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UMR1313 (GABI), AgroParisTech, 78350, Jouy-en-Josas, France, 5. Laboratoire de Radiobiologie et Etude
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Abstract

Background: Several QTLs have been identified for major economically relevant

traits in livestock, such as growth and meat quality, revealing the complex genetic

architecture of these traits. The use of network approaches considering the

interactions of multiple molecules and traits provides useful insights into the

molecular underpinnings of complex traits. Here, a network based methodology,

named Association Weight Matrix, was applied to study gene interactions and

pathways affecting pig conformation, growth and fatness traits.

Results: The co-association network analysis underpinned three transcription

factors, PPARc, ELF1, and PRDM16 involved in mesoderm tissue differentiation.

Fifty-four genes in the network belonged to growth-related ontologies and 46 of

them were common with a similar study for growth in cattle supporting our results.

The functional analysis uncovered the lipid metabolism and the corticotrophin and

gonadotrophin release hormone pathways among the most important pathways

influencing these traits. Our results suggest that the genes and pathways here

identified are important determining either the total body weight of the animal and

the fat content. For instance, a switch in the mesoderm tissue differentiation may

determinate the age-related preferred pathways being in the puberty stage those

related with the miogenic and osteogenic lineages; on the contrary, in the maturity

stage cells may be more prone to the adipocyte fate. Hence, our results
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demonstrate that an integrative genomic co-association analysis is a powerful

approach for identifying new connections and interactions among genes.

Conclusions: This work provides insights about pathways and key regulators

which may be important determining the animal growth, conformation and body

proportions and fatness traits. Molecular information concerning genes and

pathways here described may be crucial for the improvement of genetic breeding

programs applied to pork meat production.

Introduction

About 43% of the meat consumed worldwide proceeds from pigs, thus

representing the major source of meat for human food intake [1]. Moreover, pig

serves as a model for metabolic diseases such as obesity in humans [2, 3]. For meat

industry, carcass conformation and growth are economically important traits,

determining the proportions of the different commercial cuts [4]. Understanding

the interactions between genes defining body growth and conformation of pigs is

therefore critical for an efficient pig production.

Over 553 quantitative trait loci (QTLs) for growth-related traits have been

reported in pigs [http://www.animalgenome.org/cgi-bin/QTLdb/SS/index].

Moreover, a genome wide linkage analysis for growth and body composition

carried out in an Iberian 6 Landrace cross (IBMAP) confirmed previous QTL

regions and identified new ones in 10 of the 18 autosomes [5]. Despite the large

number of QTLs identified by QTL scan and Genome-Wide Association Studies

(GWAS) the genetic architecture of these complex traits is far from being

understood [6]. The detection of SNPs having a clear effect on complex traits

using GWAS is limiting, still being a challenging task. The main reason is because

many genes have a little effect, moreover, the need for multiple tests correction

methods may result in removing some interesting SNPs [7]. The power of single

trait GWAS can be enhanced when considering simultaneously multiple

phenotypes because complex traits generally have multiple correlated traits [7].

Hence, for complex traits, a systems biology approach that integrates the results

into coherent network models offers many advantages over single trait approaches

[8]. Recently, a framework for integrating the information of GWAS with network

inference algorithms, named Association Weight Matrix (AWM), was developed

to reveal and identify key regulatory elements, provide in silico information and

generate gene networks with the aim to better understand the regulatory

mechanisms of complex traits [9, 10]. However, few studies have been performed

to date using system biology approaches and genotypic data in livestock species

[9, 11–15].

Network biology approaches may substantially improve our knowledge about

the diverse molecular pathways underlying complex traits. Using this methodol-

ogy, the main objective of this work was to identify key regulators, gene
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interactions and pathways determining pig growth and conformation traits in

order to improve our knowledge about the architecture of these complex traits.

Results and Discussion

Global growth network description and trait cluster analysis

In the present study, we used a systems biology approach considering 12 growth-

related phenotypes (Table 1). Given that primary cuts have economic impact in

the Iberian pig production [16], ham weight was considered as the key trait for the

AWM analysis. Among the genotypes of the 60K SNPs Porcine Beadchip, a total

of 41,279 SNPs were retained for further analysis. Single-trait-single-SNP analysis

by GWAS was performed for all traits (S1 Figure). The AWM approach captured a

total of 1,747 annotated genes proximal to co-associated SNPs for conformation,

growth and fatness traits. Therefore, an AWM with 1,747 nodes, representing

genes, and a total of 316,166 edges, which account for the predicted interactions,

was built (Fig. 1A). Interestingly, in the hierarchical cluster analysis two groups of

phenotypic traits were formed showing a clear opposite directionality of the

additive values. The first one containing the fatness traits (BFT155, BFT180, BFTS

and IMF), whereas the second one encompassing the growth and conformation

related traits (BW125, BW155, BW180, HW, SW, BLW, CW and CL) (S2 Figure).

Additionally, a second cluster analysis considering only 54 genes (S1 Table) of the

network which are known to be related with growth was performed, showing

again, after clustering, two different groups for the additive values of growth and

fatness traits (Fig. 2).

Next, in order to simplify and visualize the data with Cytoscape software, the

number of interactions was reduced by selecting only the strongest co-

associations, major than 0.86 (�X+s~0:79z0:07). The resulting network had

53,200 predicted interactions and 1,703 genes.

Key transcription factors regulating growth traits

Within the 1,703 associated-genes, a total of 142 putative regulators (S2 Table)

were identified. After exploring all the possible interconnected trios among

regulators, the top trio which spanned most of the network topology with highest

connectivity (a total of 26,160 connections) and minimum redundancy was

formed by the Peroxisome Proliferator-Activated Receptor Gamma (PPARc;

PPARcDeg 5147), the E74-Like Factor 1 (Ets Domain Transcription Factor) (ELF1;

ELF1Deg 5237), and the PR Domain Containing 16 (PRDM16; PRDM16Deg 5256)

genes. In the resulting network, there were a total of 639 co-associations with the

top trio of TF connecting 513 genes (Fig. 1B). Interestingly, ELF1 localized in a

QTL on SSC11 identified for growth and body composition traits in the IBMAP

cross [5], whereas no QTL was identified on SSC6 and SSC13 regions where the

two other TF, PRDM16 and PPARG, were located. This result supports that the

network methodology allowed the detection of potential variations affecting the
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analyzed traits that would have not been detected by using single-trait based

approaches (Table 2).

In the network, PPARc gene, which is a key regulator of adipocyte

differentiation, glucose homeostasis and fatty acid metabolism, was highly

connected presenting 147 co-associations with other genes. This gene plays a role

in determining the energy balance and the fat deposition influencing growth and

body size [17, 18]. Furthermore, PPARc has been associated with obesity, diabetes

and atherosclerosis [19], and it has been identified, using the same methodology,

as a key transcription factor regulating cattle puberty-related traits [9].

Interestingly, in another study of our group, PPARc was identified as over-

expressed in pigs having more MUFA and SFA versus pigs with high PUFA

content [20]. Other studies in pigs suggested that PPARc is an excellent target for

determining growth and fat deposition traits at a certain age in pigs [21, 22].

On the other hand, ELF1 gene is a major regulator of haematopoiesis and

energy metabolism [23]. ELF1 has also been described to trigger the NF-kB

pathway activation involved in cell growth and differentiation and in lipid

metabolism [24, 25]. Noteworthy, other members of the ELF1 gene family (ETS

transcription regulator family) are known to regulate adipocyte and osteoblast

differentiation [26]. Remarkably, FOXP3 which interacts with ELF1 has been

identified as a central transcription factor regulating IMF in cattle using the same

methodology [13, 27].

Finally, PRDM16 gene is involved in the differentiation of the brown adipose

tissue, specifically in the switch between myogenic and adipogenic lineages [28].

PRDM16 has been reported to control the myogenic cell fate into brown fat cells

in mice, however, pigs lack in brown fat tissue [28, 29]. PRDM16 can also function

by triggering nervous and haematopoietic systems and participates in the

regulation of the oxidative stress [30].

Table 1. Phenotypic traits registered in the BC1_LD (F16 Landrace) and in the BC (F26 Landrace) and F3 generations of the Iberian 6 Landrace cross.

Trait Abbreviation Statistics

N Mean SD

Body weight at 125 days (kg) BW125 270 58.11 8.71

Body weight at 155 days (kg) BW155 269 80.74 13.61

Body weight at 180 days (kg) BW180 269 100.10 14.91

Carcass weight (kg) CW 271 74.46 11.07

Carcass length (cm) CL 261 81.86 6.23

Backfat thickness at 155 days (mm) BFT155 269 13.34 3.08

Backfat thickness at 180 days (mm) BFT180 220 15.60 3.21

Backfat thickness at slaughter (mm) BFTS 237 23.26 6.13

Intramuscular fat percentage (%) IMF 247 1.52 0.78

Weight of hams (kg) HW 271 21.62 3.39

Weight of shoulders (kg) SW 271 10.04 1.72

Weight of belly (kg) BLW 276 7.33 1.14

doi:10.1371/journal.pone.0114862.t001
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Fig. 1. Co-association networks based on the AWM approach. A) Full network formed by 1,747 nodes, representing genes and SNPs, and a total of
316,166 edges, accounting for the interactions among them. B) Network formed by 513 nodes and 639 edges representing genes and interactions among
the top trio of transcription factors. Colours corresponded to different functions according to the legend.

doi:10.1371/journal.pone.0114862.g001

Pig Conformation, Growth and Fatness Network Analysis

PLOS ONE | DOI:10.1371/journal.pone.0114862 December 11, 2014 5 / 20



Fig. 2. Hierarchical cluster analysis considering only those genes in the network related with growth
(S1 Table) among 12 phenotypic traits. The green colour in the figure corresponds to negative SNP additive
effect values and red to positive SNP additive effect values.

doi:10.1371/journal.pone.0114862.g002
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The embryonic mesoderm is a multipotent tissue that differentiates into

myocytes, osteocytes and adipocytes [26]. The three top TF identified in the

network have in common that are key regulators of the mesoderm cell fate. For

instance, the over-expression of PPARc may activate adipogenesis, ELF1 may

regulate adipocyte and osteoblast differentiation, meanwhile PRDM16 may trigger

the switch between adipose tissue and myocytes [28].

Selecting both miRNAs and TF as putative regulators did not affect the results,

being the same top trio of genes identified as key regulators. In fact, inferring

transcriptional and miRNA-mediated regulatory networks is still a challenge,

particularly in non-model species such as the pig where the miRNA annotation is

poor when compared to human or cow [31].

Additionally, a limitation of the AWM methodology is that only the nearest

gene to the significant co-associated SNP is selected, discarding all other proximal

genes. Linkage disequilibrium (LD) between molecular markers has to be taken

into account for the AWM analysis. For instance, after exploring the network in

more detail, a high co-association was observed between Nuclear Receptor

Subfamily 2, Group C, Member 2 (NR2C2) and PPARc sharing the same co-

associated nodes (Fig. 3). The strong relationship between NR2C2 and PPARc is

supported by the literature, being NR2C2 a repressor of PPARc activity [32].

Interestingly, a deficiency of NR2C2, which has been suggested to play a critical

role in the regulation of energy and lipid homeostasis, in mice causes growth

retardation [32, 33]. Remarkably, NR2C2 was also identified as co-associated in

cattle growth network [12] and also in a network for fatness traits in cattle [13]

and pig [11]. However, SNPs proximal to these genes (PPARc and NR2C2) in our

AWM network were separated by 1.27 Mb, being in complete LD (D951) (S3

Figure). Accordingly, LD can be a limitation to rule out which of these two genes

play a key role regulating growth traits or if both genes are biologically relevant.

Table 2. Additive effect and p-value of the SNPs representing the top trio of transcription factors.

Gene PRDM16 ELF1 PPARG

Representative SNP MARC0030882 MARC0000451 ISU10000701

Trait Additive Effect P-value Additive Effect P-value Additive Effect P-value

BW125 21.564 9.70E–02 1.767 2.89E–02 3.261 4.74E–05

BW155 22.933 1.90E–02 2.217 4.09E–02 3.983 2.45E–04

BW180 23.115 3.08E–02 1.762 1.59E–01 5.329 1.41E–05

CW 20.734 5.23E–01 –0.008 9.95E–01 3.338 5.37E–04

CL 20.534 1.28E–01 0.589 6.15E–02 0.758 1.26E–02

BFT155 0.630 4.78E–02 20.011 1.00E+00 0.148 5.65E–01

BFT180 0.581 6.35E–02 20.297 2.99E–01 0.161 5.54E–01

BFTS 0.666 3.38E–01 20.526 3.46E–01 20.537 3.73E–01

IMF 0.010 8.81E–01 20.036 5.39E–01 20.054 4.17E–01

HW 20.580 1.16E–02 0.586 3.25E–03 0.546 6.01E–03

SW 20.282 1.27E–02 0.229 2.19E–02 0.249 8.74E–03

BLW 20.250 7.57E–03 0.174 3.24E–02 0.147 7.15E–02

doi:10.1371/journal.pone.0114862.t002
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Co-association network among the top TF

The parameters describing the network topology were calculated with CentiScaPe

software, obtaining an average degree (Deg) of 62.44 and an average distance

(AvDG) of 3.21; hence, showing a high degree of connection. A total of 54 genes

out of the 513 nodes (Fig. 1B; blue colour in the network) belonged to growth-

related gene ontologies (S1 Table). Noteworthy, a total of 20 genes were related to

lipid metabolism (yellow colour in Fig. 1B). Among the 513 nodes setting up

network connections, seven genes (COPS7B, EFEMP1, ETV6, FRS2, HSPG2,

SH3PXD2A and TGS1) had been associated with human height, which is driven

by growth and developmental processes [34, 35]. Interestingly, the indian hedgehog

(IHH) gene product, identified in a human height GWAS study, binds to the

patched domain containing 3 (PTCHD3) receptor, here identified as co-

associated with ELF1 [36]. In addition, 46 of the 513 genes were common with a

study for cattle growth trait using the same methodology (GRK5, NDRG3, RYK,

FRS2, SCN8A, H1FOO, NALCN, EPB41L4A, LRRC16A, CNTNAP5, LTBP1,

KHDRBS3, EPHB1, PRKCB, ATRN, TMEM108, PTK2B, RAPGEF5, RBPMS,

SORCS3, SNX29, KCNN3, PLCH1, PLCB4, PDE11A, RGS7, NR2C2, WDR64,

KCNMA1, DCN, SPEF2, CA10, MYB, RNF17, FYB, ETV6, CREB5, ZNF488, KSR2,

SYT1, TBC1D16, SUCLG2, MLLT4, PLCXD3, VPS45, TUFT1) [16]. Central to this

Fig. 3. Network showing the shared-genes of NR2C2 and PPARc.

doi:10.1371/journal.pone.0114862.g003

Pig Conformation, Growth and Fatness Network Analysis

PLOS ONE | DOI:10.1371/journal.pone.0114862 December 11, 2014 8 / 20



network, transmembrane and tetratricopeptide repeat containing 1 (TMTC1) gene

appeared to be a common interaction factor for the 3 principal TFs. Not TMTC1

but transmembrane and tetratricopeptide repeat containing 2 (TMTC2) was also

identified in the cattle growth network by Widmann et al. [12].

Aside from known interactions reported by the literature, our growth network

allowed the identification of new interactions between genes that have not been

previously described and may help in the understanding of such complex trait. In

these sense, one of the top TF identified in the growth network, ELF1 gene, has

not been reported to date to be involved in growth processes. This gene was

identified to be co-associated with B Lymphoid Tyrosine Kinase (BLK) gene in the

AWM analysis. It has been reported that ELF1 is a transcriptional activator of BLK

and SRC kinases such as v-yes-1 Yamaguchi sarcoma viral related oncogene homolog

(LYN) [37]. BLK is involved in the stimulation of insulin secretion in response to

glucose [38]. In addition, the SRC family of protein tyrosine kinases (SFKs)

interacts with growth factors [39] and cytokine receptors [40] and they are key

mediators of PI3K and AKT signalling important for cell proliferation [41]. The

LYN gene belonging to SFKs is required for rapid phosphorylation of Fer (Fps/Fes

Related) Tyrosine Kinase (FER) [42]. In the AWM analysis we found FER also co-

associated with ELF1.

Another interesting interaction identified in the co-association growth network

was the ELF1 with HOXB13. Supporting this interaction, it has been described

that Myeloid ecotropic viral integration site 1 (MEIS1) is a HOX cofactor which is

regulated by ELF1 [43]. HOXB13 may play a role in growth repression and spinal

cord formation [44, 45]. Furthermore, HOXB13 increases the androgen and favors

the lipid accumulation in cells [46].

The transcription factor Forkhead box O1 (FOXO1) gene, also identified in the

network co-associated with PRDM16, is activated in response to glucocorticoids

and is blocked via the IGF/Akt pathway. FOXO1 is a target of insulin signalling

and glucose metabolism, as well as it plays a role in myogenic growth and

differentiation. Moreover, it has been observed that mice overexpressing FOXO1

in skeletal muscle had a reduced skeletal muscle mass when compared with wild-

type mice [47]. When FOXO1 and PPARGC1A act together they promote

gluconeogenesis. FOXO1 is known to repress PPARc [48]. Another interesting

gene was the miRNA ssc-miR-196a1, which was identified as co-associated with

PRDM16, and has been recently reported to be associated with growth and

development of skeletal muscle [49]. Other identified co-associated genes with

PRDM16 were SH3PXD2A, ADAMTS12 and PTPN22. Interestingly, SH3PXD2A

(SH3 And PX Domains 2A) is reported to bind the matrix metalloproteinases

(ADAMs) and phosphoinositides [50]. Moreover, in human is associated with

ADAM12 (the membrane-anchored protein corresponding to the secreted protein

ADAMTS12) which is involved in skeletal muscle regeneration and mediates the

neurotoxic effect of beta-amyloid peptide [51]. Finally, PTPN22 has been

associated with diabetes in humans [52].

Pig Conformation, Growth and Fatness Network Analysis
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Biological pathways and functional analysis

Functional analysis using IPA program allowed us to identify the biological

functions overrepresented considering the 513 co-associated genes related to the

top trio of TF. Among the networks identified with IPA there were: ‘‘cell

signalling, nucleic acid metabolism, cell-to-cell signalling and interaction’’,

‘‘organism development, DNA replication, recombination and repair, and lipid

metabolism’’ and ‘‘hereditary disorder, neurological disease and developmental

disorder’’, all of them having a score 538, ‘‘cell-to-cell signalling and interaction,

nervous system development and function, cellular assembly and organization’’

(score 533) and ‘‘cellular development, nervous system development and

function, behaviour’’ (score 529) (S3 Table). Remarkably, the top molecular and

cellular functions identified were: ‘‘post-translational modification’’ (p-value

59.0161025), ‘‘cell-to-cell signalling and interaction’’ (p-value 51.2661024),

‘‘molecular transport’’ (p-value 51.2661024), ‘‘cellular development’’ (p-value

52.8961024) and ‘‘cell morphology’’ (p-value 53.1061024). Among the top

physiological system development functions we observed the ‘‘organismal

survival’’ (p-value 51.1861024), ‘‘nervous system development and function’’

(p-value 51.2661024), ‘‘tissue development’’ (p-value 52.3461024) and

‘‘behaviour’’ (p-value 52.8861024). These results are in agreement with those

obtained by Widmann et al. [12] using the same methodology to study growth

traits in cattle, where they identified similar biological processes (cell commu-

nication, signal transduction, cellular process, cell surface receptor signalling

pathway and cell adhesion) suggesting that different genetic variants may be

affecting the same pathways even in different species.

Among the most overrepresented pathways identified we observed D-myo-

inositol (1,4,5)-triphosphate (Ins(1,4,5)P3) biosynthesis (p-value 52.4561024),

G-protein coupled receptor (GPCR) signalling (p-value 55.8861023), cortico-

tropin releasing (CRH) hormone signalling (p-value 57.5861023), gonadotro-

pin-releasing hormone (GnRH) signalling (p-value 51.5561022), caveolar-

mediated endocytosis signalling (p-value 51.6261022), nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB) activation by viruses (p-value

51.6261022), phospholipase C (PLC) signalling (p-value 51.9461022) and

neuronal nitric oxide synthase (nNOS) signalling in skeletal muscle cells (p-value

53.4661022) pathways (S4 Table). Noteworthy, in the cattle growth network

study, the GnRH signalling and the nitric oxide (NO) pathway were also

identified [16]. Some of these pathways (S4 Table) are discussed in more detailed

below.

GPCR, PLC and Ins(1,4,5)P3 signalling pathways

In mammals during growth and development there is a high requirement of lipids

to increase in cell size and number. Lipids are the primary substrates which bind

to certain GPCRs leading to an induced activity of PLC, which catalyse the

hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-

trisphosphate (IP3) and 1,2-diacylglycerol (DAG) both having important second

messenger functions [53]. DAG can be also used as a component of biological

Pig Conformation, Growth and Fatness Network Analysis

PLOS ONE | DOI:10.1371/journal.pone.0114862 December 11, 2014 10 / 20



membranes or as a precursor to triacylglycerol (TAG) for energy storage [54]. The

IP3 molecule binds to the Ins(1,4,5)P3 receptors (InsP3R) and trigger Ca2+

channel opening activating the ryanodine receptor-operated channel (RYR)

[55, 56]. The IP3 signalling mechanism is crucial for normal cell physiology [57].

Moreover, GPCRs jointly with phosphatidylinositol kinases (PIPK) may be

involved in feed signal transduction pathways [58]. Two PIPK genes (PIP5K1A

and PIP5K1C) jointly with PLCB4 and RYR1 were identified as co-associated to

PRDM16 gene. Thus, PRDM16 is a key transcriptional factor determining

adiposity or miogenesis, and may also be necessary for the normal skeletal muscle

development. Furthermore, the GPCRs, GPR144 and GPR176 were also identified

in the growth network.

GnRH and CRH signalling pathway

Two hormone-related pathways, GnRH and CRH signalling pathways, were

identified as overrepresented in our data. CRH is a peptide hormone secreted by

the hypothalamus which controls adrenal secretion of cortisol and has been

suggested to play a role in cell growth and survival. Interestingly, sheep with high

cortisol response were prone to obesity [59]. Moreover, it has been observed that

children treated with glucocorticoids showed growth retardation [60]. GnRH,

which binds to GNRHR (GPCR member 7), is synthesized and released from

neurons within the hypothalamus and regulates the production of gonadotropins,

such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the

pituitary gland, which, in turn triggers sexual maturation and promotes the

secretion of endogenous sex hormones such as testosterone and estrogen from the

gonads. Interestingly, growth-related traits in pig depend largely on gender [61].

In fact, GnRH agonists are used to treat central precocious puberty (CPP)

characterized for developing an early puberty, larger growth of the skeleton and

adult height [62]. Besides, the GnRF analog-diphtheria toxoid conjugate is used

for castration and it is known to increase body weight at slaughter and improve

average daily gain and feed conversion ratio [63]. The release of Ca2+ and DAG

enhances the activation of protein kinases (PKC) to increase gonadotropin

hormone secretion. Interestingly, in the network we can observe PRKCB co-

associated to ELF-1 and PRKCE co-associated with PPARc and PRDM16. These

results underline an important function of the three key TF in our network having

an important role in the puberty and bone growth development.

NF-kB and NO signalling pathway

NF-kB is a pleiotropic transcription factor being involved in many biological

processes such as inflammation, immunity, differentiation, cell growth and

apoptosis. This signalling pathway has also been identified in a study of human

growth using gene expression data [64]. It is reported that ELF1 interacts with NF-

kB via DNA binding domain [37]. Furthermore, the NF-kB activity may activate

nNOS to generate NO [65]. NO may trigger GH secretion and affects other several

pituitary peptides such as gonadotropins [66]. It is reported that a chronic

exposure of NO may stimulate angiogenesis and adipocyte development [67].
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Interestingly, we observed NOS1 co-associated with ELF1 in the growth network

(Fig. 1B). Both, ELF1 and NOS1 genes may play a role in hematopoiesis and

vascular development [68]. On the other hand, NO has the ability to enhance and

regenerate diseased muscle, through determining the fibro-adipogenic progenitors

fate and inhibiting adipogenesis [69]. In this direction, the NO production is

thought to inhibit PPARc expression [69]. Surprisingly, NOS1 was also identified

as co-associated with PRDM16, but not with PPARc.

General discussion: from network to phenotype inference

Iberian pigs are known to have higher IMF than Landrace pigs at the same growth

stage [70]. Furthermore, the skeletal muscle grows faster in Landrace than in

Iberian pigs, being less prone to obesity [70]. In this study, we analyzed

backcrossed animals from an Iberian 6 Landrace cross, which differed in fat and

growth traits. Growth refers to an increase in tissue mass and it can be plotted as a

sigmoid curve depending on age and cumulative weight [71]. At the pre-mature

phase, muscle mass, organ and bone formation are increased, meanwhile in the

mature phase the animal is more prone to fattening and intramuscular deposition

[71]. The top trio of TF identified in the network are key regulators for mesoderm

cell differentiation in osteocytes, miocytes or adipocytes. Our results showed

among the top molecular and cellular functions the cell development and

interaction pathways which may be important in order to trigger tissue formation.

Noteworthy, the hierarchical cluster analysis evidenced a clear division of the

additive effects of the SNPs for the 12 growth phenotypic traits, between animal

weight-related and fat-related traits (S2 Figure and Fig. 2). We hypothesize that

the hormone releasing pathways here identified (GnRH and CRH) may be key for

the regulation of conformation, growth and fatness traits in our animal material.

An increased carcass weight with a reduced backfat thickness at a fixed age have

been selection targets in commercial pig breeds, resulting in less mature animals as

fat deposition rate is expected to increase in the puberty phase [72]. Given that

Iberian breed is more prone to IMF and backfat deposition at the same growth

stage lead to the hypothesis that Landrace animals may arrive later to the mature

growth phase when compared to Iberian animals. What remains unclear is

whether the signals for maturity switching are related to the GnRH or CRH

hormone release pathways. Finally, the genes and pathways here identified had a

high concordance with those reported by other authors studying growth

metabolism in animals or height related traits in human. Our hypothesis are

supported by the high concordance between our genes and pathways identified in

the network and those reported by Fortes et al. [9] for puberty traits in cattle.

Conclusions

The processes regulating conformation, growth and fatness traits in pigs are

complex and most of the mechanisms remain unknown despite being of great

interest for the pig industry. The power of single trait GWAS can be enhanced
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when considering simultaneously multiple phenotypes taking advantage of system

biology approaches. In the present study, the AWM gene co-association network

analysis revealed key transcription factors, gene-gene interactions and pathways

underpinning the regulation of pig conformation, growth and fatness. Network

approaches represent a major step in understanding the genetics of complex

diseases and traits. Further efforts should be made in order to study in more detail

the new gene-gene interactions here identified, as well as, to study in more detail

the key transcription factors and pathways involvement in the growth and

conformation traits determination.

Material and Methods

Animal material and phenotypic classification

The animal material used belongs to several generations of the IBMAP population

obtained from the cross of 3 Iberian boars (Guadyerbas) with 31 Landrace sows

[73, 74]. For this study we used phenotypic records from 292 animals belonging to

three different IBMAP generations: 159 BC1_LD animals (25% Iberian 675%

Landrace) from backcrossing five F1 males with 26 Landrace sows, 79 BC animals

obtained by crossing 4 F2 boars and 22 Landrace sows and 54 F3 obtained by

mating F2 animals. Animals were fed ad libitum and sacrificed at 180¡2.8 days

(average ¡ standard deviation) in a commercial slaughterhouse following

national and institutional guidelines for the Good Experimental Practices and

approved by the Ethical Committee of the Institution (IRTA- Institut de Recerca i

Tecnologia Agroalimentàries).

Phenotypic records used in the analyses (Table 1) correspond to body weight

(BW) measured at 125, 155 and 180 days (BW125, BW155, and BW180,

respectively), backfat thickness (BFT) at the level of the fourth rib at 4 cm of the

midline measured by ultrasounds at 155 and 180 days (BFT155 and BFT180) and

measured with a rule at slaughter (BFTS), carcass length (CL) and carcass weight

(CW), ham weight (HW), shoulder weight (SW), belly weight (BLW), and the

intramuscular fat content (IMF) in the longissimus dorsi muscle.

Genetic markers and quality control

A total of 364 pigs, including their F0, F1 and F2 founder generations (72

animals), were genotyped with the Porcine SNP60K BeadChip [75] following the

Infinium HD Assay Ultra protocol (Illumina Inc.; San Diego, CA, USA) and the

genotypes were visualized with the GenomeStudio software (Illumina Inc.; San

Diego, CA, USA). The quality control of the 62,163 SNPs was performed by using

Plink [76] software removing markers with a minor allele frequency (MAF) ,5%

and animals with missing genotypes.5%. The SNP mapping and annotation was

performed by using the pig assembly 10.2 [ftp://ftp.ncbi.hlm.nih.gov/genomes/

Sus_scrofa/GEF/]. We also excluded markers which did not map in the
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Sscrofa10.2 version assembly. Pedstats program [77] was used to check Mendelian

inheritance errors.

Genome-wide association analysis

Genome-wide association analysis (GWAS) for the twelve phenotypic growth

traits were performed using a mixed model accounting for additive effects with

Qxpak 5.0 software [78]:

yijlkm~Sex�izBatchjzbc1zl1akzu1zeijlkm,

in which yijlkm was the i-th individual record, sex (two levels) and batch (nine

levels) were fixed effects, ß was a covariate coefficient with c being the covariate

used in each case (described below), ll was a 21, 0, +1 indicator variable

depending on the l-th individual genotype for the k-th SNP, ak represented the

additive effect associated with the k-th SNP, ul represented the infinitesimal

genetic effect with random distribution N(0, Asu) where A was a numerator of

the the pedigree-based relationship matrix and eijlkm the residual.

Different covariates (c) were used for the analysis. Carcass weight was used as a

covariate for CL, IMF, BFTS, HW, SW, and BLW. For BFT155 and BFT180 the

covariates used were the body weight at their respective days. Meanwhile, for the

body and the carcass weights the covariate used was the animal age.

Association weight matrix

The association weight matrix (AWM) was built from the GWAS results. First, the

SNP additive effects were normalized with a z-score method using a R script and a

matrix was constructed with these values, being SNPs in rows and traits in

columns. Another matrix with the same format was generated for the p-values

obtained in the GWAS. For the analysis, the ham weight was selected as the key

phenotype. Subsequently, the AWM script [9] available from authors was used in

R (http://www.r-project.org/). Those SNPs associated (nominal p-value ,0.05)

with the ham weight or with 3 or more traits were selected for further analysis. We

included in the analysis the SNPs with a distance of minor than 2.5 kb (SNPs

close) and major than 1,000 kb (SNPs far) from a gene. We also included SNPs

located at less than 10 kb of miRNA. Finally, to facilitate the analysis, for SNPs

clustering at less than 1 Mb of distance from each other, the SNP associated with

the major number of characters was selected. The hierarchical clustering option of

PermutMatrix software [79] was used to visualize the results of both traits and

genes. The trio of putative regulators spanning most of the network topology with

a minimum redundancy [10] was selected. In this study we took into account all

the transcription factors (TF) from the list reported by Vaquerizas et al. [80];

additionally, those 22 genes belonging to the GO: 0050789 which accounts for the

DNA binding TF activity were added. All miRNA annotated on Sscrofa10.2

assembly were also included in the analysis as potential regulators. PCIT
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algorithm [81] was used to construct a file containing the reported gene-gene

interactions among the 3 TFs. The CentiScaPe plug-in [82] of Cytoscape software

[83] was used to visualize the PCIT results and either to calculate the node

centrality values (Deg) and network parameters.

Gene ontologies, pathways and network analysis

The Ingenuity Pathways Analysis software (IPA; Ingenuity Systems, Redwood city,

CA, USA; www.ingenuity.com) was used to identify the most relevant biological

functions and pathways in which the genes associated with the phenotypic traits

were involved. IPA, which uses its own databases, allowed the identification of

overrepresented pathways using the BH multiple testing correction [84] of p-value

(FDR ,0.05) and generating biological networks. The Mouse Genome Database

(MGD; http://www.informatics.jax.org) was used in order to identify how mutant

alleles driven in mice for the identified growth-related genes present in the

network affected the phenotype.

Supporting Information

S1 Figure. GWAS plot of the 12 traits: body weight measured at 125, 155 and

180 days (BW125, BW155, and BW180, respectively), backfat thickness

measured at 155 and 180 days (BFT155 and BFT180) and measured at slaughter

(BFTS), carcass length and weight (CL and CW), weight of the hams, shoulders

and belly (HW, SW and BLW) and intramuscular fat (IMF) content. The

horizontal green line represents the statistical significance (false discovery rate; set

at q-value #0.05) calculated with the q-value library [85] implemented in R

program (http://www.r-project.org/).

doi:10.1371/journal.pone.0114862.s001 (DOCX)

S2 Figure. Hierarchical cluster analysis among 12 phenotypic traits: body

weight measured at 125, 155 and 180 days (BW125, BW155, and BW180,

respectively), backfat thickness measured at 155 and 180 days (BFT155 and

BFT180) and measured at slaughter (BFTS), carcass length and weight (CL and

CW), weight of the hams, shoulders and belly (HW, SW and BLW) and the

intramuscular fat (IMF) content.

doi:10.1371/journal.pone.0114862.s002 (TIF)

S3 Figure. Linkage disequilibrium among the PPARG and NR2C2 SNPs.

Pattern of linkage disequilibrium analysis around ¡2Mb of the SNPs in

PPARG and NR2C2. Figure colored from blue to red according to LD strength

between consecutive markers. The green diamond-shape corresponds to the SNP

in PPARG gene and the blue diamond-shape the SNP in NR2C2 gene.

doi:10.1371/journal.pone.0114862.s003 (DOCX)

S1 Table. List of 54 growth-related genes in the network.

doi:10.1371/journal.pone.0114862.s004 (XLSX)
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S2 Table. List of 142 regulators (transcription factors and miRNAs) identified

within the list of associated-genes.

doi:10.1371/journal.pone.0114862.s005 (XLSX)

S3 Table. Top networks of molecular functions identified with IPA for the 513

genes.

doi:10.1371/journal.pone.0114862.s006 (XLS)

S4 Table. Top pathways identified with IPA for the 513 genes.

doi:10.1371/journal.pone.0114862.s007 (XLS)
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