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1 Introduction

We study two cooperative solutions for a class of markets with indivisible goods modeled as

generalized assignment games. Shapley and Shubik (1972) de�ned an assignment game as

a market where each seller owns one indivisible object and each buyer, who wants to buy at

most one object, has valuations over all objects. An assignment is a description of deliveries

of objects from sellers to buyers and a price vector is a list of prices, one for each object.

A competitive equilibrium of a market is a price vector and a feasible assignment at which

each seller maximizes revenues, each buyer maximizes net valuations, and markets clear.

Shapley and Shubik (1972) showed that the set of competitive equilibria is non-empty, com-

petitive equilibrium assignments are optimal (the �rst welfare theorem holds), any optimal

assignment is part of a competitive equilibrium with any of the competitive equilibrium

price vectors (a strong version of the second welfare theorem holds without requiring any

redistribution of the initial endowments), and the set of competitive equilibrium payo¤s

coincides with the Core of a naturally associated TU�game (no enlargement or replica of
the market is required for their coincidence).

We consider a generalized assignment game representing a market with a given number

of indivisible units of di¤erent goods, where sellers may own di¤erent units of each of

the goods and buyers, who may want to buy several units of di¤erent goods up to an

exogenous total amount, have constant marginal valuations of each good. Jaume, Massó,

and Neme (2012) extend Shapley and Shubik (1972)�s results for this generalized assignment

game. In particular, they show that the set of competitive equilibria is non-empty, it is

the Cartesian product of the set of competitive equilibrium price vectors and the set of

optimal assignments, the set of competitive equilibrium price vectors has a lattice structure

with the natural partial order of vectors � �to be larger or equal than�, and this lattice

structure is partly translated in a dual way to the sets of buyers and sellers�utilities that

are attainable at competitive equilibria.

In this paper we study two di¤erent cooperative solutions for this class of markets and

their relationship with the set of competitive equilibrium payo¤s. The two solutions di¤er

on how a coalition of buyers and sellers can block a proposed payo¤ vector. Given an

assignment and a coalition of buyers and sellers, some of them may be buying or selling

some units of some goods to sellers or buyers outside the coalition. The notion of the Core

corresponds to the notion of blocking that requires that all members of the coalition have to

break all exchanges performed with all agents outside the coalition and buy or sell only with
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members within the coalition. In contrast, the concept of Set-wise stability corresponds to

the notion of blocking that admits that members of the coalition may completely or partly

keep their exchanges performed with non-members.

The Set-wise stability notion is closer to the already well established notion of stabil-

ity applied to ordinal many-to-one matching models. For instance, Roth and Sotomayor

(1990) analyze this model and its applications to college admission problems and to labor

markets for medical interns assuming that a hospital in a blocking coalition can maintain

its relationships with interns outside the coalition. There is no reason to expect that the

hospital, in order to make an o¤er to a doctor in the blocking coalition, will have to cancel

the contracts it has with other doctors it has been already assigned to.

Since Set-wise blocking is easier than Core-wise blocking, the Set-wise stable set is a

subset of the Core. We show here that the non-empty set of competitive equilibrium payo¤s

is contained in the Set-wise stable set. Hence, the Set-wise stable set as well as the Core

are non-empty. Moreover, we exhibit a simple market showing that these inclusions may

be strict.

The main contribution of the paper is to answer a¢ rmatively the following question. Do

the Core and the Set-wise stable set converge to the set of competitive equilibrium payo¤s

when the market becomes large? The question is relevant because competitive equilibrium

requires price-taking behavior which only makes sense when individual quantity decisions

are perceived by each agent as being negligible. To create a setting where price-taking

behavior is meaningful we follow the well established tradition in Economics to enlarge the

environment by replicating the market. We �rst show that the Set-wise stable set already

coincides with the set of competitive equilibrium payo¤s for a two-fold replicated market

(Theorem 1). We also show that the Core converges to the set of competitive equilibrium

payo¤s when the number of replica tends to in�nity (Theorem 2). Finally, we show that

for any number of replicas there is a market with a Core payo¤ that is not a competitive

equilibrium payo¤ (Theorem 3). Thus, the notion of Set-wise stability is much closer (not

only in terms of set-wise inclusion) to competitive equilibrium than the notion of Core.

There are many other papers that recently have studied the relationship between the set

of competitive equilibrium payo¤s and alternative cooperative solutions in many-to-one or

many-to-many generalizations of Shapley and Shubik (1972)�s assignment game. Sotomayor

(1992 and 1999a) study a many-to-many assignment game with two �nite and disjoint sets

of agents. Each agent from each side can form a maximal number of partnerships with the

agents from the other side. Each partnership generates a total payo¤ that may be shared

2



by its two members. Observe that in this extension partnerships are binary; speci�cally, if

a buyer and a seller form a partnership they can exchange just one indivisible unit of the

good held by the seller. Sotomayor (1992) proves that all pair-wise stable assignments are

optimal and Sotomayor (1999a) shows that the set of pair-wise stable payo¤s has a complete

and dual lattice structure. Sotomayor (1999b) proposes the notion of Set-wise stability for

the former model and shows that the pair-wise stable set (which may be empty) is a subset

of the Core. Camiña (2006) studies a market with one seller, who owns a given number of

(potentially) di¤erent objects, and several buyers who want to buy at most one object. She

shows that the Core and the Set-wise stable set coincide, the set of competitive equilibrium

payo¤s is non-empty and it is a subset of the Core. Moreover, she shows that the Core has

a complete lattice structure with the partial order coming from comparing buyers�payo¤

vectors with the partial order � and this structure is not dual.
Sotomayor (2007) studies a generalized assignment game similar to ours but with two

important di¤erences: (i) sellers only own units of a unique good and each good is only

owned by a particular seller and (ii) buyers may want to buy several units but partnerships

are also binary because buyers are not interested in buying more than one unit from each

seller. She shows that the set of competitive equilibrium payo¤s is a non-empty, complete

and dual lattice. Sotomayor (2009 and 2011) extends Sotomayor (1992 and 1999a) and con-

sider a time-sharing assignment game where both buyers and sellers own a �xed amount of

a divisible good (labor time) and to form a partnership a buyer and a seller have to agree

to contribute each with the same amount of labor time and to share, in a particular pro-

portion, the amount of money that is proportionally obtained from the jointly contributed

amount of labor time. Sotomayor (2009) studies di¤erent solution concepts for di¤erent

kinds of coalitional interactions. In particular, she shows the inclusion relationships that

hold among the non-empty sets of competitive equilibrium payo¤s, the Core, the Set-wise

stable set, the Strong stable set and the set of dual allocations. Moreover, she also shows

that some of these sets have a lattice structure. Sotomayor (2011) analyses the relationship

between the competitive equilibrium solution and a cooperative notion similar to Set-wise

stability that di¤ers from ours because agreements with non-members are rigid since they

are nulli�ed once any of its terms is changed. Moreover, Sotomayor (2011) studies the

algebraic structure of these sets. Klaus and Walzl (2009) study several notions of Set-

wise stability for the ordinal many-to-many matching model with contracts under di¤erent

preference restrictions.

Milgrom (2009) introduces and studies the space of assignment messages to investigate
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(and solve) the di¢ culty that agents face when reporting their �types� (or valuations of

goods, or sets of goods) in some mechanism design settings. The model is very general

and contains as particular cases multi-unit auctions (with substitutable goods), exchange

economies, and integer assignment games. Milgrom (2009) focuses on the study of the

non-emptiness of the set of competitive equilibrium prices and its lattice structure but he

does not analyze any cooperative solution. Jaume, Massó, and Neme (2012) study using

linear programming the same model than the present one but they only focus on the study

of the Cartesian product and lattice structures of the set of competitive equilibria and the

corresponding sets of agents�utilities.

The paper is organized as follows. In Section 2 we de�ne a market. In Section 3, and

closely following Jaume, Massó, and Neme (2012), we de�ne a competitive equilibrium of a

market. In Section 4 we �rst present the notion of Set-wise stability and show that the Set-

wise stable set contains the non-empty set of competitive equilibrium payo¤s. We de�ne,

for any positive integer �, a ��fold replica of a market and show in Theorem 1 that the Set-
wise stable set of a two-fold replicated market already coincides with the set of competitive

equilibrium payo¤s. We then present the notion of Core and show that it contains the set

of Set-wise stable payo¤s and in Theorem 2 we show that the limit of the sequence of the

Cores of replicated markets coincides with the set of competitive equilibrium payo¤s when

the number of replicas tends to in�nity. Finally, in Theorem 3 we show that for any number

of replicas there is a market with a Core payo¤ that is not a competitive equilibrium payo¤.

In Section 5 we discuss our main result and �nish with �nal remarks. An Appendix at the

end of the paper collects the proofs that have been omitted in the main text.

2 Preliminaries

A generalized assignment game (a market) consists of three �nite and disjoint sets: the

set B = f1; :::; Bg of buyers, the set G = f1; :::; Gg of goods, and the set S = f1; :::; Sg
of sellers. We denote a generic buyer by i, a generic good by j, and a generic seller by

k. Buyers have a constant marginal valuation of each good. Let vij � 0 be the monetary
valuation that buyer i assigns to each unit of good j; namely, vij is the maximum price that

buyer i is willing to pay for each unit of good j: Denote by V = (vij)(i;j)2B�G the matrix of

valuations. We assume that buyer i 2 B can buy at most di 2 Z+nf0g units in total, where
Z+ is the set of non-negative integers. The strictly positive integer di should be interpreted
as a capacity constraint due to limits on i�s ability for storage, transport, etc. Denote by
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d = (di)i2B the vector of maximal demands. Each seller k 2 S has qjk 2 Z+ indivisible
units of each good j 2 G. Denote by Q = (qjk)(j;k)2G�S the capacity matrix. We assume

that there is a strictly amount of each good; namely,

for each j 2 G there exists k 2 S such that qjk > 0: (1)

Let rjk � 0 be the monetary valuation that seller k assigns to each unit of good j; that is,
rjk is the reservation (or minimum) price that seller k is willing to accept for each unit of

good j. Denote by R = (rjk)(j;k)2G�S the matrix of reservation prices.

A market M is a 7-tuple (B;G;S; V; d; R;Q) satisfying condition (1). Shapley and

Shubik (1972)�s (one-to-one) assignment game is a special case of a market where each

buyer can buy at most one unit, there is only one unit of each good, and each seller only

owns one unit of one of the goods; i.e., di = 1 for all i 2 B, G = S, and for all (j; k) 2 G�S,
qjk = 1 if j = k and qjk = 0 if j 6= k.
An assignment for marketM = (B;G;S; V; d; R;Q) is a three-dimensional integer matrix

(i.e., a 3rd-order tensor) A = (Aijk)(i;j;k)2B�G�S 2 ZB�G�S+ describing a collection of deliver-

ies of units of the goods from buyers to sellers. Each Aijk should be interpreted as �buyer i

receives Aijk units of good j from seller k.�We often omit the sets to which the subscripts

belong to and write, for instance,
P

ijk Aijk and
P

iAijk instead of
P

(i;j;k)2B�G�S Aijk andP
i2B Aijk, respectively.

The assignment A is feasible for marketM = (B;G;S; V; d; R;Q) if each buyer i buys at
most di units and each seller k sells at most qjk units of each good j. We are only interested

on the following set of feasible assignments

fA 2 ZB�G�S+ j
P

jk Aijk � di for all i 2 B and
P

iAijk � qjk for all (j; k) 2 G � Sg:

For each (i; j; k) 2 B � G � S; let

� ijk =

(
vij � rjk if qjk > 0

0 if qjk = 0
(2)

be the per unit gain from trade of good j between buyer i and seller k. If seller k does not

have any unit of good j the per unit gain from trade of good j with all buyers is equal to

zero. The total gain from trade of market M = (B;G;S; V; d; R;Q) at assignment A is

TM (A) =
P

ijk � ijk � Aijk:
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De�nition 1 A feasible assignment A is optimal for market M = (B;G;S; V; d; R;Q) if,
for any feasible assignment A0, TM(A) � TM (A0) :

Let F be the set of all optimal assignments for market M = (B;G;S; V; d; R;Q). The
set F is always non-empty.1 Denote by TM the total gain from trade of market M at any

optimal assignment.

3 Competitive Equilibrium

3.1 De�nitions and Preliminaries

We de�ne a competitive equilibrium of marketM = (B;G;S; V; d; R;Q) by following Jaume,
Massó and Neme (2012). Assume buyers and sellers trade through competitive markets.

That is, there is a unique market (and its corresponding unique price) for each of the goods

and buyers and sellers are price-takers. Given a price vector p = (pj)j2G 2 RG+ sellers supply
units of the goods (up to their capacity) in order to maximize revenues at p and buyers

demand units of the goods (up to their maximal demands) in order to maximize the total

net valuation at p.

Supply of seller k: For each price vector p = (pj)j2G 2 RG+, seller k supplies of every good
j any feasible amount that maximizes revenues; namely,

Sjk(pj) =

8><>:
fqjkg if pj > rjk
f0; 1; :::; qjkg if pj = rjk
f0g if pj < rjk:

(3)

To de�ne the demands of buyers we need the following notation. Let p 2 RG+ be given
and consider buyer i. Let

r>
i (p) = fj 2 G j vij � pj = max

j02G
fvij0 � pj0g > 0g (4)

be the set of goods that give to buyer i the maximum (and strictly positive) net valuation

at p. Obviously, for some p; the set r>
i (p) may be empty. Let

r�
i (p) = fj 2 G j vij � pj = max

j02G
fvij0 � pj0g � 0g (5)

1See Milgrom (2009) for a proof of this statement in a more general model. See Jaume, Massó and

Neme (2012) for a proof of the statement using only linear programming arguments in the same model as

the one studied here.
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be the set of goods that give to buyer i the maximum (and non-negative) net valuation at

p. Obviously, for some p; the set r�
i (p) may also be empty. Obviously, for all p 2 RG+ and

all i 2 B,
r>
i (p) � r�

i (p): (6)

Demand of buyer i: For each price vector p = (pj)j2G 2 RG+, buyer i demands any feasible
amounts of the goods that maximize the net valuations at p; namely,

Di(p) = f� = (�jk)(j;k)2G�S 2 ZG�S j (D.a) �jk � 0 for all (j; k) 2 G � S,
(D.b)

P
jk �jk � di;

(D.c) r>
i (p) 6= ; =)

P
jk �jk = di; and

(D.d)
P

k �jk > 0 =) j 2 r�
i (p)g:

Thus, Di(p) describes the set of all trades that maximize the net valuation of buyer i at

p: Observe that the set of trades described by each element in the set Di(p) give the same

net valuation to buyer i; i.e., i is indi¤erent among all trade plans � 2 Di(p):

Let A be an assignment and let i be a buyer. We denote by A(i) = (A(i)jk)(j;k)2G�S the

element in ZG�S+ such that, for all (j; k) 2 G � S, A(i)jk = Aijk:

De�nition 2 A competitive equilibrium of market M = (B;G;S; V; d; R;Q) is a pair
(p;A) 2 RG+ � ZB�G�S+ such that A is a feasible assignment and:

(E.D) for each buyer i 2 B; A(i) 2 Di (p) ;

(E.S) for each good j 2 G and each seller k 2 S;
P

iAijk 2 Sjk (pj) :

The vector p 2 RG+ is a competitive equilibrium price of marketM = (B;G;S; V; d; R;Q)
if there exists a feasible assignment A such that (p;A) is a competitive equilibrium of market

M . Let P be the set of competitive equilibrium prices of market M: The set P is always

non-empty.2 For further reference, we state this fact without proof as a remark below.

Remark 1 The set of competitive equilibrium prices of any market is non-empty.

Moreover, by Proposition 4 in Jaume, Massó, and Neme (2012), the set of competitive

equilibria has a Cartesian product structure. We also state this fact without proof as a

remark below.

Remark 2 Let M = (B;G;S; V; d; R;Q) be a market. Then, (p;A) is a competitive

equilibrium of M if and only if p 2 P and A 2 F .
2For the proof of this statement in a more general model see Milgrom (2009), and for a proof in our

setting using only linear programming see Jaume, Massó and Neme (2012).
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3.2 The Set of Competitive Equilibrium Payo¤s

Let p 2 RG+ be a price vector andA a feasible assignment of marketM = (B;G;S; V; d; R;Q):
We de�ne the utility of buyer i 2 B at the pair (p;A) as the total net gain obtained by i
from his exchanges speci�ed by A at price p. We denote it by ui(p;A); namely,

ui(p;A) =
P
jk

(vij � pj) � Aijk:

We de�ne the utility of seller k 2 S at the pair (p;A) as the total net gain obtained by k
from his exchanges speci�ed by A at price p. We denote it by wk(p;A); namely,

wk(p;A) =
P
ij

(pj � rjk) � Aijk:

Given (p;A), denote by u(p;A) = (ui(p;A))i2B and w(p;A) = (wk(p;A))k2S the vector of

buyers and sellers�utilities at (p;A), respectively. Let

CE = f(u;w) 2 RB � RS j there exists (p;A) 2 P � F s.t. (u;w) = (u(p;A); w(p;A))g

be the set of competitive equilibrium payo¤s of market M = (B;G;S; V; d; R;Q). However,
competitive equilibrium payo¤s are independent of the particular optimal assignment. To

see that, de�ne the mappings of per-unit gains 
(�) : RG+ ! RB and �(�) : RG+ ! RG�S as
follows. Let p 2 RG+ be given. For each i 2 B, de�ne


i(p) =

(
vij � pj if there exists j 2 r>

i (p)

0 otherwise,
(7)

and for each (j; k) 2 G � S, de�ne

�jk (p) =

(
pj � rjk if pj � rjk > 0
0 otherwise.

(8)

The number 
i(p) is the gain obtained by buyer i from each unit that he wants to buy at

p (if any) and the number �jk(p) is the pro�t obtained by seller k from each unit of good

j that he wants to sell at p (if any).

Let p 2 P be a competitive equilibrium price of market M = (B;G;S; V; d; R;Q) and
let (
(p); �(p)) be its associated per unit gains. De�ne (u(p); w(p)) 2 RB � RS by setting

ui(p) = di � 
i(p) for all i 2 B and (9)

wk(p) =
P
j2G
qjk � �jk(p) for all k 2 S:
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By Lemma 6 in Jaume, Massó, and Neme (2012), the set of competitive equilibrium payo¤s

of market M can also be written as

CE = f(u;w) 2 RB � RS j there exists p 2 P such that(u;w) = (u(p); w(p))g; (10)

that is, the set of competitive equilibrium payo¤s of market M can be described without

explicitly referring to any particular optimal assignment because, for all A 2 F , ui(p;A) =
ui(p) for all i 2 B and wk(p;A) = wk(p) for all k 2 S.

4 Cooperative Solutions

In the next two subsections we study two alternative cooperative solutions for market M:

They di¤er on how a coalition (a subset) of agents can block a proposal of how to distribute

among all agents the total gain from trade obtained at any optimal assignment. The Core

assumes that members of a blocking coalition can only form partnerships among themselves

and have to break all former partnerships with non-members. Set-wise stability allows

members of a blocking coalition to keep or reduce their former exchanges with members

outside the blocking coalition. Thus, Set-wise blocking is easier than Core-wise blocking.

It seems to us that Set-wise stability is also a more reasonable solution for this class of

markets. Our results will indicate from two points of view that Set-wise stability is closer

to the set of competitive equilibrium payo¤s than the Core is: (i) (set inclusion) closer and

(ii) the set of Set-wise stable payo¤s and the set of competitive equilibrium payo¤s already

coincide in a two-fold replicated market.

4.1 Set-wise Stability

The notion of Core�blocking requires that all members of the blocking coalition have to give
up all previous exchange agreements with non-members. However this may be too drastic

because, in some circumstances, it is reasonable to let members of the blocking coalition

to keep some (or all) previous exchanges with members outside the blocking coalition.

This stronger notion of blocking gives rise to the notion of Set-wise stability.3 Let M =

3Sotomayor (1999b) de�nes and studies this concept for a generalization of Shapley and Shubik (1972)�s

assignment game. See also Sotomayor (2007, 2009, and 2011) for an analysis of Set-wise stability in her

time-sharing assignment games. Klaus and Walzl (2009) have studied Strong and Set-wise stability for an

ordinal many-to-many matchings model with contracts under di¤erent preference restrictions. Our notion
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(B;G;S; V; d; R;Q) be a market and let C � B [ S be a coalition. Denote the subsets of
buyers and sellers in C by BC = C \ B and SC = C \ S, respectively.

De�nition 3 Let M = (B;G;S; V; d; R;Q) be a market and C be a coalition. A feasible

assignment bA for marketM is SW�compatible with C if there exists an optimal assignment
A 2 F such that:

(i) For every i 2 BC; bAijk > 0 implies that either k 2 SC or else bAijk � Aijk:
(ii) For every k 2 SC; bAijk > 0 implies that either i 2 BC or else bAijk � Aijk:
(iii) For every i =2 BC and k =2 SC; bAijk = 0 for every j 2 G.
We want to emphasize that the de�nition of SW�compatibility allows to reallocate in

any way the amount of the goods exchanged between a buyer and a seller if they both

belong to the coalition but only to keep or decrease their exchanges if one is a member of

the coalition and the other is not.

LetM = (B;G;S; V; d; R;Q) be a market. A three-dimensional matrix � = (�ijk)(i;j;k)2B�G�S
is a distribution matrix if for all (i; j; k) 2 B � G � S such that vij � rjk, it holds

that vij � �ijk � rjk. Let � be a distribution matrix and assume vij � rjk for some

(i; j; k) 2 B � G � S. Then, �ijk describes a way of how buyer i and seller k could split
the gain vij � rjk that they would obtain from trading one unit of good j: buyer i receives

vij � �ijk and seller k receives �ijk � rjk. If vij < rjk then the value �ijk will be irrelevant
because i and k do not trade good j at any optimal assignment. Observe that a distribution

matrix is not necessarily anonymous because a buyer can obtain di¤erent per unit gains

from buying good j from two di¤erent sellers, and vice versa.

De�nition 4 A payo¤ (u;w) 2 RB � RS for market M = (B;G;S; V; d; R;Q) is not
SW�blocked if there exists a distribution matrix � = (�ijk)(i;j;k)2B�G�S such that for every
coalition C � B[S and every feasible assignment bA that is SW�compatible with C, we have
of Set-wise stability as well as Klaus and Walzl (2009)�s stability notions are natural extensions of the

concept �rst de�ned by Sotomayor (1999b). The main di¤erence between our notion and Klaus and Walzl

(2009)�s notions is that ours applies to a transferable utility setting while theirs apply to an ordinal setting.

This is important when checking the pro�tability of a deviating coalition; for the transferable utility setting

utilities of all members in the coalition are added while in the ordinal setting all members of the blocking

coalition have to receive (in ordinal terms) a better (for Strong stability) and individually rational (for

Set-wise stability) set of contracts.
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that P
i2BC

ui +
P
k2SC

wk �
P

(i;j;k)2BC�G�SC
� ijk � bAijk + P

(i;j;k)2BC�G�(SC)c
(vij � �ijk) � bAijk

+
P

(i;j;k)2(BC)c�G�SC
(�ijk � rjk) � bAijk:

� �M(C; bA;�):4
A payo¤ (u;w) 2 RB � RS is not SW�blocked if there is a set of exchanges between

buyers and sellers (the optimal assignment A in De�nition 3) and a set of agreements

on how to share the per unit gains from trade (the distribution matrix �) such that no

coalition of agents, independently of the agreements they have with non-members, can

jointly obtain a strictly higher payo¤ by reassigning their exchanges among themselves

and by keeping or reducing their exchanges with non-members. Observe that by letting

C = B[S,
P

i2B ui+
P

k2S wk = T
M : That is, agents can optimally achieve (u;w) in a way

that is immune to deviating coalitions. Finally, a payo¤ vector is Set-wise stable if it can

not be SW�blocked.

De�nition 5 A payo¤ (u;w) 2 RB � RS for market M = (B;G;S; V; d; R;Q) is Set-wise
stable if it is not SW�blocked.

Denote by SW the set of Set-wise stable payo¤s of market M = (B;G;S; V; d; R;Q).
When we want to emphasize marketM we write SWM : The set of competitive equilibrium

payo¤s is contained in the set of Set-wise stable payo¤s.

Proposition 1 Let p 2 P be a competitive equilibrium price of market M = (B;G;S; V; d; R;Q).
Then, (u(p); w(p)) 2 SW.

Proof See the Appendix. �

The idea of the proof is as follows. Assume p 2 P and (u(p); w(p)) =2 SW. This means
that every distribution matrix � has a SW�block. In particular, we consider one of the
SW�blocks of the anonymous distribution matrix p (i.e., for all j 2 G; pj = �ijk = �i0jk0
for all i; i0; k and k0). Hence, there exist a coalition C and a feasible assignment bA,

4Given a set X we denote its complementary set by Xc: The reader should not be confused with

this notation when the set X is either BC or SC ; whose complements are denoted by
�
BC
�c
and

�
SC
�c
;

respectively.
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SW�compatible with C, such that C can obtain a strictly larger payo¤. The key step of
the proof is to construct from bA a reduced market M by keeping �xed and excluding from

M the exchanges speci�ed by bA between a member of C and a non member of C: Namely,
the maximal demand di of every buyer i in the blocking coalition is reduced by the number

of units that i buys to sellers outside the coalition. The maximal capacity qjk of each good

j owned by every seller k in the blocking coalition is reduced by the number of units of

good j that k sells to buyers outside the coalition. Then, although tedious, it only remains

to be shown that the Strong Duality theorem of Linear Programming is violated (see the

Appendix at the end of the paper), a contradiction.5

Remark 1 and Proposition 1 above say that

? 6= CE � SW : (11)

Example 1 below shows that the inclusion in (11) may be strict because there exist markets

with a payo¤ (u;w) 2 SWnCE :
Example 1 Let M = (B;S;G; V; d; R;Q) be a market where B = fb1 ; b2g, G = fg1; g2g,

S = fs1g (i.e., B = G = 2 and S = 1), V =

 
8 4

8 1

!
, d = (2; 3), R = (4; 2), and

Q = (4; 1). The unique optimal assignment of market M is A =

 
1 1

3 0

!
and

TM(A) = (v11 � r11) � A111 + (v12 � r21) � A121 + (v21 � r11) � A211 + (v22 � r21) � A221
= (8� 4) � 1 + (4� 2) � 1 + (8� 4) � 3 + (1� 2) � 0
= 18:

It is easy to see that the set of competitive equilibrium prices of marketM is P = f(p1; p2) 2
R2+ j 2 � p2 � 4 and p1 = p2 + 4g: For every p 2 P, the per-unit gains are


1(p) = 8� p1 = 4� p2;

2(p) = 8� p1;
�11(p) = p1 � 4; and
�21(p) = p2 � 2:

5Or equivalently, we reach the conclusion that coalition C in market M Core�blocks (u(p); w(p)), a
contradiction since, as we will see in the next subsection, competitive equilibrium payo¤s can not be

Core�blocked.
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Moreover u1(p) = 2 � 
1(p) = 16� 2p1; u2(p) = 3 � 
2(p) = 24� 3p1 and w1(p) = 4 � �11(p) +
1 � �21(p) = 5 � p1 � 22: The set of competitive equilibrium payo¤s is

CE = f(u1; u2; w1) 2 R3+ j u1 = 16� 2p1; u2 = 24� 3p1; w1 = 5p1 � 22 and 6 � p1 � 8g:

Consider the vector (u1; u2; w1) = (11
3
; 5; 28

3
). It is immediate to see that (11

3
; 5; 28

3
) =2 CE

because u1 = 11
3
implies p1 = 37

3
and u2 = 5 implies p1 = 19=3. To see that (113 ; 5;

28
3
) 2 SW

consider � =

 
�111 �121

�211 �221

!
=

 
19
3

2
19
3

2

!
, C = fb1; s1g (it is immediate to see that the

other coalitions can not SW�block (11
3
; 5; 28

3
)), and bA =

 
2 0

2 0

!
: Observe that bA is

SW�compatible with C: Then,

13 > � 111 bA111 + (�211 � r11) bA211 = 4 � 2 + (19
3
� 4) � 2 = 38

3

and for any other di¤erent assignment A0 that is SW�compatible with C;

13 > � 111A
0
111 + (�211 � r11)A0211:

Hence, (11
3
; 5; 28

3
) 2 SWnCE : �

Competitive equilibrium presupposes that agents are price-takers. This assumption

makes sense only when the number of agents is large and individual quantity decisions are

insigni�cant. Thus, and at the light of ? 6= CE ( SW, it is natural to ask whether the set
of Set-wise stable payo¤s and the set of competitive equilibrium payo¤s are approximately

the same when the number of agents becomes large. To enlarge the market, we follow a

procedure with a long tradition in Economics which consists of replicating the market.6

Given a market M = (B;G;S; V; d; R;Q) and a strictly positive integer � we will consider
the ��fold replicated market �M to be composed of � agents of each type. For two buyers

6It started by Edgeworth (1881) and pursued by Debreu and Scarf (1963) for classical economies with

production and by Owen (1975) for linear production games, among others. A linear production game

consists of a set of players, each with an endowment (non necessarily integer valued) of m goods that can

only be used to produce in a linear way units of p di¤erent goods for which there are competitive markets.

Owen (1975) shows that the sequence of Cores of replicated linear production games converges to the set

of competitive equilibrium payo¤s. Moreover, Owen (1975) also shows that if the competitive equilibrium

price is unique then the Core of a large but �nitely replicated game coincides with the (unique) competitive

equilibrium payo¤. See also Kaneko and Wooders (1982) and Wooders (1983, 1994 and 2010) for Core

convergence results for games (with and without side payments) and markets.
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i� 2 B� and i�0 2 B�0 (in replicas � and �0, respectively) to be of the same type we require
them to have the same valuations of all goods (i.e., vi�j = vi�0j = vij for all j 2 G) and the
same maximal demands (i.e., di� = di�0 = di). For two sellers k� 2 S� and k�0 2 S�0 (in
replicas � and �0, respectively) to be of the same type we require them to have the same

reservation prices of all goods (i.e., rjk� = rjk�0 = rjk for all j 2 G) and the same amounts
of all goods (i.e., qjk� = qjk�0 = qjk for all j 2 G).
Our main result of the paper states that the Set-wise stable set of the 2�fold replicated

market has the equal treatment property (all replicated agents receive the same payo¤)

and coincides with the set of competitive equilibrium payo¤s.

Theorem 1 Let (u;w); (�u; �w) 2 RB+�RS+ be two payo¤ vectors of market M = (B;G;S; V; d; R;Q):
Then,

((u;w); (�u; �w)) 2 SW2M if and only if (u;w) = (�u; �w) 2 CE :

Proof See the Appendix. �

The idea of the proof is as follows. Fix a market M = (B;G;S; V; d; R;Q): First,
by Lemma 2 in the Appendix, we show that for any replica a Set-wise stable payo¤ has

the equal treatment property: all agents of the same type receive the same payo¤ (this

is a classical property that also holds for the Core of replicated markets). Second, by

de�nition, a Set-wise stable payo¤ (u;w) can be obtained by a set of trade agreements that

are SW�unblocked; that is, there exists a distribution matrix � such that no coalition C
can SW�block (u;w) becauseP

i2BC
ui +

P
k2SC

wk � �M(C; bA;�); (12)

where bA is SW�compatible with C. Third, and as a consequence of Lemma 4 in the
Appendix, we show that one of the unblocked set of trade agreements (described by a

distribution matrix �) is anonymous because there exists p = (pj)j2G such that for all

j 2 G, pj = �ijk for all (i; k) 2 B�S and � can be replaced by p in condition (12); namely,P
i2BC

ui +
P
k2SC

wk � �M(C; bA; p): (13)

Fourth, for any payo¤ vector (u;w) in market M with the property that the payo¤ vector

((u;w); (u;w)) is a Set-wise stable payo¤ of the two replica market 2M; the vector p that

satis�es condition (13) is a competitive equilibrium price of market M: Finally, in Lemma

6 in the Appendix, we show that if a payo¤ vector (u;w) satis�es condition (13) for a

14



competitive equilibrium price vector p then (u;w) is a competitive equilibrium payo¤ of

market M .

We use Example 1 again to illustrate how a payo¤ (u;w) 2 SWnCE can be already
SW�blocked in the two replicated market.

Example 1 (continued) We have already showed that (u1; u2; w1) = (113 ; 5;
28
3
) 2 SWnCE .

Hence, by Theorem 1, ((11
3
; 5; 28

3
); (11

3
; 5; 28

3
)) =2 SW2M . To illustrate how it is SW�blocked,

consider any distribution matrix such that �21111 = 7:5, the coalition C = fb11 ; b12 ; s11g, and
the assignment

bA =
0BBB@

bA11111 bA11211 bA11112 bA11212bA21111 bA21211 bA21212 bA21212bA12111 bA12111 bA12112 bA12112bA22111 bA22111 bA22112 bA22112

1CCCA =

0BBB@
1 1 0 0

1 0 0 0

2 0 0 0

0 0 3 0

1CCCA
SW�compatible with C: Then,

�2M(C; bA;�) = � 11111 � bA11111 + � 11211 � bA11211 + � 12111 � bA12111 + (�21111 � r111) � bA21111
= 4 � 1 + 2 � 1 + 4 � 2 + (7:5� 4) � 1
= 17:5

>
50

3
= u11 + u12 + w11 :

Hence, C SW�blocks ((11
3
; 5; 28

3
); (11

3
; 5; 28

3
)): Observe that the expression (�21111 � r111) �bA21111 = (7:5 � 4) � 1 shows that one member of the blocking coalition (seller 11) keeps

selling 1 unit of good 1 to buyer 21, who is not a member of the blocking coalition C. �

4.2 Core

Let M = (B;G;S; V; d; R;Q) be a market and let C � B [ S be a coalition. Remember
that we denote the subsets of buyers and sellers in C by BC = C \ B and SC = C \ S,
respectively. The submarket MC is the (natural) restriction of market M to coalition C;
namely, MC is the market (BC;GC;SC; V C; dC; RC; QC), where GC = fj 2 G jthere exists
k 2 SC such that qjk > 0g, V C = (vij)(ij)2BC�GC , dC = (di)i2BC , RC = (rjk)(j;k)2GC�SC , and
QC = (qjk)(j;k)2GC�SC :

De�nition 6 A feasible assignment A is Core�compatible with coalition C if Aijk 6= 0

implies fi; kg � C:
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That is, a feasible assignment A is Core�compatible with C if all members of C interact
only among themselves. Let A be an assignment Core�compatible with coalition C and
denote by AC the feasible assignment for submarket MC, where AC = (Aijk)(i;j;k)2BC�GC�SC :

When the reference coalition is clear from the context we often omit the superscript C.
Denote by FC the set of optimal assignments of market MC; i.e.,

FC = fAC 2 ZB�G�S+ j TMC
(AC) � TMC

(AC) for any feasible assignment ACg:

Fix a marketM = (B;G;S; V; d; R;Q): To de�ne a cooperative game v with transferable
utility associated to M , let C � B [ S be a coalition and set

v(C) = TMC
(AC);

where AC is any optimal assignment of submarket MC. Namely, v(C) is the maximal
total utility that members of C can guarantee by exchanging their resources only among
themselves. Obviously, v(C) = 0 for all C such that either BC = ? or SC = ?, and hence,
v(?) = 0. Moreover, v(fig) = 0 for all i 2 B and v(fkg) = 0 for all k 2 S.
A pair (u;w) 2 RB � RS is a (feasible) payo¤ of market M = (B;G;S; V; d; R;Q) ifP

i2B
ui +

P
k2S

wk = v(B [ S):

A payo¤ of market M is a distribution among agents of the total gains from trade at any

optimal assignment of market M .

De�nition 7 A payo¤ (u;w) 2 RB�RS of marketM = (B;G;S; V; d; R;Q) is Core�blocked
by coalition C � B [ S if P

i2BC
ui +

P
k2SC

wk < v(C):

De�nition 8 A payo¤ (u;w) 2 RB�RS of market M = (B;G;S; V; d; R;Q) belongs to the
Core if there does not exist a coalition C � B [ S such that (u;w) is Core�blocked by C.

Let Co be the set of payo¤s belonging to the Core of market M = (B;G;S; V; d; R;Q).
When we want to emphasize marketM we write CoM . To establish the relationship between
the Core and the set of Set-wise stable payo¤s, let (u;w) 2 RB �RS be a payo¤ of market
M and assume that coalition C Core�blocks (u;w). Let AC 2 FC be arbitrary. Then,P

i2BC
ui +

P
k2SC

wk < v(C) = TM
C
(AC):
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Let bA be the feasible assignment where, for all (i; j; k) 2 B � G � S,
bAijk = ( ACijk if (i; k) 2 BC � SC

0 otherwise.

Then, bA is a feasible assignment SW�compatible with C and for any distribution matrix
�, P

i2BC
ui +

P
k2SC

wk < �
M(C; bA;�) = TMC

(AC):

Hence, coalition C SW�blocks (u;w): Thus, the Set-wise stable set is a subset of the
Core. For further reference, we state this fact below as Remark 3.

Remark 3 For any market the Set-wise stable set is a subset of the Core.

Thus, we have already showed that the statement of the following corollary holds.7

Corollary 1 For every market M , ? 6= CE � SW � Co. Moreover, the two inclusions
may be strict.

In Example 1 above we have already showed that the �rst inclusion may be strict. To

show that the second inclusion may also be strict we return again to Example 1.

Example 1 (continued) Consider the vector (u1; u2; w1) = (4:5; 10; 3:5). To see that

it belongs to the Core of M it is enough to check that for any coalition that can obtain

strictly positive gains from trade can not Core-blocked it. Indeed,

v(fb1; b2; s1g) = 18 = 4:5 + 10 + 3:5 = u1 + u2 + w1:
v(fb1; s1g) = 8 = 4:5 + 3:5 = u1 + w1:
v(fb2; s1g) = 12 < 10 + 3:5 = 13:5 = u2 + w1:

Hence, (4:5; 10; 3:5) 2 Co. Now, to see that (4:5; 10; 3:5) =2 SW consider any distribution

matrix � =

 
�111 �121

�211 �221

!
. By de�nition, 8 = v21 � �211 � r11 = 4: Assume �rst that

�211 = 4: Then, the optimal assignment A =

 
1 1

3 0

!
is itself SW�compatible with

C = fb2g and u2 = 10 < (v21��211) �A211+(v22��221) �A221 = 4 � 3+ (v22��221) � 0 = 12:
Hence, C = fb2g SW�blocks (4:5; 10; 3:5): Assume now that �211 > 4: Then, consider

the assignment bA =  2 0

2 0

!
which is SW�compatible with C = fb1; s1g and note that

7The same inclusion relationships hold in the time-sharing assignment games considered by Sotomayor

(2009 and 2011).
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u1+w1 = 8 < � 111 � bA111+(�211�r11) � bA211 = 4 �2+(�211�4) �2; where the inequality follows
from �211 > 4: Hence, C = fb1; s1g SW�blocks (4:5; 10; 3:5). Thus (4:5; 10; 3:5) =2 SW.
We want to emphasize again, at the light of the example, that the notions of Set-wise

stability is more natural than Core. When seller 1, as member of the coalition fb1; s1g
Core-blocks (4:5; 10; 3:5) has to stop selling 3 units of good one to b2; while when fb1; s1g
SW�blocks (4:5; 10; 3:5), s1 can keep selling 2 units of good one to b2: �

Our second limit result states that, for every market M = (B;G;S; V; d; R;Q), the
sequence of Cores of the �M markets converges, when � ! 1, to the set of competitive
equilibrium payo¤s of the replicated market. To state it we need the following lemma saying

that the classical result stating that any payo¤ vector in the Core of a replicated market

assigns the same payo¤ to all agents of the same type also holds in this setting.8

Lemma 1 Let M = (B;G;S; V; d; R;Q) be a market and let � � 2: Then,

Co�M � f(u�; w�) � ((u;w); :::; (u;w)| {z }
��times

) 2 (RB1 � RS1)� :::� (RB� � RS�) j (u;w) 2 CoMg:

Proof See the Appendix.

With some abuse of the language we will say that a payo¤ vector (u;w) 2 RB � RS is
in the Core of the ��replicated market if (u�; w�) 2 Co�M .

Theorem 2 Let (u;w) 2 RB�RS be a payo¤ of market M = (B;G;S; V; d; R;Q). Then,
(u;w) is in the Core of the ��fold replicated market for all � � 1 if and only if (u;w) is a
competitive equilibrium payo¤ of market M .

Lemma 1 says that for any replica � the payo¤ vectors in the Core of market �M have

the equal treatment property. Theorem 2 says that the payo¤ vector that belongs to the

Core of all replicated markets are those obtained by replicating competitive equilibrium

payo¤s of the original market. With an abuse of notation, Theorem 2 says that for any

market M;
1T
�=1

Co�M = CEM : Moreover, the convergence is monotonically decreasing: if

(u�; w�) 2 Co�M then (u�+1; w�+1) 2 Co(�+1)M ; since any coalition blocking (u�; w�) should
also block (u�+1; w�+1):

Theorem 2 can be proved by adapting Owen (1975)�s proof of the convergence of the Core

to the set of competitive equilibrium payo¤s for linear programming games, and therefore

8See Debreu and Scarf (1963) and Owen (1975) for this equal treatment result in classical economies

with production and in linear production games, respectively.
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we omit it.9

To illustrate the two di¤erent blocking notions we return to Example 1.

Example 1 (continued) We have already showed that (u1; u2; w1) = (113 ; 5;
28
3
) 2 SWnCE .

Hence, by Theorem 1, ((11
3
; 5; 28

3
); (11

3
; 5; 28

3
)) =2 SW2M . We have already illustrated that

coalition C = fb11 ; b12 ; s11g SW�blocks it for a particular distribution matrix �: To illus-
trate now the notion of Core in a two-fold replicated market, consider again the coalition

C = fb11 ; b12 ; s11g that SW�blocks ((113 ; 5;
28
3
); (11

3
; 5; 28

3
)) =2 SW2M , and whose value is

v(C) = 16. Since, u11+u12+w11 = 50
3
; C does not Core-blocks ((11

3
; 5; 28

3
); (11

3
; 5; 28

3
)): By The-

orem 1, and since (11
3
; 5; 28

3
) =2 CE we already know that for any distribution matrix one can

�nd a coalition and a SW�compatible assignment that SW�blocks ((11
3
; 5; 28

3
); (11

3
; 5; 28

3
)):

The fact that this is not an easy task illustrates the power of Theorem 1 because to show

that (11
3
; 5; 28

3
) =2 CE was very easy. �

Theorem 3 shows that a result similar to Theorem 1 does not hold for the Core. For

each number � of replicas there exists a marketM = (B;G;S; V; d; R;Q) for which the Core
of the ��fold replicated market contains a payo¤ that is not a competitive equilibrium
payo¤.

Theorem 3 Let � 2 Z+nf0g. Then, there exist a market M = (B;G;S; V; d; R;Q) and a
payo¤ vector (u;w) =2 CE such that (u�; w�) 2 Co�M .

Proof See the Appendix. �

5 Concluding Remarks

The convergence of the Core to competitive equilibria is a pervasive phenomenon that

holds in many settings. Our Theorem 2 is a new result along these lines. The convergence

in most of these results is only asymptotic. Owen (1975) is one of the few exceptions

where the convergence is �nite. Our main contribution, Theorem 1, is that for generalized

assignment games the convergence of Set-wise stable payo¤s to competitive equilibria only

requires two replica. Since Set-wise stability is a more appropriate notion in this context,

our result suggests that all outcomes that are robust to coalitional deviations in the sense

of Set-wise stability can be obtained as competitive equilibrium outcomes, even in markets

with a small number of agents. Therefore, in relatively small markets with indivisibilities

9The interested reader can �nd a detailed proof of Theorem 2 in the authors�websites.
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similar to generalized assignment games (for instance, markets for intermediate goods),

competitive outcomes are those that are immune to secession by subsets of agents, since

they will coincide with the of Set-wise stable outcomes. We think that this result may be

important for future research studying markets (or general allocation problems) in which

agents may simultaneously be interacting with other agents in di¤erent ways and hence,

the convergence of the Set-wise stable set would be the relevant one to evaluate how robust

is the principle that competitive equilibrium outcomes coincide with the set of outcomes

that are immune to coalitional deviations.

We leave for future research two open problems. First, the analysis of agents�strategic

behavior in small markets when agents recognize their market power and consequently they

may not take prices as given. Second, the analysis of an intermediate cooperative notion,10

in which a member of a blocking coalition can either keep all agreements with a non-member

or break all of them; this set would be a subset of the Core and contain the Set-wise stable

set, but we do not know whether its convergence to competitive equilibria would be like

the Core (in�nite) or like Set-wise stability (�nite).
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Appendix: Preliminaries and Omitted Proofs
We start with some preliminaries. Let M = (B;G;S; V; d; R;Q) be a market and C be a
coalition. Consider the primal linear problem to which any optimal assignment AC 2 FC is

a solution.

(PLP)C: max
(Aijk)(i;j;k)2BC�GC�SC2R#B

C�#GC�#SC

P
(i;j;k)2BC�GC�SC

� ijk � Aijk

s. t. (P.1)
P

(j;k)2GC�SC
Aijk � di for all i 2 BC;

(P.2)
P
i2BC

Aijk � qjk for all (j; k) 2 GC � SC;

(P.3) Aijk � 0 for all (i; j; k) 2 BC � GC � SC:

The dual linear problem associated to (PLP)C is the following.

(DLP)C: min
(
C ;�C)2R#BC�R#GC�#SC

P
i2BC di � 
Ci +

P
(j;k)2GC�SC qjk � �Cjk

s. t. (D.1) 
Ci + �
C
jk � � ijk for all (i; j; k) 2 BC � GC � SC;

(D.2) 
Ci � 0 for all i 2 BC;
(D.3) �Cjk � 0 for all (j; k) 2 GC � SC:

Let DC be the set of all solutions of the (DLP)C: It is well-known that DC is non-empty.

We will denote the set DB[S by D and (
B[S ; �B[S) by (
; �) 2 D. Then, it is immediate
to check that the following implication holds.

If (
; �) 2 D then ((
i)i2BC ; (�jk)(j;k)2GC�SC) 2 DC: (A.1)

Let M = (B;G;S; V; d; R;Q) be a market and (
; �) be a vector satisfying (D.1), (D.2),
and (D.3) for C = B[S. We write TDM(
; �) to denote the value of the objective function

of the (DLP)B[S at (
; �); that is,

TDM (
; �) =
P

i di � 
i +
P

jk qjk � �jk:
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The Strong Duality Theorem (SDT) of Linear Programming applied to our setting says the

following (see Dantzig, 1963).

Strong Duality Theorem Let M = (B;G;S; V; d; R;Q) be a market and assume A is
a feasible assignment and (
; �) satis�es (D.1), (D.2), and (D.3) for C = B [ S. Then,

A 2 F and (
; �) 2 D if and only if TM(A) = TDM(
; �): (A.2)

Proposition 1 Let p 2 P be a competitive equilibrium price vector of market M =

(B;G;S; V; d; R;Q). Then, (u(p); w(p)) 2 SW.

Proof Let p 2 P and assume (u(p); w(p)) =2 SW. Then, for every distribution matrix
� = (�ijk)(i;j;k)2B�G�S there exists a coalition C � B [ S that SW�blocks it. Hence, there
exists a feasible assignment bA that is SW�compatible with C such thatP

i2BC
ui(p) +

P
k2SC

wk(p) < �
M(C; bA;�):

In particular, consider the distribution matrix � = (�ijk)(i;j;k)2B�G�S where for each (i; j; k) 2
B�G�S, �ijk = pj. Then, there must exist a feasible assignment bA that is SW�compatible
with C such that11 P

i2BC
ui(p) +

P
k2SC

wk(p) < �
M(C; bA; p): (A.3)

Now, de�ne the feasible assignment A as follows: for each (i; j; k) 2 B � G � S,

Aijk =

(
0 if either fi; kg � C or fi; kg � CcbAijk otherwise,

where Cc is the complement of C. De�ne a new market M =
�
B;S;G; V; d; R;Q

�
; where

the new vector of maximal demands d is de�ned by setting

di = di �
P

(j;k)2G�S
Aijk

for all i 2 B, and the new matrix of capacities Q is de�ned by setting

qjk = qjk �
P
i2B
Aijk

for all (j; k) 2 G � S. Note that if i 2 C then, di = di �
P

(j;k)2G�(SC)c
bAijk and if k 2 C

then, qjk = qjk �
P

i2(BC)c
bAijk for all j 2 G:

11�M (C; bA; p) is obtained from �M (C; bA;�) by replacing �ijk by pj for all (i; j; k) 2 B �G� S:
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By (9), P
i2BC

ui(p) +
P
k2SC

wk(p) =
P
i2BC

di � 
i(p) +
P

(j;k)2G�SC
qjk � �jk(p);

and note that P
i2BC

di � 
i(p) =
P
i2BC

di � 
i(p) +
P
i2BC

(
P

(j;k)2G�S
Aijk) � 
i(p)

=
P
i2BC

di � 
i(p) +
P
i2BC

(
P
j2G

P
k2(SC)c

bAijk) � 
i(p)
and for each j 2 G,P

k2SC
qjk � �jk(p) =

P
k2SC

qjk � �jk(p) +
P
k2SC

(
P
i2B
Aijk) � �jk(p)

=
P
k2SC

qjk � �jk(p) +
P
k2SC

(
P

i2(BC)c
bAijk) � �jk(p):

Hence,

P
i2BC

ui(p) +
P
k2SC

wk(p) =
P
i2BC

di � 
i(p) +
P
i2BC

(
P
j2G

P
k2(SC)c

bAijk) � 
i(p)
+
P
k2SC

P
j2G
qjk � �jk(p) +

P
k2SC

P
j2G
(
P

i2(BC)c
bAijk) � �jk(p): (A.4)

By (7), for every i 2 B and j 2 G,


i(p) � vij � pj: (A.5)

Moreover, by (8), for every (j; k) 2 G � S;

�jk(p) � pj � rjk: (A.6)

By (A.3) and (A.4)

P
(i;j;k)2BC�G�SC

� ijk � bAijk + P
(i;j;k)2BC�G�(SC)c

(vij � pj) � bAijk+P
(i;j;k)2(BC)c�G�SC

(pj � rjk) � bAijk > P
i2BC

di � 
i(p) +
P
i2BC

(
P
j2G

P
k2(SC)c

bAijk) � 
i(p)
+
P
k2SC

P
j2G
qjk � �jk(p) +

P
k2SC

P
j2G
(
P

i2(BC)c
bAijk) � �jk(p): (A.7)
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By (A.5), P
i2BC

(
P
j2G

P
k2(SC)c

bAijk) � 
i(p) � P
(i;j;k)2BC�G�(SC)c

(vij � pj) � bAijk:
Hence, by (A.7),P

(i;j;k)2BC�G�SC
� ijk � bAijk + P

(i;j;k)2(BC)c�G�SC
(pj � rjk) � bAijk >P

i2BC
di � 
i(p) +

P
k2SC

P
j2G
qjk � �jk(p)

+
P
k2SC

P
j2G
(
P

i2(BC)c
bAijk) � �jk(p): (A.8)

By (A.6), P
k2SC

P
j2G
(
P

i2(BC)c
bAijk) � �jk(p) � P

(i;j;k)2(BC)c�G�SC
(pj � rjk) � bAijk:

Hence, by (A.8), P
(i;j;k)2BC�G�SC

� ijk � bAijk > P
i2BC

di � 
i(p) +
P
k2SC

P
j2G
qjk � �jk(p): (A.9)

Observe that since bA is a feasible assignment,
vM(C) �

P
(i;j;k)2BC�G�SC

� ijk � bAijk;
where vM(C) = TM(AC) for any optimal assignmentAC of marketM . Since (
(p); �(p)) 2 D
then by (A.1), (
C(p); �C(p)) 2 DC for market M . Hence, by the Strong Duality Theorem,P

i2BC
di � 
i(p) +

P
k2SC

P
j2G
qjk � �jk(p) = vM(C);

contradicting (A.9). �

Lemmas 1 to 6 below will be used to prove Theorem 1.

Lemma 1 Let M = (B;G;S; V; d; R;Q) be a market and let � � 2: Then

Co�M � f(u�; w�) � ((u;w); :::; (u;w)| {z }
��times

) 2 (RB1 � RS1)� :::� (RB� � RS�) j (u;w) 2 CoMg:

Proof Let ((bui1 ; :::; bui�)i2B; ( bwk1 ; :::; bwk�)k2S) 2 Co�M : For every � = 1; :::; �,X
i�2B�

bui� + X
k�2S�

bwk� � v(B� [ S�)
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must hold; otherwise, any coalition C = B� [ S� would Core�block (bu; bw). Since for every
� = 1; :::; �; v(B� [ S�) = v(B [ S);X

i�2B�

bui� + X
k�2S�

bwk� � v(B [ S) (A.10)

must hold for every � = 1; :::; �: Let A be an optimal assignment for market M: De�ne the

assignment A� for market �M as follows. For any (i�; j; k�) 2 (B1[:::[B�)�G�(S1[:::[S�)
set

A�i�jk� =

(
Aijk if � = �

0 otherwise.

Then, it is easy to show that A� is an optimal assignment for market �M and T �M(A�) =

�TM(A): Since, by its de�nition, v(B [ S) = TM(A); (A.10) implies

�P
�=1

� P
i�2B�

bui� + P
k�2S�

bwk�� � �v(B [ S) = �TM(A) = T �M(A�):
Hence, since A� is an optimal assignment for market �M;

�P
�=1

� P
i�2B�

bui� + P
k�2S�

bwk�� = T �M(A�):
Thus,

�P
�=1

� P
i�2B�

bui� + P
k�2S�

bwk�� = �v(B [ S):
By (A.10), P

i�2B�
bui� + P

k�2S�
bwk� = v(B [ S)

must hold for every � = 1; :::; �: Assume that there exists a buyer type {̂ 2 B and two
replicas � and �0 such that bu{̂� > bu{̂�0 :
Then, the coalition C = [(B� [ S�)nf{̂�g] [ f{̂�0g Core�blocks (bu; bw) because

v(C) = v(B [ S) >
P

i�2B�nf{̂�g
bui� + bu{̂�0 + P

k�2S�
bwk� :

Similarly for any seller type bk 2 S. Thus, ((bui1 ; :::; bui�)i2B; ( bwk1 ; :::; bwk�)k2S) = (u�; w�) for
some payo¤ vector (u;w) 2 RB �RS of market M . To obtain a contradiction, assume that
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(u;w) =2 CoM . Then, there exists a coalition C that Core�blocks (u;w): But then, C also
Core�blocks (bu; bw), a contradiction with (bu; bw) 2 Co�M . �

Lemma 2 Let M = (B;G;S; V; d; R;Q) be a market and let � � 2: Then

SW�M � f(u�; w�) � ((u;w); :::; (u;w)| {z }
��times

) 2 (RB1�RS1)� :::� (RB��RS�) j (u;w) 2 SWMg:

Proof Let (bu; bw) � ((bui1 ; :::; bui�)i2B; ( bwk1 ; :::; bwk�)k2S) 2 SW�M : First, observe that for

all � = 1; :::; �, ((bui�)i2B; ( bwk�)k2S) 2 SWM : By Remark 3, ((bui�)i2B; ( bwk�)k2S) 2 CoM : By
Lemma 1, for all �; �0 = 1; :::; �; bui� = bui�0 for all i 2 B and bwk� = bwk�0 for all k 2 S: �

Lemma 3 Let M = (B;G;S; V; d; R;Q) be a market and let (u;w) 2 SW. Then, there
exists a distribution matrix � = (�ijk)(i;j;k)2B�G�S such that for any optimal assignment A,

and for every i 2 B and k 2 S;

ui =
P

(j;k)2G�S
(vij � �ijk) � Aijk

and

wk =
P

(i;j)2B�G
(�ijk � rjk) � Aijk:

Proof Assume (u;w) 2 SW. By the de�nition of set-wise stability, there exists a distri-
bution matrix � = (�ijk)(i;j;k)2B�G�S such that for any coalition C � B [S and any feasible
assignment bA that is SW�compatible with C, we have thatP

i2BC
ui +

P
k2SC

wi � �M(C; bA;�): (A.11)

Let A be any optimal assignment and consider either C = fig or C = fkg. Observe that A
itself is SW�compatible with C: Then, by (A.11),

ui �
P

(j;k)2G�S
(vij � �ijk) � Aijk for every i 2 B

and

wk �
P

(i;j)2B�G
(�ijk � rjk) � Aijk for every k 2 S:

SinceP
i2B

P
(j;k)2G�S

(vij � �ijk)�Aijk+
P
k2S

P
(i;j)2B�G

(�ijk � rjk)�Aijk =
P

(i;j;k)2B�G�S
� ijk �Aijk = TM(A)
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and

TM(A) =
P
i2B
ui +

P
k2S

wk;

the statement of Lemma 3 follows. �

Lemma 4 Let M = (B;G;S; V; d; R;Q) be a market. Let (u;w) 2 SW and � =

(�ijk)(i;j;k)2B�G�S be a distribution matrix such that for any coalition C � B [ S and any
feasible assignment bA that is SW�compatible with C; we have thatP

i2BC
ui +

P
k2SC

wk � �M(C; bA;�): (A.12)

Let A be an optimal assignment for market M and let i0; i00; j0; k0; k00 be such that i0 6= i00;
k0 6= k00 and Ai0j0k0 6= 0 6= Ai00j0k00 : Then, �i0j0k0 = �i00j0k00 :

Proof Assume otherwise; for instance, �i0j0k0 > �i00j0k00 : If �i00j0k00 > �i0j0k0 ; then replace

in the argument that follows the roles of i0 by i00 and k00 by k0. Consider the coalition

C = fi0; k00g: From A we de�ne the assignment bA SW�compatible with C by decreasing
in 1 unit the exchanges between i0 and k0 and between i00 and k00 and by simultaneously

increasing in 1 unit the exchange between i0 and k00: Namely, for every (i; j; k) 2 B�G�S,
de�ne

bAijk =
8>>><>>>:
Aijk � 1 if i = i0; j = j0 and k = k0

Aijk � 1 if i = i00; j = j0 and k = k00

Aijk + 1 if i = i0; j = j0 and k = k00

Aijk otherwise.

Observe that since by assumption Ai0j0k0 6= 0 6= Ai00j0k00 ; i0 6= i00; and k0 6= k00, bA is a feasible
assignment. Moreover, bA is SW�compatible with C = fi0; k00g. De�ne

bui0 = P
(j;k)2G�S

(vi0j � �i0jk) � bAi0jk
and bwk00 = P

(i;j)2B�G
(�ijk00 � rjk00) � bAijk00 :
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By Lemma 3 and the de�nition of bA,
ui0 + wk00 � (bui0 + bwk00) = (vi0j0 � �i0j0k0) � Ai0j0k0 + (vi0j0 � �i0j0k00) � Ai0j0k00

+(�i0j0k00 � rj0k00) � Ai0j0k00 + (�i00j0k00 � rj0k00) � Ai00j0k00
�(vi0j0 � �i0j0k0) � bAi0j0k0 � (vi0j0 � �i0j0k00) � bAi0j0k00
�(�i0j0k00 � rj0k00) � bAi0j0k00 � (�i00j0k00 � rj0k00) � bAi00j0k00

= (vi0j0 � �i0j0k0)� (vi0j0 � �i0j0k00)
�(�i0j0k00 � rj0k00) + (�i00j0k00 � rj0k00)

= ��i0j0k0 + �i00j0k00 :

Since by assumption �i0j0k0 > �i00j0k00 ; we have that ui0 + wk00 < bui0 + bwk00 ; a contradiction
with (A.12). �

Lemma 5 Let M = (B;G;S; V; d; R;Q) be a market and let ((u;w); (u;w)) 2 SW2M :

Then, there exists a competitive equilibrium price p = (p1; :::; pG); with pj � minfrjk j k 2 S
such that qjk > 0g for all j 2 G; such that for any coalition C � B [ S and any feasible
assignment bA that is SW�compatible with C; we have that:P

i2BC
ui +

P
k2SC

wk � �M(C; bA; p):
Proof Assume that ((u;w); (u;w)) 2 SW2M . Then, there exists a distribution matrix

� = (�ijk)(i;j;k)2B1[B2�G�S1[S2 such that for any a coalition C � B1 [ B2 [ S1 [ S2; and any
feasible assignment bA that is SW�compatible with C; we have thatP

i�2C
ui� +

P
k�2C

wk� � �2M(C; bA;�): (A.13)

To proceed with the proof we de�ne a price vector p = (pj)j2G 2 RG+ as follows. Consider
�rst any j 2 G for which there exist i 2 B and k 2 S such that Aijk 6= 0 for some optimal
assignment A for market M . Then, de�ne pj = �i1jk1 : Second, for any j 2 G such that
for all optimal assignments A for market M and all i 2 B and k 2 S, Aijk = 0, de�ne

pj = minfrjk j k 2 S is such that qjk > 0g:
We will show that p is well-de�ned. Let A 2 F be any optimal assignment of marketM

such that Aij0k 6= 0 6= Ai0j0k0 for some i; i0 2 B, j0 2 G and k; k0 2 S; where i and i0, as well
as k and k0, may be the same agent. We have to show that �i1j0k1 = �i01j0k01. By applying

Lemma 4 twice, �i1j0k1 = �i2j0k2 = �i01j0k01 : Thus, p is well de�ned.

Observe that for any optimal assignment A of marketM; the price vector p = (p1; :::; pG)

satis�es that for every coalition C � B [ S and every feasible assignment bA that is
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SW�compatible with C we have that:P
i2BC

ui +
P
k2SC

wk � �M(C; bA; p): (A.14)

We shall show that (p;A) is a competitive equilibrium of M by showing that the equi-

librium conditions (E.D) and (E.S) are satis�ed.

(E.D) For each buyer i 2 B; A(i) 2 Di (p) :

Since A 2 F ; (D.a) and (D.b) hold.
(D.c): r>

i (p) 6= ; =)
P

jk A(i)jk = di:

Assume r>
i0 (p) 6= ;; i.e., there exists j0 2 G such that vi0j0�pj0 = maxj2Gfvi0j�pjg > 0:

Assume that X
jk

Ai0jk < di0 : (A.15)

Without loss of generality suppose that i0 belongs to the �rst replica; i.e., i0 = i1. Consider

�rst the case where there are i2 2 B2 and k2 2 S2 with the property that Ai2j0k2 6= 0.

Consider the coalition C = fi1; k2g and its SW�compatible assignment bA where, for all

(i; j; k) 2 B � G � S,

bAijk =
8><>:
Aijk + 1 if i = i1; j = j0 and k = k2
Aijk � 1 if i = i2; j = j0 and k = k2
Aijk otherwise.

By (A.15) and Ai2j0k2 6= 0, bA is a feasible assignment and SW�compatible with coalition
fi1; k2g. Then, de�ne bui1 and bwk2 as the payo¤s of buyer i1 and seller k2 at assignment bA,
respectively. Then, by de�nition of bA,

ui1 + wk2 � (bui1 + bwk2) = (vi1j0 � �i1j0k2) � Ai1j0k2
+(�i1j0k2 � rj0k2) � Ai1j0k2 + (�i2j0k2 � rj0k2) � Ai2j0k2
�(vi1j0 � �i1j0k2) � bAi1j0k2
�(�i1j0k2 � rj0k2) � bAi1j0k2 � (�i2j0k2 � rj0k2) � bAi2j0k2
= �(vi1j0 � �i1j0k2)� (�i1j0k2 � rj0k2) + (�i2j0k2 � rj0k2)
= �vi1j0 + �i2j0k2 :

By Lemma 4 and the de�nition of p0j, �i2j0k2 = �i1j0k1 = pj0 and Ai2j0k2 = Ai1j0k1 6= 0. By
(A.14), 0 � vi1j0 � pj0 ; which is a contradiction with j0 2 r>

i1
(p):

Assume now that for all i00 2 B1 [ B2 and all k00 2 S1 [ S2, Ai00j0k00 = 0. By de�nition,
pj0 = minfrj0k j k is such that qj0k > 0g: Let k� 2 S1 [ S2 be such that qj0k� > 0.
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Consider the coalition C = fi1; k�g and its SW�compatible assignment bA where, for all

(i; j; k) 2 (B1 [ B2)� G � (S1 [ S2)

bAijk = ( Aijk + 1 if i = i1; j = j0 and k = k�

Aijk otherwise.

By (A.15) and qj0k� > 0, bA is a feasible assignment. Then, as before,
ui1 + wk� � (bui1 + bwk�) = (vi1j0 � �i1j0k�) � Ai1j0k� + (�i1j0k� � rj0k�) � Ai1j0k�

�(vi1j0 � �i1j0k�) � bAi1j0k� � (�i1j0k� � rj0k�) � bAi1j0k�
= �(vi1j0 � �i1j0k�)� (�i1j0k� � rj0k�)
= �vi1j0 + rj0k� :

By (A.14), vi1j0 � rj0k� for every i1; which implies that vi1j0 � pj0 contradicting that

j0 2 r>
i1
(p):

(D.d):
P

k A(i)jk > 0 =) j 2 r�
i (p):

Assume otherwise; i.e., there exist i0; j0; k0 such that Ai0j0k0 6= 0 and j0 =2 r�
i0 (p): We

distinguish between the following two cases.

Case 1: vi0j0 � pj0 < 0: Consider the coalition C = fi0g and its compatible assignment bA
where bAijk = ( 0 if i = i0; j = j0 and k = k0

Aijk otherwise.

De�ne bui0 as the utility of buyer i0 at assignment bA: Then, it is immediate to see that
ui0 < bui0 ; contradicting (A.14).
Case 2: There exists j00 2 r�

i0 (p) such that

(vi0j00 � pj00) > (vi0j0 � pj0) � 0: (A.16)

Note that Ai0j0k0 6= 0: Assume �rst that there exist i00 2 B and k00 2 S such that Ai00j00k00 6= 0:
Consider now the market 2M; (i0; k0) 2 B1�S1, (i00; k00) 2 B2�S2; the coalition C = fi0; k00g
and its SW�compatible assignment bA where, for all (i; j; k) 2 B1 [ B2 � G � S1 [ S2,

bAijk =
8>>><>>>:
Aijk � 1 if i = i0; j = j0 and k = k0

Aijk � 1 if i = i00; j = j00 and k = k00

Aijk + 1 if i = i0; j = j00 and k = k00

Aijk otherwise.
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Then, de�ne bui0 and bwk00 as the payo¤s of buyer i0 and seller k00 at assignment bA, respectively.
Then, by de�nition of bA,
ui0 + wk00 � (bui0 + bwk00) = (vi0j0 � �i0j0k0) � Ai0j0k0 + (vi0j00 � �i0j00k00) � Ai0j00k00

+(�i0j00k00 � rj00k00) � Ai0j00k00 + (�i00j00k00 � rj00k00) � Ai00j00k00
�(vi0j0 � �i0j0k0) � bAi0j0k0 � (vi0j00 � �i0j00k00) � bAi0j00k00
�(�i0j00k00 � rj00k00) � bAi0j00k00 � (�i00j00k00 � rj00k00) � bAi00j00k00

= (vi0j0 � �i0j0k0)� (vi0j00 � �i0j00k00)� (�i0j00k00 � rj00k00) + (�i00j00k00 � rj00k00)
= vi0j0 � �i0j0k0 � vi0j00 + �i0j00k00 � �i0j00k00 + rj00k00 + �i00j00k00 � rj00k00
= vi0j0 � �i0j0k0 � (vi0j00 � �i00j00k00):

By the de�nition of pj0 and pj00, �i0j0k0 = pj0 and �i00j00k00 = pj00 ; and by (A.16), ui0 + wk00 �
(bui0 + bwk00) = vi0j0 � pj0 � vi0j00 + pj00 < 0, a contradiction with (A.14). Assume now that for
all i00 2 B1 [ B2 and all k00 2 S1 [ S2, Ai00j00k00 = 0: Let k� 2 S1 [ S2 be such that qj00k� > 0:
By (1), such k� does exist. Consider the coalition C = fi0; k�g and its SW�compatible
assignment bA where, for all (i; j; k) 2 B � G � S,

bAijk =
8><>:
Aijk � 1 if i = i0; j = j0 and k = k0

1 if i = i0; j = j00 and k = k�

Aijk otherwise.

Then, proceeding as before, de�ne bui0 and bwk� as the payo¤s of buyer i0 and seller k� at
assignment bA, respectively. Then, by de�nition of bA,

ui0 + wk� � (bui0 + bwk�) = (vi0j0 � �i0j0k0) � Ai0j0k0 � (vi0j0 � �i0j0k0) � bAi0j0k0
�(vi0j00 � �i0j00k�) � bAi0j00k� � (�i0j00k� � rj00k�) � bAi0j00k�

= (vi0j0 � �i0j0k0)� (vi0j00 � �i0j00k�)� (�i0j00k� � rj00k�)
= vi0j0 � �i0j0k0 � (vi0j00 � rj00k�):

By the de�nition of pj0, �i0j0k0 = pj0 : By (A.14), vi0j0�pj0 � vi0j00�rj00k� for every k�: Because
pj � mink(rjk); we have that vi0j0 � pj0 � vi0j00 � pj00 ; a contradiction with (A.16).
(E.S) For each good j 2 G and each seller k 2 S;

P
iAijk 2 Sjk (pj) :

Fix j0 2 G and k0 2 S. Assume �rst that pj0 < rj0k0 : We want to show that
P

iAij0k0 =

0: Suppose that Ai0j0k0 6= 0: Consider the coalition C = fk0g and its SW�compatible
assignment bA where, for every (i; j; k) 2 B � G � S,

bAijk = ( 0 if i = i0; j = j0 and k = k0

Aijk otherwise.
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De�ne bwk0 as the utility of seller k0 at assignment bA: Then, it is immediate to see that
wk0 < bwk0 ; contradicting (A.14).
Assume now that pj0 = rj0k0 :We want to show that 0 �

P
iAij0k0 � qj0k0 : But this holds

because A is a feasible assignment.

Finally, assume that pj0 > rj0k0 : We want to show that
P

iAij0k0 = qj0k0 : AssumeP
iAij0k0 < qj0k0 : Hence,

qj0k0 > 0: (A.17)

Consider �rst the case where there exist i0 2 B1[B2 and k00 2 S1[S2 such that Ai0j0k00 6= 0:
Consider now the coalition C = fi0; k0g and its SW�compatible assignment bA where, for
all (i; j; k) 2 B � G � S,

bAijk =
8><>:
Aijk � 1 if i = i0; j = j0 and k = k00

Aijk + 1 if i = i0; j = j0 and k = k0

Aijk otherwise.

Then, de�ne bui0 and bwk0 as the payo¤s of buyer i0 and seller k0 at assignment bA, respectively.
Then, by de�nition of bA,

ui0 + wk0 � (bui0 + bwk0) = (vi0j0 � �i0j0k00) � Ai0j0k00 + (vi0j0 � �i0j0k0) � Ai0j0k0
+(�i0j0k0 � rj0k0) � Ai0j0k0
�(vi0j0 � �i0j0k00) � bAi0j0k00 � (vi0j0 � �i0j0k0) � bAi0j0k0
�(�i0j0k0 � rj0k0) � bAi0j0k0

= (vi0j0 � �i0j0k00)� (vi0j0 � �i0j0k0)� (�i0j0k0 � rj0k0)
= ��i0j0k00 + rj0k0 :

By de�nition of pj0 ; �i0j0k00 = pj0 and by assumption pj0 > rj0k0, ui0 + wk0 � (bui0 + bwk0) < 0
contradicts (A.14). Assume now that for all i0 2 B1[B2 and all k00 2 S1[S2, Ai0j0k00 = 0: By
de�nition, pj0 = minfrj0k j k is such that qj0k > 0g: Let k� 2 S1 [ S2 be such that qj0k� > 0
and pj0 = rj0k� : By (1), such k� does exist. By (A.17) and the de�nition of pj0, pj0 � rj0k0,
a contradiction with the initial assumption that pj0 > rj0k0. �

Lemma 6 Let M = (B;G;S; V; d; R;Q) be a market and let (u;w) 2 RB�RS be such that
there exists a competitive equilibrium price vector p such that for every coalition C � B[S
and any feasible assignment bA SW�compatible with C we have thatP

i2BC
ui +

P
k2SC

wk � �M(C; bA; p):
34



Then, (u;w) 2 CE.

Proof Let (u;w) 2 RB�RS be a payo¤ of marketM satisfying the hypothesis of Lemma

6 and let A be any optimal assignment of market M: Consider �rst any coalition C = fig;
where i 2 B: Observe that A is itself SW�compatible with C: Then, by assumption,

ui �
P

(j;k)2G�S
(vij � pj) � Aijk: (A.18)

Consider now any coalition C = fkg, where k 2 S: Observe that again A is itself

SW�compatible with C: Then, by assumption,

wk �
P

(i;j)2B�G
(pj � rjk) � Aijk: (A.19)

Then, P
i2B
ui +

P
k2S

wk = v(B [ S) =
P

(i;j;k)2B�G�S
� ijk � Aijk:

By de�nition of the per unit gains � ijk,P
(i;j;k)2B�G�S

� ijk � Aijk =
P
i2B

P
(j;k)2G�S

(vij � pj) � Aijk +
P
k2S

P
(i;j)2B�G

(pj � rjk) � Aijk:

Hence, (A.18) and (A.19) imply that for every i 2 B and k 2 S,

ui =
P

(j;k)2G�S
(vij � pj) � Aijk

wk =
P

(i;j)2B�G
(pj � rjk) � Aijk;

and consequently, by Lemma 6 in Jaume, Massó, and Neme (2012), for every i 2 B and
k 2 S,

ui = di � 
i(p) � 0
wk =

P
j2G
qjk � �jk(p) � 0:

Thus, (u;w) = (u(p); w(p)) and by (10), (u;w) 2 CE . �

Theorem 1 Let (u;w); (�u; �w) 2 RB+�RS+ be two payo¤ vectors of market M = (B;G;S; V; d; R;Q):
Then,

((u;w); (�u; �w)) 2 SW2M if and only if (u;w) = (�u; �w) 2 CE :
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Proof Let ((u;w); (�u; �w)) 2 SW2M : By Lemma 2, (u;w) = (�u; �w): By Lemma 5, there

exists a competitive equilibrium price vector p = (p1; :::; pG); with pj � minfrjk j k 2 S
such that qjk > 0g for all j 2 G; such that for any coalition C � B [ S; and any feasible
assignment bA that is SW�compatible with C; we have that:P

i2BC
ui +

P
k2SC

wk � �M(C; bA; p):
By Lemma 6, (u;w) 2 CEM :
Assume now that (u;w) 2 CE : Then, ((u;w); (u;w)) 2 CE2M : By Proposition 1, ((u;w); (u;w)) 2

SW2M : �

Theorem 3 Let � 2 Z+nf0g. Then, there exist a market M = (B;G;S; V; d; R;Q) and a
payo¤ vector (u;w) =2 CE such that (u�; w�) 2 Co�M .

Proof Fix � 2 Z+nf0g. De�ne M = (B;G;S; V; d; R;Q) as follows: B = fb1g; S =

fs1; s2g, G = fg1g, v11 = 1, r11 = r12 = 0, d1 = 4�� 1 and q11 = q12 = 2�. It is easy to see
that since the short side of the market is the demand, the unique competitive equilibrium

price is p1 = 0 and CE = f(4�� 1; 0; 0)g. Consider the payo¤ vector (4�� 3; 1; 1) =2 CE :We
show that ((4��3)�; (1; 1)�) 2 Co�M : Let C be a coalition in market �M with #(

�S
�=1

BC�) = �

and #(
�S
�=1

SC�) = �: Thus,

� � � and � � 2�: (A.20)

The value of coalition C is

v(C) =
(
�(4�� 1) if 2� � �
2�� if 2� > �

(A.21)

and P
i2BC

ui +
P
k2SC

wk = �(4�� 3) + �: (A.22)

We want to show that for all � and � satisfying (A.20),P
i2BC

ui +
P
k2SC

wk � v(C): (A.23)

Assume �rst that C is such that 2� � �. Then, by (A.21) and (A.22), (A.23) holds if
and only if �(4�� 3) + � � �(4�� 1) holds, which follows from 2� � �.
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Assume now that C is such that 2� > �. Then, by (A.21) and (A.22), (A.23) holds if
and only if �(4� � 3) + � � 2�� holds. Thus, to show that (A.23) holds is equivalent to

show that

�(4�� 3) � �(2�� 1) (A.24)

holds. By (A.20), the most unfavorable case for which (A.24) holds is when � is larger; i.e.,

� = 2
 � 1. Hence, (A.24) follows if �(4�� 3) � (2� � 1)(2�� 1). But this last inequality
can be written as

4��� 3� � 4��� 2� � 2�+ 1;

which holds because � � � and � � 1 imply 2�� 1 � �. �
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