it was 352 

reduced to 67.68 (18.9% improvement). 353 

The validation cost function (VCF) was calculated also with equation 5, but using 354 

experimental results of years 2008 to 2010.  355 

Due to the associated uncertainty of full-scale WWTP, operational variables, as the 356 

plant flow rates and the DO in the aerobic basins could also be used as parameters to 357 

calibrate. The internal recycle, external recycle and purge flow rates data observed by 358 

the WWTP personnel probably contain uncertainties (no reliable flowmeters are usually 359 

available) and hence, some multiplying factors were created to consider these 360 

uncertainties. These factors were fQW for the purge flow rate, fQRINT for the internal 361 

recycle flow rate and fQRAS for the external flow rate. In the case of the uncertainties of 362 

the DO sensors, the multiplying factor was the DO_Gain. 363 

As the influent concentrations of each model variable neither are perfectly determined, 364 

additional influent factors were adopted for further adjustments in the inlet 365 

concentration of these variables. 366 

 367 

3.3 Parameter grouping for dynamic calibration 368 

The full plant model has about 90 model parameters, but only the 24 most sensitive 369 

parameters were studied. This set of 24 parameters was divided into three subsets: the 370 
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kinetic/stoichiometric parameters (group K, with 10 parameters), the influent 371 

parameters (group I, with 10 parameters) and the operational parameters (group O, with 372 

4 parameters). In fact, only parameters of the kinetic/stoichiometric macro-group were 373 

used for real model calibration. The macro-groups I and O were used to obtain 374 

additional information for process control and data quality. 375 

The subset of kinetic/stoichiometric parameters was made up of the growth and decay 376 

parameters, yields and saturation constants of all the involved biomasses (autotrophic, 377 

heterotrophic and PAO). When calibrating the model with this group, it was assumed 378 

that the influent composition during all the calibration period was completely known, as 379 

well as the operational parameters. This assumption was not strictly correct since on-380 

line measurements of all the ASM2d states are never available. On the other hand, using 381 

the subset of influent parameters, it was assumed that all the default 382 

kinetic/stoichiometric ASM2d parameters were perfectly correct, as well as the 383 

operational parameters. As determining on-line all the ASM2d variables in the influent 384 

stream would be a very difficult and expensive task, the group I calibration was used for 385 

obtaining additional information about the influent data quality and to determine which 386 

variables in the influent could be easily modified in order to adjust the model. At last, 387 

using the group of operational parameters, both kinetic/stoichiometric parameters and 388 

the influent composition were considered perfectly fitting the biological processes rates 389 

and the incoming pollutant loads, respectively. Amongst all the parameters, group O 390 

was used for process control in the normal plant operation. Therefore, it was determined 391 

the parameters of this group that more easily provided fast plant response to reject 392 

external disturbances to the control system. This knowledge was obtained using the 393 

same calibration methodology of the group K to the group O. 394 

 395 
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3.4 Sensitivity Analysis 396 

Table 2 presents the overall sensitivity, calculated as the sum of relative sensitivity for 397 

ammonium, phosphate, nitrate, TKN and TSS in the effluent (see the equations used in 398 

the supplementary information S2). The advantage of using the relative sensitivity for 399 

calculating the overall sensitivity is that all the output variables have the same 400 

importance.  401 

The parameters of each macro-group that most affect the model outputs were ranked in 402 

descending order in this table. In the case of the K group, the heterotrophic biomass 403 

growth yield, the nitrification and the phosphorus chemical precipitation are well 404 

represented by the ranked parameters. KPRE and KRED have almost the same impact on 405 

the model outputs, but their impacts are less important than the N removal processes. 406 

Regarding the influent group, the inlet XS, P-related processes and the inlet ammonium 407 

concentration were the most important calibrating parameters. It is observed that PO4
3- 408 

or MeOH inlet concentrations are more important that the own kinetic precipitation 409 

parameters KPRE and KRED of K group. These results indicate that chemical 410 

P-precipitation and P-redissolution processes are kinetically limited due to the low 411 

phosphate and MeOH concentration in the biological reactors. 412 

In the case of the operational parameters, the purge flow rate and the DO have the most 413 

influence on the model outputs. Nevertheless, all the parameters of this group would 414 

have to change considerably to affect the outputs in the same quantity as the 415 

kinetic/stoichiometric or the influent parameters. Table 2 also shows that inlet MeOH 416 

concentration, which could be used to control P chemical precipitation, produces more 417 

impact on the outputs that the process control variables considered in group O. 418 

Regarding SF inlet concentration, which could be used for controlling denitrification, it 419 



19 
 

would affect the outputs in the same extent of the best parameter of the group O, the 420 

purge flow rate. 421 

The previous sensitivity analysis was used to select the possible calibration parameters 422 

for applying the “seeds” methodology. The K group has 10 elements that most affect the 423 

model outputs. No more kinetic or stoichiometric parameters were included since the 424 

10th parameter of the sensitivity list (Table 2) of this group (ηNO3,D) only affects the 425 

model output less than 10% the 1st parameter. The I group has all the influent states that 426 

commonly could affect the model output. It is important to remember that this group 427 

could be of size 19, the 19 state variables of the ASM2d, but the results of Table 2 show 428 

that only the first nine affected the outputs. Finally, the O group has all the 4 variables 429 

that are commonly used to control de WWTP processes. In case of adding external 430 

readily organic matter to improve denitrification or phosphorus removal, such group of 431 

parameters would have size of 5. 432 

 433 

3.5 Dynamic calibration methodology 434 

Dynamic calibration was performed following the methodology of the “seeds” [11] and 435 

starting from the results obtained by the preliminary calibration and the sensitivity 436 

analysis. This is the first reported application of this method using full-scale plant data. 437 

The procedure uses the RDE criteria calculated from the Fisher Information Matrix 438 

(FIM) as the ratio of normalized D to modified E criteria (RDE). From the sensitivity 439 

ranking, the best-ranked parameters are named as ‘‘seeds’’, since each one serves for 440 

growing a parameter subset for model calibration. The subset generation process adds to 441 

the seed subset a parameter that presents the highest RDE among the combination 442 

between the current seed subset and all the other remaining best-ranked parameters of 443 

the sensitivity rank. The process of generation of parameter subsets is automated, 444 
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independent of the user and exclusively based on mathematical tools, which was 445 

considered a necessary improvement of model calibration techniques pointed out by Sin 446 

et al. [18]. The “seed” methodology allows generating subsets with the maximum 447 

capacity to explain plant behaviour with the less possible correlation amongst its 448 

parameters. All the subsets generated could systematically be compared with each other. 449 

The process of parameter addition repeats until the RDE decreases from the current 450 

iteration to the previous one, for each seed. After that, the subset with the highest RDE 451 

criterion is elected and the parameters values are already changed to the calibrated 452 

values during the “seed” growth. 453 

 454 

3.6 Dynamic calibration results 455 

Tables 3, 4 and 5 present the results of applying the abovementioned calibration 456 

methodology using parameters of groups K, I and O, respectively. 457 

 458 

3.6.1 Calibration of kinetic parameters 459 

The 10 best subsets were selected from the tested seeds. See Table 3 for details. The 460 

common subset size is of 4 parameters. Nevertheless the highest RDE value was 461 

calculated for a subset of 6 parameters (subset of seed ηNO3,D). This subset produces the 462 

lowest CCF and VCF, resulting in the most suitable subset for model calibration even 463 

though the confidence interval of one parameter is considerably high. As the current 464 

plant is an A/O WWTP, no parameters related to the biological P-removal appear in the 465 

10 most impacting seeds. On the other hand, in all the subsets appears KPRE or KRED, 466 

parameters linked to the P-chemical precipitation. YH and bH are present in all the 467 

subsets, with high values of parameter confidence interval, which indicate less reliable 468 

calibrating values. Parameter ηNO3,D is the parameter that provides more information 469 
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about the plant behaviour (lowest CCF and VCF when this parameter is inside the 470 

calibration set), despite its lower value (0.0296) and more than 50% of confidence 471 

interval (default ASM2d value is 0.80). Such value indicates that a poor denitrification 472 

process is occurring in the plant caused by a lack of carbon source and some amount of 473 

DO transported from the aerobic zone to the anoxic one. It would be recommendable to 474 

add extra carbon source to the influent stream to increase the efficiency of the nitrogen 475 

removal processes. 476 

Considering that the influent composition determined by lab test and using plant data is 477 

perfectly known along the years of calibration and validation data, the best subset 478 

obtained following the methodology of Machado et al. [11] amongst the kinetic group is 479 

the subset obtained from the parameter ηNO3,D. The full subset is composed by the 480 

parameters {ηNO3,D, KPRE, bA, YH, KO2,A, bH} with values [0.0296, 1.005, 0.2203, 0.4181, 481 

0.1130, 0.0829]. See Figure 4 for comparisons between the model prediction and the 482 

plant data. In this subset, a calibrated value of 0.4181 for YH means that more COD is 483 

consumed for maintenance of the heterotrophic biomass than the consumed for 484 

promoting the growth of the microorganisms. It was not expected this low value for this 485 

parameter, since the default value of YH is 0.625 [5]. However, similar values for YH 486 

around 0.45 were obtained in the other subsets from the rest of seeds. Such an 487 

unexpected result, probably, is derived from a lack of knowledge on the influent 488 

composition and from the optimized values for sedimentation parameters obtained in 489 

the static calibration. Nevertheless, ηNO3,D subset showed the best compromise between 490 

explaining the plant behaviour and avoiding parameters correlations, with lower CCF 491 

and VCF values. 492 

Gross modelling errors could be corrected in the preliminary calibration step. 493 

Nevertheless, poor BOD5 and ammonium predictions in the effluent could be an 494 
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indication that a false denitrification rate is occurring, probably because a lack of easily 495 

biodegradable COD is not being captured. Figure 5 compares the model predictions to 496 

the validation data, which is a completely different dataset from the calibration data. In 497 

Figure 5, the parameters subset of the best seed of Table 3 makes the model suitable for 498 

predicting correctly nitrate, phosphate, solids, TKN and COD in the effluent stream and 499 

the solids in QRAS stream and inside the basins. The model predicts a very low 500 

ammonium and BOD5 concentration in the effluent. Such results also could indicate 501 

dead volumes in aerobic basins not modelled as well as a spatial gradient of DO, 502 

ignored in the current model. As a consequence, not all the regions of the aerobic basins 503 

operate with a reasonable DO concentration (2-3 mg/L). Figures 4 and 5 clearly show 504 

that events with fast dynamics are not well captured, since some plant measurements 505 

that made up calibration and validation data subsets have their sample time equal to one 506 

day and the samples are integrated (each 2 hours a volume of wastewater is hold to 507 

compose a final sample before chemical and biochemical analysis). Besides, the plant 508 

data presents abrupt changes which bring additional difficulty to estimate model 509 

parameter errors. 510 

 511 

3.6.2 Calibration of influent parameters 512 

Although the parameters of the influent group would not be used to make a real fit of 513 

the model as in a conventional calibration procedure, some useful information can be 514 

extracted from these results (Table 4). The optimized values of parameters are factors 515 

that multiply the influent vectors for each variable of the influent. Therefore, a value of 516 

1.414 of fSNH4 of the fSI seed means that the ammonium vector of original plant data 517 

increased 41.4% in order to minimize the cost function. 518 
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The most common subset size is 5 or 6 parameters. Parameters fSALK, fXMeOH, fSNH4 and 519 

fSPO4 are present in almost all the subsets, which indicate that each variable is explaining 520 

the model and is not interdependent amongst all of them. This information is also useful 521 

to decide the influent variables where the sampling and measuring efforts should be 522 

focused for a reliable optimization of kinetic parameters.  523 

Table 4 also brings some other relevant remarks. The influent parameter group could 524 

achieve good values of CCF and VCF in most of the tested subsets compared to the 525 

subsets of the kinetic group. Thereby, if the weight of the influent parameter group (new 526 

approach) is stronger than the kinetic one (traditional way) on the model prediction, the 527 

variability of the influent composition and the error concerned to the characterization 528 

procedure could explain the deviation between the current model and the standard 529 

model ASM2d predictions. Therefore, these results demonstrate that the confidence of 530 

the influent characterization is a key factor to consider before fitting any parameter of a 531 

given model. In this sense, the importance of uncertainties associated to the influent 532 

characterization that induce significant uncertainty in the model predictions have been 533 

already highlighted in the literature [27, 28].  534 

Comparing the results of fXTSS and fXS seeds it is observed that the result of fXTSS seed 535 

explains better the outputs than the result of fXS seed, although the inclusion of fSF in the 536 

former subset increases correlation among parameters. In addition, the calibrating 537 

methodology did not allow the simultaneous presence of fXS and fXTSS in any calibration 538 

subset, probably due to the high correlation between these variables. 539 

Finally, nitrate data are correlated to the SF data, since in both created subsets where 540 

fSNO3 appears (seeds fSNO3 and fSI), high parameter confidence interval values are 541 

reported. The existence of such correlation is clearly realized in the subset created by 542 

the fSNO3 seed, which is made up only by fSNO3 and fSF. 543 
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 544 

3.6.3 Calibration of operational variables 545 

Considering the operational variables, only two different subsets could be created (see 546 

Table 5), which means that almost all the variables help to explain the experimental 547 

observations without correlation. Nevertheless, when inserting the biomass recycle flow 548 

rate (fQRAS) into a parameter calibration subset, a strong correlation to the internal 549 

recycle flow rate was added. It indicates that in a possible control structure for 550 

controlling simultaneously N, P and COD removal, the biomass recycle flow rate and 551 

the internal recycle flow rate could not be changed at the same time or their 552 

modifications should be done in different magnitudes to avoid its interaction.  553 

Table 5 also shows that operational variables could improve model fit, i.e., the observed 554 

variability with respect ASM2d prediction with default parameters could be explained 555 

considering that the operational variables were not well measured. This is an important 556 

problem in any model fit using full-scale WWTP data, where there are gradients and 557 

time variability of operational variables, which do not have the same homogeneity and 558 

reliability than in a controlled pilot WWTP. 559 

 560 

3.7 Remarks 561 

The “seeds” methodology applied to different group of parameters, not only the 562 

traditional kinetic and stoichiometric ones, is a novel approach and allows: 563 

• To automate the parameter subset selection, an improvement in the model 564 

calibration techniques, pointed out by Sin et al. [18]. The usage of the sensitivity 565 

analysis is similar to that found in BIOMATH protocol [21]. The “seed” 566 

methodology searches for the minimal number of parameters that explains the 567 

plant data with the less possible correlation amongst the calibration parameters. 568 



25 
 

The utilization of a higher number of parameters as in other works [24, 36] 569 

provides a good model fit, but it is not usually supported by a study of its 570 

correlation, which weakens its mathematical validity, as it is likely disregarding 571 

overfitting problems that could reduce the model predictive capacity. 572 

• To measure, in some extent, the influent states with higher uncertainties, which 573 

aid to concentrate efforts in programming specific experiments to better 574 

characterize these input variables (load disturbances). Such an uncertainty 575 

measurement is in agreement to the philosophy of BIOMATH [21], STOWA 576 

[20] and WERF [22] protocols, which are supported, amongst other premises, on 577 

an excellent influent characterization. 578 

• To identify the most correlated operational variables not to add them together 579 

inside a control structure with decentralized controllers (e.g. PID controllers), to 580 

avoid internal conflicts with the different control loops. Also, observing the CCF 581 

and the confidence intervals of the best subsets of K and O groups, it is possible 582 

to infer if some control structure designed based on the group O will be able to 583 

compensate kinetic/stoichiometric uncertainties, since the industrial controllers 584 

are model-based controllers, which means that the controllers performance are 585 

dependent of the model accuracy. In the studied case, the operational variables 586 

of Manresa WWTP are able to keep the plant under a stable operating point 587 

since the CCF of subsets of the O group are lower than the K group as well as 588 

the confidence intervals. 589 

 590 

4. Conclusions 591 

The ASM2d model was calibrated for the Manresa WWTP (Catalonia, Spain) using the 592 

“seeds” methodology, which permits to calibrate models with the lowest number of 593 
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parameters, avoiding the correlation among the parameters optimized. As a novel 594 

approach in ASM model calibration, the uncertainty on the influent characterization 595 

could be evaluated fixing the kinetic and operational variables at their default/common 596 

values and varying multipliers of the influent vector until reach the best objective 597 

function value and lower correlation amongst the calibration parameters (multipliers). 598 

One of the advantages of this novel approach was to identify what influent states should 599 

be better characterized. In terms of process control, the applied methodology was able 600 

to identify the most correlated operational variables, aiding to build decentralized 601 

control structures with less internal conflicts amongst all the WWTP feedback loops. 602 

 603 
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 727 

Fig. 1 Scale map of the Manresa WWTP 728 

 729 

Fig. 2 Monitored variables of the Manresa WWTP secondary treatment 730 

 731 

Fig. 3 Simplified scheme of the overall calibration / validation process 732 

 733 

Fig. 4 Model predictions using the best seed (subset from the seed ηNO3,D) and plant data 734 

(calibration data). For checking the parameter values used in this simulation, see Table 735 

3 736 

 737 

Fig. 5 Model predictions using the best subset (from seed ηNO3,D) and the validation data 738 

(plant data) 739 

 740 

741 



31 
 

 742 

 743 

Table 1: Average influent composition. 744 

Property 
Winter (Average 

Temperature = 13°C) 

Summer (Average 

Temperature = 27°C) 

pH 7.9 7.6 

NH4
+ [mg N/L]  33 20 

BOD5 [mg/L] 290 170 

COD [mg/L]  600 460 

Total N [mg N/L]  53 33 

NO3
-
 [mg N/L]  3.5 2.0 

Total P, [mg P/L] 8.0 5.5 

TKN [mg N/L]  

(Kjeldahl nitrogen)  
48 33 

Zn [mg Zn/L]  0.8 0.5 

 745 

 746 

 747 

 748 

749 
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 750 

Table 2: Relative sensitivity of the weighted sum of ammonium, phosphate, nitrate, 751 

TKN and TSS in the effluent, for all the three groups of parameters. 752 

Kinetic / Stoichiometric Group (K group) 

Order Parameter 
Short 

Description 

Related biomass or 

process 
Sensitivity 

1 YH Yield coefficient for XH. Heterotrophic 756 

2 µA Maximum growth rate of XA Autotrophic 678 

3 bA Rate for lysis of XA Autotrophic 634 

4 KNH4,A 
Saturation coefficient of substrate  

NH4
+ for nitrification on SNH4 

Autotrophic 412 

5 KPRE Precipitation constant 
Chemical phosphate 

precipitation 
150 

6 KO2,A 
Saturation coefficient of O2  

for nitrification on SNH4 
Autotrophic 149 

7 KRED Solubilisation constant 
Chemical phosphate 

precipitation 
148 

8 bH Rate for lysis of XH Heterotrophic 97 

9 KALK,A  
Saturation coefficient of alkalinity  

for nitrification on SNH4 
Autotrophic 73 

10 ηNO3,D Reduction factor for denitrification Heterotrophic 51 

Influent Group (I group)  

Order Parameter 
Short 

Description 

Related biomass or 

process 
Sensitivity 

1 fXS 

Multiplying factor of XS representing an 

uncertainty on the estimated inlet XS 

fraction 

Influent 

characterization 
670 

2 fXTSS Multiplying factor of the inlet XTSS vector. 
Influent 

characterization 
555 

3 fXMeOH 
Multiplying factor of the inlet XMeOH 

vector. 

Influent 

characterization 
439 

4 fSPO4 Multiplying factor of the inlet SPO4 vector. Influent 429 
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characterization 

5 fSNH4 Multiplying factor of the inlet SNH4 vector. 
Influent 

characterization 
393 

6 fSF Multiplying factor of the inlet SF vector. 
Influent 

characterization 
247 

7 fSALK Multiplying factor of the inlet SALK  vector. 
Influent 

characterization 
169 

8 fSI Multiplying factor of the inlet SI vector. 
Influent 

characterization 
160 

9 fSNO3 Multiplying factor of the inlet SNO3 vector. 
Influent 

characterization 
87 

10 fSA Multiplying factor of the inlet SA vector. 
Influent 

characterization 
0 

Operational Group (O group) 

Order Parameter 
Short 

Description 

Related biomass or 

process 
Sensitivity 

1 fQW 
Multiplying factor of QW representing an 

uncertainty on the measured value of QW. 
Process control 297 

2 DO_Gain 

Multiplying factor of DO concentration on 

the aerobic basins representing an 

uncertainty on the measured value of DO. 

Process control 180 

3 fQRINT 
Multiplying factor of QRINT representing an 

uncertainty on the measured value of QRINT. 
Process control 135 

4 fQRAS 
Multiplying factor of QRAS representing an 

uncertainty on the measured value of QRAS. 
Process control 116 

 753 

 754 

755 
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 756 

Table 3: Results of the calibration methodology for the kinetic Group K. 757 

Items 
Seeds 

YH µA bA KNH4,A KPRE KO2,A KRED bH KALK,A  ηNO3,D 

Parameters 

YH 

bA 

KPRE 

bH 

µA 

YH 

KPRE 

bH 

bA 

YH 

KPRE 

bH 

KNH4,A 

KPRE 

YH 

bH 

KPRE 

µA 

YH 

bH 

KO2,A 

KPRE 

YH 

bH 

bA 

KRED 

µA 

YH 

bH 

bH 

KRED 

µA 

YH 

KALK,A 

KPRE 

YH 

bH 

ηNO3,D 

KPRE 

bA 

YH 

KO2,A 

bH 

Optimized 

Values 

0.452 

0.168 

1.045 

0.104 

0.908 

0.448 

1.013 

0.102 

0.168 

0.452 

1.045 

0.104 

1.616 

1.011 

0.457 

0.108 

1.013 

0.908 

0.448 

0.102 

0.089 

1.008 

0.4105 

0.0786 

0.2277 

0.593 

0.908 

0.448 

0.101 

0.101 

0.593 

0.908 

0.448 

0.895 

1.011 

0.449 

0.103 

0.0296 

1.005 

0.2203 

0.4181 

0.1130 

0.0829 

Parameter 

Confidence 

Interval 

(%) 

22 

3 

9 

59 

3 

26 

9 

64 

3 

22 

9 

59 

6 

9 

21 

48 

9 

3 

26 

64 

68 

9 

30 

71 

5 

9 

3 

27 

66 

66 

9 

3 

27 

16 

9 

25 

61 

52 

9 

9 

22 

114 

52 

Norm of 

Parameter 

Confidence 

Interval 

(%) 

64 70 64 53 70 103 72 72 68 138 

normD 1.58·1014 4.72·1012 1.58·1014 5.46·1011 4.72·1012 1.81·1016 1.02·1013 1.02·1013 1.45·1011 9.40·1021 

modE 393.41 62.61 393.41 46.37 62.61 491.80 69.09 69.09 69.56 1420.93 

RDEc 4.03·1011 7.55·1010 4.03·1011 1.18·1010 7.55·1010 3.68·1013 1.47·1011 1.47·1011 2.09·109 6.61·1018 

CCF 66.3 66.3 66.3 65.1 66.3 65.5 66.3 66.3 66.4 63.5 

VCF 172.1 172.1 172.1 170.4 172.1 171.2 172.1 172.1 172.3 167.7 

Janus 1.288 1.288 1.288 1.294 1.288 1.292 1.288 1.288 1.288 1.295 
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 763 

Table 4: Results of the calibration methodology for the Group I. 764 

Items 
Seeds 

fXS fXTSS fXMeOH fSPO4 fSNH4 fSF fSALK  fSI fSNO3 fSA 

Paramet

ers 

fXS 

fSNH4 

fSPO4 

fSALK 

fXMeOH 

fXTSS 

fSF 

fSNH4 

fSALK 

fSPO4 

fXMeOH 

fXMeOH 

fSNH4 

fSALK 

fXS 

fSPO4 

fSPO4 

fSNH4 

fSALK 

fXS 

fXMeOH 

fSNH4 

fSPO4 

fSALK 

fXS 

fXMeOH 

fSF 

fXTSS 

fSNH4 

fSALK 

fSPO4 

fXMeOH 

fSALK 

fSF 

fXTSS 

fSNH4 

fSPO4 

fXMeOH 

fSI 

fSPO4 

fSNH4 

fSALK 

fXS 

fXMeOH 

fSF 

fSNO3 

fSNO3 

fSF 
- 

Optimize

d Values 

1.038 

1.116 

0.758 

0.949 

0.936 

0.537 

2.861 

1.433 

1.126 

0.708 

1.223 

0.936 

1.116 

0.949 

1.038 

0.758 

0.758 

1.116 

0.949 

1.038 

0.936 

1.116 

0.758 

0.949 

1.038 

0.936 

2.861 

0.537 

1.433 

1.126 

0.708 

1.223 

1.126 

2.861 

0.537 

1.433 

0.708 

1.223 

6.835 

0.706 

1.414 

1.266 

1.361 

1.229 

2.472 

0.144 

1.009 

0.929 
- 

Paramet

er 

Confiden

ce 

Interval 

(%) 

9 

4 

10 

6 

10 

26 

16 

5 

6 

12 

11 

10 

4 

6 

9 

10 

10 

4 

6 

9 

10 

4 

10 

6 

9 

10 

16 

26 

5 

6 

12 

11 

6 

16 

26 

5 

12 

11 

7 

12 

5 

13 

912 

18 

96 

35 

9 
- 

Norm of 

Paramet

er 

Confiden

ce 

Interval 

(%) 

18 35 18 18 18 35 35 101 36 - 

normD 
1.336·101

6 
2.635·1016 1.336·1016 1.336·1016 1.336·1016 2.635·1016 2.635·1016 

9.148·101

8 
16598 - 

modE 99.320 1480.73 99.320 99.320 99.320 1480.73 1480.73 1138.80 18.66 - 

RDEc 
1.345·101

4 
1.779·1013 1.345·1014 1.345·1014 1.345·1014 1.779·1013 1.779·1013 

8.033·101

5 
889 - 

CCF 66.1 63.6 66.1 66.1 66.1 63.6 63.6 55.8 67.6 - 

VCF 170.9 168.4 170.8 170.8 170.8 168.4 168.4 162.3 172.3 - 

Janus 1.289 1.311 1.289 1.289 1.289 1.311 1.311 1.371 1.278 - 
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 767 

Table 5: Results of the calibration methodology for the Group O. 768 

Items 
Seeds 

fQw DO_Gain fQrint fQRAS 

Parameters 

fQw 

fQrint 

DO_Gain 

DO_Gain 

fQw 

fQrint 

fQrint 

fQw 

DO_Gain 

fQRAS 

DO_Gain 

fQrint 

fQw 

Optimized 

Values 

0.344 

0.389 

0.931 

0.931 

0.344 

0.389 

0.389 

0.344 

0.931 

2.781 

0.925 

0.122 

0.388 

Parameter 

Confidence 

Interval (%) 

8 

18 

11 

11 

8 

18 

18 

8 

11 

15 

11 

97 

9 

Norm of 

Parameter 

Confidence 

Interval (%) 

23 22 22 99 

normD 1.61·109 1.61·109 1.61·109 3.26·1010 

modE 13.78 13.78 13.78 193.77 

RDEc 1.17·108 1.17·108 1.17·108 1.680·108 

CCF 62.3 62.3 62.3 62.2 

VCF 168.9 168.9 168.9 168.9 

Janus 1.322 1.322 1.322 1.323 
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 771 

 772 

Fig. 1 Scale map of the Manresa WWTP 773 

 774 

 775 

 776 
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 778 

 779 

Fig. 2 Monitored variables of the Manresa WWTP secondary treatment 780 
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 783 

 784 

 785 

 786 

Fig. 3 Simplified scheme of the overall calibration / validation process 787 

 788 

789 
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 790 

Fig. 4 Model predictions using the best seed (subset from the seed ηNO3,D) and plant data 791 

(calibration data). For checking the parameter values used in this simulation, see Table 792 

3 793 

 794 

795 
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 796 

Fig. 5 Model predictions using the best subset (from seed ηNO3,D) and the validation data 797 

(plant data) 798 

 799 

 800 
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S1. Influent Characterization Procedure 814 

Orhon et al. [1] developed a method to determine the values of SI, XI, XS and SF 815 

(ASM2d states) in the effluent, using the well-know measurement of the COD. X 816 

variables are the particulate variables while S variables indicate soluble variables. Such 817 

method allows making an interface between the COD and ASM2d state variables. 818 

The experimental determination of SI and XI is performed in two parallel CSTR reactors, 819 

one of them fed with raw WWTP influent and the other one fed with filtered WWTP 820 

influent. Both reactors operate as long as all the biological reactions have been ceased 821 

and daily analysis of total COD and the soluble COD are performed. At a sufficient 822 

time, both values of COD of the two systems will be approximately constant. At the end 823 

of the experiment, the relationship between the initial and final values of total COD and 824 

soluble COD of both systems will help to estimate SI and XI.  825 

XS is present at the beginning of the experiment for reactor 1 (with raw influent, without 826 

filtering) and it is not for reactor 2 (with filtered WW). At the end of the experiment, in 827 

both systems XS and SF no longer exist, differently of SP and XP that are produced by the 828 

microorganisms along the experiment time. SP and XP are, respectively, soluble and 829 

particulate residual biodegradable matter, product of microorganism activity. XI is 830 

present at the end of the experiment only in reactor 1 (no filtered WW). With these 831 

observations, it is possible to write a system of equations as follows: 832 

833 
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 834 
Reactor 1 (Fed with raw wastewater) Reactor 2 (Fed with filtered wastewater) 

000 SFT XSC +=                              Eq. S.1 

11111 PPIIT SXSXC +++=              Eq. S.2 

111 PIT SSS +=                                  Eq. S.3 

00 TT SC =                                         Eq. S.4 

22222 PPIIT SXSXC +++=            Eq. S.5 

222 PIT SSS +=                                 Eq. S.6 

 835 

Variable CT means the total substrate concentration in reactors. ST means total soluble 836 

substrate. The lowercase “0” in equations S.1 and S.4 means “initial value” for variables 837 

in reactor 1 and 2, respectively. In equations S.2 and S.3 the lowercase “1” means the 838 

values at the end of the experiment in reactor 1. The same notation is used for reactor 2, 839 

in equations S.5 and S.6. For a better understanding of the whole experiment, Figure S.1 840 

shows an illustration of the evolution of total COD and total soluble COD. 841 

Using the equations S.1 to S.6, XI is determined with equation S.7. 842 

 843 
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 845 

A similar procedure is performed to determine SI. 846 

 847 


































−
−−

−−=

10

20

21
1

1
TT

TT

TT
TI

CC

CS

SS
SS        Eq. S.8 848 



45 
 

SF value can be obtained by taking the value of total soluble COD of reactor 2 at the 849 

beginning of the experiment for determining XI and SI and subtracting the value of SI 850 

(obtained by Eq. S.8). 851 

 852 

IF SCODS −= WW)(filteredSoluble
       Eq. S.9 853 

Finally, XS is determined by using measures of total COD in reactor 1. 854 

( )IIFAtotalS XSSS-DQOX +++=       Eq. S.10 855 

In Eq. S.10, SA should be considered null (no conditions of fermenting XS to produce SA 856 

in the urban sewage system) and the rest of variables were already determined. 857 
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Figure S.1: Illustration of the lab scale reactors, total COD and total soluble COD data 859 

for determining SI and XI fractions in the secondary stage influent in a WWTP  860 

( • Total COD, ○ Total soluble COD). 861 

 862 
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S.2. Sensitivity Analysis 863 

Sensitivity analysis allows making a ranking of the most important parameters that 864 

affect the outputs. Relative sensitivity of an output i (yi) respect a parameter j (θj) is 865 

defined as [2], 866 

j

i

i

j

ji d

dy

y
S

θ
θ

=
         Eq. S.11 867 

Norton [3] proposed the utilization of algebraic sensitivity analysis because the 868 

numerical value of sensitivity applies only for a specific change from a specific value of 869 

θj, while the former provides algebraic relations. Numerical values of sensitivity are 870 

generally much less informative than an algebraic relation, but algebraic sensitivity 871 

analysis is not feasible if the equations of the model are complicated as in ASM2d. 872 

Therefore, the derivatives of equation S.11 were determined numerically by the finite 873 

differences method. The central difference approach with 10-4 (0.01%) as perturbation 874 

factor was used for the sensitivity calculations of each tested parameter around the 875 

default ASM2d value. This perturbation factor was selected because it produced equal 876 

derivative values with forward and backward finite differences [4]. 877 

The overall sensitivity of a parameter was calculated by adding absolute values of 878 

individual sensitivities. In our case, 5 output variables were declared (phosphate, 879 

ammonium, nitrate, TSS and TKN concentrations at the effluent). Hence, the overall 880 

sensitivity value of a parameter j (OSj) was calculated with equation S.12. 881 

TKNjXTSSjNOjNHjPOjj SSSSSOS ,,,,, 344
++++=

    Eq. S.12 882 

 883 

 884 

885 
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S.3. The Fisher Information Matrix and Parameter Confidence Interval 886 

The FIM summarizes the importance of each model parameter over the outputs, since it 887 

measures the variation of output variables caused by a variation of model parameters [5, 888 

6]. Algebraically, the FIM is represented by equation S.13. 889 

)k(YQ)k(YFIM T
k

N

k
θθ ⋅⋅= −

=
∑ 1

1       Eq. S.13 890 

For a FIM calculated for r output variables and p parameters, it is a p x p matrix, where 891 

k represents each sampling data point, QK is the r x r covariance matrix of the 892 

measurement noise, θ is the vector of p parameters, N is the total number of samples 893 

and Yθ is the p x r output sensitivity function matrix, expressed by equation S.14. 894 

0

),(
)( 0

θ
θ θ

θ









∂
∂

=
T

T ty
tY

        Eq. S.14 895 

where θ0 is the complete model parameter vector used for calculating the derivatives 896 

and θT is the transposed parameter vector, which its elements are being studied. In the 897 

present study, the derivative shown in equation S.14 was numerically obtained by finite 898 

differences using a perturbation factor of 10-4 as in the sensitivity calculations. 899 

Mathematically was proved that the FIM provides a lower bound of the parameter error 900 

covariance matrix [7] as shown by equation S.15. 901 

( ) 1
0cov −≥ FIMθ         Eq. S.15 902 

This FIM property was used for calculating the confidence interval ∆θj with equation 903 

S.16 for a given parameter θj [8]. 904 

)cov(, jpNj t θθ α −=∆
        Eq. S.16 905 
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where t is the statistical t-student with α = 95% of confidence and N-p degrees of 906 

freedom (number of experimental data points minus p parameters), and cov(θj) was 907 

assumed as FIM-1
jj. 908 

As can be observed, the calculation of the parameter error covariance matrix using the 909 

FIM involves its inversion. To be invertible, the FIM should have a determinant 910 

different from zero and should not be ill-conditioned. To match these requirements any 911 

pair of matrix columns should not be very similar. As each column of the matrix 912 

represents a parameter, the determinant and the condition number of the FIM provides a 913 

reasonable measurement of the correlation of a set of parameters. Hence, parameters 914 

less correlated will easily provide a diagonal-dominant matrix. The FIM determinant (D 915 

criterion) and the ratio between the highest and the lowest FIM eigenvalue (modE 916 

criterion) can be used as criteria for parameter subset selection. A modE criterion value 917 

close to the unity indicates that all the involved parameters independently affect the 918 

outputs while the shape of the confidence region is similar to a circle (2 parameters) or a 919 

sphere (3 parameters) and not ellipses and ellipsoids as occur with correlated 920 

parameters. A high D criterion value means lower values of the diagonal elements of the 921 

covariance matrix, and as a consequence, lower confidence intervals of the parameters. 922 

As the D criterion is dependent on the magnitude of the involved parameters, this 923 

criterion was normalized (normD) according to Equation S.17. 924 

2

PθDnormD ⋅=
        Eq. S.17 925 

where ||θP|| is the Euclidean norm of the parameter vector. Such normalization works as 926 

a scaling factor and allows comparisons among subsets with the same size but with 927 

different parameters.  928 

From the system engineering point of view, it is important to include in the parameter 929 

subset those parameters that maximize the D criterion and minimize the modE criterion. 930 
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Hence, the ratio between the normD and the modE criteria (RDE criterion) was 931 

proposed [9] as an interesting index to define subsets of parameters for calibration. The 932 

RDE criterion (Equation S.18) establishes the capacity of a parameter subset to explain 933 

experimental data coupled to low uncertainty in the estimated parameters. 934 

modE

normD
RDE =

        Eq. S.18 935 

 936 
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