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Abstract 19 

 20 

In this study, the emissions of Volatile Organic Compounds (VOC), CH4, N2O 21 

and NH3 during composting non-source selected MSW, source selected Organic 22 

Fraction of Municipal Solid Wastes (OFMSW) with wood chips as bulking agent 23 

(OF_wood) and source selected OFMSW with polyethylene (PE) tube as bulking agent 24 

(OF_tube) and the effect of bulking agent on these emissions have been systematically 25 

studied. Emission factors are provided (in kg compound Mg-1 dry matter): OF_tube 26 

(CH4: 0.0185±0.004; N2O: 0.0211±0.005; NH3: 0.612±0.269; VOC: 0.688±0.082) and 27 

MSW (CH4: 0.0549±0.0171; N2O: 0.032±0.015; NH3: 1.00±0.20; VOC: 1.05±0.18) 28 

present lower values than OF_wood (CH4: 1.27±0.09; N2O: 0.021±0.006; NH3: 29 

4.34±2.79; VOC: 0.989±0.249). A detailed composition of VOC is also presented. 30 

Terpenes were the main emitted VOC family in all the wastes studied. Higher emissions 31 

of alpha and beta pinene were found during OF_wood composting processes.  32 

 33 

 34 

Keywords: Composting; Gaseous emissions; VOC; Terpenes, Bulking Agent.  35 

 36 

  37 
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1. Introduction 38 

It is well known that recycling reduces the amount of waste going to disposal 39 

(landfilling), the consumption of natural resources and also improves energy efficiency. 40 

Therefore, recycling plays an essential role towards sustainable consumption and 41 

production (SCP). Accompanying SCP, the recycling sector has increased business with 42 

a current turnover of €24 billion employing about 500,000 people in Europe, distributed 43 

in more than 60,000 companies. The EU represents the densest area in waste and 44 

recycling industries, accounting for around 50% of world share (European Environment 45 

Agency, 2010). At the same time, sustainable management of resources and waste 46 

minimization and valorization has been the common objective of plans, directives and 47 

regulations in recent decades, including Municipal Solid Waste (MSW). According to 48 

this, in recent years, there has been a proliferation, either in Spain or Europe, of new 49 

solid waste treatment plants mainly as a result of Directive 1999/31/EC on the 50 

implementation of the limitation of landfill as final destination for organic wastes. 51 

Biological treatment plants, which allow waste valorization, are recommended as the 52 

main destination for this type of wastes (Commission of the European Community, 53 

2008).  54 

Generation of biodegradable organic residues is increasing worldwide and 55 

strategies for its environmentally sound use are being developed and optimized. 56 

Integrated waste management is considered the key point for a successful MSW 57 

treatment. Waste separation, that increases the quality of by-products (i.e. compost, 58 

digestate and biogas) and recyclables, is a critical component of this system. Integrated 59 

waste management also enables better financing of waste management activities and 60 

minimizes the energy and labor inputs to any downstream processes (Murray, 1999). 61 

European Directive 2008/98/EC points to the recovery of mixed municipal waste 62 
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collected from private households. In order to comply with the objectives of this 63 

Directive, and to move towards an European recycling society with a high level of 64 

resource efficiency, Member States shall take the necessary measures to achieve by 65 

2020 a minimum overall recycling percentage of a 50% by weight of paper, metal, 66 

plastic and glass from households and possibly from other origins (as far as these waste 67 

streams are similar to waste from households) (European Parliament, 2008). As a 68 

consequence of the implementation of all these Directives, by 2013, 19% of total 69 

household wastes are source selected in Spain, being the organic fraction a percentage 70 

of 20%.  71 

As mentioned before, biological treatment plants based on anaerobic digestion 72 

and/or composting processes are being widely constructed. Focusing on the composting 73 

process, the presence of non-organic wastes (impurities) could decrease the compost 74 

quality, affect composting gaseous emissions or increase the investment costs and the 75 

energy demand due to the equipment dedicated to the separation of impurities. Bulking 76 

agents are used to provide air space in composting materials, regulate the water content 77 

or the C/N ratio (Iqbal et al. 2009). These studies show how important is the bulking 78 

agent in the composting process evolution. Gaseous emissions during the composting 79 

process are often related with the porosity of the material being composted, which 80 

depends on the type and amount of bulking agent used. Some authors have related the 81 

emissions of some volatile organic compounds (VOC) to wood wastes used as bulking 82 

agent (Komilis et al. 2004). Recent studies (Yang et al. 2013, Shao et al. 2014) have 83 

investigated the effect of several bulking agents on gaseous emissions in composting 84 

processes of organic wastes. Yang et al. (2013) have studied emissions of CH4, N2O and 85 

NH3, while Shao et al. (2014) presented an in depth study on odor emissions, mainly 86 

VOC. Both studies pay attention to the composting process evolution and the quality of 87 
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the final product. However, all the experiments have been done with a degradable 88 

bulking agent: cornstalks, rice straw, sawdust, etc. Therefore, the contribution of wood 89 

chips, the bulking agent mostly used nowadays in composting facilities, to VOC 90 

emissions is not described. The presence of plastics, glass and other non-organic wastes 91 

could replace the bulking agent (wood chips) function when mixed MSW are 92 

composted. 93 

The objective of this work is to study the emissions of VOC, CH4, N2O and NH3 94 

during the composting process of MSW and the effect of the bulking agent in these 95 

emissions. With this purpose, three wastes have been composted: non source selected 96 

MSW (high level of impurities), source selected OFMSW (low level of impurities) with 97 

wood chips as bulking agent and source selected OFMSW with polyethylene (PE) tube 98 

as bulking agent since this non-biodegradable material will not contribute to the 99 

emissions of the studied compounds. This study can provide the baseline to distinguish 100 

between the emissions from the waste itself and the bulking agent, an aspect that it is 101 

not clear in composting scientific literature.  102 

 103 

2. Materials and Methods 104 

2.1 Waste composted 105 

The wastes used in the experiments were different types of municipal solid 106 

wastes. Specifically, 100 kg of non-source selected MSW from a waste treatment plant 107 

located in Zaragoza (Spain) were composted as received at the plant (MSW). In the case 108 

of source selected OFMSW two cases were studied: i) OF_wood, 100 kg of material 109 

that were already mixed with wood chips in the plant (ratio 1:1, v:v)  and ii) OF_tube, 110 

100 kg of material that were used as received at the plant. In this case, the OFMSW was 111 

manually mixed with PE tube pieces of 25 mm diameter and 4 to 15 cm long (ratio 1:1, 112 
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v:v). Both OFMSW were obtained from a composting plant in Manresa (Barcelona, 113 

Spain). All the composting experiments with the three wastes considered (MSW, 114 

OF_wood and OF_tube) were carried out with aliquots of 25 kg per reactor and 115 

performed in duplicate.  116 

Air-filled porosity was determined using an air pycnometer according to 117 

previous studies (specific details about the methodology can be found in Ruggieri et al., 118 

2009). The results of air-filled porosity for OF_wood and OF_tube, mixed in the 119 

laboratory, initial MSW (not mixed, the waste collected was composted as collected 120 

from the plant) and final samples for the six trials can be found in Table 1. A 121 

homogeneous sample from each waste and each mixture (waste plus bulking agent) was 122 

stored at -18 ºC to be used for waste characterization. 123 

The main characteristics of the initial wastes and the final products obtained 124 

from each experiment are presented in Table 1. Dry and organic matter, conductivity 125 

and pH have been determined in triplicate following the standard procedures for 126 

composting samples (US Department of Agriculture and US Composting Council, 127 

2001). 128 

 129 

2.2 Composting pilot plant 130 

The results presented in this study were obtained in a pilot scale composting 131 

plant using two near-to-adiabatic non-commercial cylindrical reactors with an operating 132 

volume of 50 L each and forced aeration. A schematic diagram of the pilot reactors and 133 

a detailed description can be found elsewhere (Puyuelo et al., 2010).  134 

Gas samples were collected in 1-L Tedlar® bags for VOC N2O, CH4 and NH3 135 

determination. Also a 250-mL glass gas collector was used for samples taken for VOC 136 
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composition determination. In all cases, one sample per day and per reactor was 137 

withdrawn. 138 

The data acquisition system is a PLC Data Acquisition. It consists of a 139 

microcontroller that interprets the potential changes of the sensors connected to its 140 

inputs in numerical values. It also realizes the reverse function: converting numerical 141 

values into voltage, thereby allowing performing an automatic control. Temperature 142 

(PT100 sensor, Desin Instruments, Barcelona, Spain), exhaust gas oxygen concentration 143 

(Alphasense, A2O2, UK) and inlet airflow (Bronkhorst Hitec, The Netherlands) were 144 

monitored during the experimental trials. According to the values of oxygen 145 

concentration, airflow and temperature, the PLC acts on the flow meter, allowing 146 

airflow from 0.2 to 10 liters per minute. The controller performs roughly 25 readings 147 

per second, sending to the reader a temporal data every second and a real data each 148 

minute. The communication is done by a serial port interface. Data are visualized 149 

through the connection of the PLC data acquisition system to an internal Ethernet 150 

network.  151 

The control strategy used in the experiments has been presented in Puyuelo et al. 152 

(2010). The main objective of this strategy is to obtain an automatic airflow regulation 153 

that maximizes the biological activity in the reactor measured as OUR (Oxygen Uptake 154 

Rate). OUR control permits the optimization of energy consumption during the process 155 

while achieving a high degree of stability in the final product. Briefly, the controller 156 

works in cycles of 1 hour. The designed OUR control loop compares the variations in 157 

the OUR measurements reached among the successive cycles according to the airflow 158 

applied. After completing a cycle, the oxygen level is revised to avoid percentages 159 

below 5 % of oxygen concentration in air (v/v). If the level is below this limit, airflow 160 

will be increased by 50 %. If an adequate oxygen level has been measured, the next step 161 
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will be the control loop based on the OUR measurement and the applied flow 162 

comparison between two consecutive cycles. For both parameters, three situations are 163 

possible, i.e., the system determines if the current value is lower than, higher than or 164 

equal to the previous value. Different absolute thresholds were established to define the 165 

superior and inferior limits in which the variation of OUR and airflow can be 166 

considered negligible. The limit to detect OUR variation was defined as 0.5 % of the 167 

maximum OUR achieved in previous experiments in the reactor (approximately 15 g O2 168 

h-1). The range considered for the airflow measurements was 0.05 L min-1. Considering 169 

the airflow measurements, the controller checks the OUR variation. Next, the controller 170 

determines if the OUR variation obtained is linked to an increase, decrease or a constant 171 

airflow. 172 

 173 

2.3. Stability degree  174 

On the basis of the methodology proposed by Adani et al. (2006) to assess the 175 

degree of biological stability, the dynamic respiration index (DRI) was measured using 176 

a respirometer (Ponsá et al., 2010). Briefly, the determination consists of placing 150 g 177 

of sample in a 500-mL Erlenmeyer flask and incubating the sample in a water bath at 37 178 

ºC. A constant airflow was supplied through the sample, and the oxygen content in the 179 

outgoing gases was measured. From this assay, DRI was determined as the maximum 180 

average value of respiration activity measured during 24 hours, expressed in mg O2 g
-1 181 

OM h-1. A detailed description of this dynamic respirometer can be found at Ponsá et al. 182 

(2010). All the samples were analyzed in triplicate. 183 

 184 
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2.4. Determination of gaseous emissions 185 

VOC, CH4 and N2O analysis was performed by means of gas chromatography 186 

(Agilent Technologies 6890N Network GC system, Madrid, Spain) as explained in 187 

Colón et al. (2012). All samples were analyzed in triplicate for each compound. The 188 

deviation found per each triplicate was lower than 5% for all the compounds except for 189 

VOC that was less than 10%. 190 

Ammonia concentration was measured in situ at the gas outlet of the composting 191 

reactor by means of an ammonia sensor (Industrial Scientific sensor iTX-T82, Oakdale, 192 

PA, USA) with a measurement range of 0 to 1200 ppmv. The sensor was placed inside a 193 

hermetic recipient with inlet and outlet holes that allowed gas circulation. The 194 

measurement was taken when the value was stabilized during a period of constant flow. 195 

Ammonia was measured just before the water trap installed to protect the rest of 196 

measurement devices from moisture avoiding the effect of ammonia solubilization in 197 

the condensate water from the composting process exhaust gases. 198 

 199 

2.5. GC-MS detection 200 

A sample from each process was taken daily in a 250 mL glass gas collector. 201 

VOC characterization was performed using air samples analyzed by SPME (Solid Phase 202 

Micro Extraction)/GC-MS, as previously reported by other authors (Orzi et al., 2010). 203 

A manual SPME device with divinylbenzene 204 

(DVB)/Carboxen/polydimethylsiloxane (PDMS) 50–30 µm fiber from Supelco 205 

(Bellefonte, PA, USA) was used. The compounds were adsorbed from the air samples 206 

by exposing the fiber (preconditioned for 1 h at 270 °C, as suggested by the supplier) to 207 

the sample in the glass gas collector for 30 min at room temperature. A solution of 208 

deuterated p-xylene in methanol was used as internal standard (IS).  209 
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VOC characterization was performed using a Gas Chromatograph (Agilent 210 

5975C) coupled with a 7890 Series GC/MSD. Volatile compounds were separated using 211 

a capillary column for VOC (Agilent Technologies DB-624) measuring 60 m x 0.25 212 

mm with a film thickness of 1.40 µm. Carrier gas was helium at a flow rate of 0.8 mL 213 

min-1. VOC were desorbed by exposing the fiber in the GC injection port for 3 min at 214 

250 °C. A 0.75-mm internal diameter glass liner was used, and the injection port was in 215 

splitless mode. The temperature program was isothermal for 2 min at 50 °C, raised to 216 

170 °C at a rate of 3 °C min-1 and, finally, to 230 ºC at a rate of 8 °C min-1. The transfer 217 

line to the mass spectrometer was maintained at 235 °C. The mass spectra were 218 

obtained by electron ionization at 70 eV, a multiplier voltage of 1379 V and collecting 219 

data over the mass range of 33–300.  220 

Deuterated p-xylene was used to determine the fiber and GC-MS response 221 

factors for 15 typical compounds emitted in composting processes according to the 222 

literature (Scaglia et al., 2011; Suffet et al., 2009). These 15 compounds were diluted in 223 

methanol at the same concentration as deuterated p-xylene. This solution (10 µL) was 224 

injected into the glass gas collector with 10 µL of deuterated p-xylene in methanol 225 

solution. The fiber was exposed for 30 minutes to the resulting solution and injected 226 

into the GC-MS using the same method as described above. The area obtained for each 227 

compound was compared to deuterated p-xylene to determine each response factor. The 228 

aim of determining these response factors is to increase the reliability of the quantitative 229 

analysis. 230 

Compounds were identified by comparing their mass spectra with the mass 231 

spectra contained in the NIST (USA) 98 library. A semi-quantitative analysis for all the 232 

identified compounds was performed by direct comparison with the internal standard. 233 

Quantitative analysis was performed for m-xylene, n-decane, alpha-pinene, beta-pinene, 234 
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limonene, toluene, dimethyl disulfide, hexanal, styrene, cyclohexanone, nonanal, 235 

decanal, eucalyptol, pyridine and 2-pentanone. These compounds have been the most 236 

common VOC found in previous experiments (Maulini-Duran et al., 2013), representing 237 

different VOC families.  238 

 239 

3. Results and Discussion 240 

3.1. Process evolution 241 

As mentioned before, air filled porosity was determined for initial and final 242 

materials of each process. OFMSW was mixed with wood chips (OF_wood) and PE 243 

tube (OF_tube), respectively, until adjusting AFP to adequate values. MSW presented 244 

adequate AFP without addition of bulking agent due to the presence of impurities. 245 

Initial and final AFP values for the three materials are summarized in Table 1. These 246 

values are within the range recommended for an adequate development of the 247 

composting process (Ruggieri et al., 2009). 248 

The evolution of the composting process of the three wastes studied was 249 

followed through OUR, temperature, airflow and oxygen concentration. Similar OUR, 250 

oxygen, temperature and airflow profiles were observed in the duplicates for the same 251 

waste. Figure 1 shows the profiles obtained for all these parameters for one replicate of 252 

each experiment: OFMSW with wood chips as bulking agent (replicate OF_wood-I, 253 

Figure 1a), OFMSW with PE tube as bulking agent (replicate OF_tube-I, Figure 1b) and 254 

MSW (replicate MSW-I, Figure 1c).  255 

The six trials reached thermophilic conditions during the first day of process, 256 

according to the biodegradability of the material. The maximum temperature reached 257 

during OF_wood composting (Figure 1a) was of 68 ºC in both trials. The reactors 258 

needed approximately 17 days to return to mesophilic conditions. The thermophilic 259 
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peak matched with the highest OUR value (21 g O2 h
-1) and therefore the highest 260 

airflow provided (7.5 L min-1).  261 

During OF_tube composting (Figure 1b) the maximum temperature achieved 262 

was 56 ºC, lower than that of OF_wood. In this case the inert bulking agent used was an 263 

empty tube that allowed air passing through the bulking material, thus increasing the air 264 

filled porosity. Indeed, air filled porosity in OF_tube trials was more than 10% higher 265 

than the other wastes composted during the experiments. This higher porosity enhances 266 

heat dissipation, reaching lower temperatures and cooling faster than the other trials, 267 

reaching mesophilic conditions around the 9th day of process. Maximum OUR and 268 

airflow values were 9 g O2 h
-1 and 4.8 L min-1, respectively. 269 

The maximum temperature achieved during the composting process of MSW 270 

was 68ºC (as was in OF_wood composting). The airflow supplied in both MSW trials 271 

was lower than in the other experiments (2.2 L min-1), matching again the highest 272 

airflow and the highest OUR value (10 g O2 h
-1) with the beginning of the thermophilic 273 

phase.  274 

According to the temperature profile and DRI values of the final material 275 

obtained for replicates of each waste composted (Table 1), the composting process 276 

evolution was satisfactory, and the final product was stabilized (Adani et al. ,2006).  277 

 278 

3.2 Gaseous emissions 279 

The daily evolution of VOC, CH4, N2O and NH3 emissions for each waste is 280 

shown in Figure 2. Error bars indicate the differences between the two replicates. In 281 

Table 2, the emission factors for VOC, CH4, N2O and NH3 are also summarized for 282 

each trial in terms of kg of compound emitted per Mg of treated waste.  283 

 284 
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CH4 emissions 285 

Figure 2a presents the evolution of methane emissions during the composting 286 

process of the three waste mixtures. As can be seen in Figure 2a, there is a very 287 

significant difference between CH4 emissions from OF_wood and from the other two 288 

wastes. Methane emissions are related to the presence of anaerobic zones, maybe due to 289 

excessive moisture and insufficient porosity or an inappropriate aeration system strategy 290 

(Amlinger et al., 2008). Carbon is used as an electron acceptor when other more 291 

energetically favorable electron acceptors, including oxygen, nitrogen, iron, manganese 292 

and sulphur, have been exhausted (Brown et al., 2008). Moisture and porosity (Table 1) 293 

were in the optimal ranges in all the experiments. In addition, as observed in Figure 1a 294 

the oxygen content was always over 17% after the first day of process. However the 295 

presence of a high content of rapidly biodegradable organic matter could lead to oxygen 296 

depletion, creating anaerobic areas in the solid matrix. The main methane emission 297 

during OF_wood composting process can be observed from day 6 to day 21 (Figure 2a), 298 

when the microbial activity is decreasing. He et al. (2000) reported that composting 299 

wastes with a high easily biodegradable matter content such as food wastes, could lead 300 

to the formation of anaerobic zones due to compaction effects. Material compaction was 301 

detected at the end of the experiments as the composting reactors were neither opened 302 

nor the material turned for the whole process. However, it cannot be ascertained 303 

whether the compaction occurred at the initial or final stages of the process. On the 304 

other hand, there is a small difference between initial and final porosity. Ruggieri et al. 305 

(2008) stated that changes in air-filled porosity from initial to final samples in the 306 

composting process are not representative of what has been occurring in the reactor 307 

during the process. These authors detected the lowest air-filled porosity values after 48 308 

hours of composting process. In OF_wood composting experiments a 6L reduction 309 
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between initial and final volume of the waste in the reactor was observed thus indicating 310 

compaction even if air-filled porosity values do not show it. Volume reduction for 311 

OF_tube and MSW were 3.4 and 2 L, respectively. Values in Table 2 confirm that CH4 312 

emission factor for the OF-wood processes was higher than the emission of the other 313 

processes.  314 

In fact, lower methane emission during MSW and OF_tube composting 315 

processes (maximum values achieved in days two and five of process and 316 

corresponding to 0.004 kg of CH4 Mg of dry waste -1 for both wastes), may be 317 

explained by the lower compaction effect due to a lower content in biodegradable 318 

organic matter. Also the shorter thermophilic phase observed comparing MSW and 319 

OF_tube with OF_wood could be the explanation of these different emissions. Jiang et 320 

al. (2011) related higher methane emission with long thermophilic phases. 321 

 322 

N2O emissions 323 

N2O emissions evolution is presented in Figure 2b. The main N2O emissions 324 

released during the six composting processes carried out were found during the first 325 

week. There is some controversy in the literature about N2O emissions. El Kader et al. 326 

(2007), composting farm manure, and Yang et al. (2013), composting kitchen waste, 327 

reported the highest N2O emissions during the first week of composting process. 328 

However, Fukumoto et al. (2003) related the inhibition of N2O emissions with 329 

thermophilic temperatures, which occur usually during the first week of the process. 330 

Regarding the different wastes composted in this study, there are no significant 331 

differences between the emissions factors obtained for N2O emissions, as can be 332 

observed in Table 2. Since the type of biodegradable organic matter is the same in the 333 

three wastes maybe the type of bulking agent has no effect in N2O emissions. 334 
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 335 

NH3 emissions 336 

Figure 2c reports ammonia emissions for the different wastes treated. Although also 337 

in the case of ammonia, OF_wood is the waste presenting the highest emissions during 338 

the whole composting process, there is an important deviation in the highest emission 339 

point. However, even the lowest value for OF_wood reported in Table 2 (2.4 kg NH3 340 

Mg-1 dry matter) doubles the highest value presented for the other two wastes 341 

(corresponding to MSW-I, 1 kg NH3 Mg-1 dry matter). Pagans et al. (2006) reported that 342 

NH3 emissions were strongly related with the thermophilic phase of composting. The 343 

trend observed in Figures 1 and 2c during all the trials agrees with this proposal. 344 

 345 

VOC emission  346 

In Figure 2d, total daily VOC emissions produced during the three experiments 347 

are shown. As described by Komilis et al. (2004) the main emission of VOC was 348 

detected during the first days in all the experiments, in the mesophilic to thermophilic 349 

transition. Scaglia et al. (2011) reported that VOC, odor emissions and biological 350 

activity were strongly related. In any composting process high temperatures are caused 351 

by high biological activity. Even when enough aeration is provided to the reactor, these 352 

factors cause some anoxic zones in the matrix that contribute to VOC emissions 353 

(Maulini-Duran et al. 2013). During the OF_wood and MSW composting processes 354 

more VOC have been emitted than during the OF_tube composting process. This could 355 

be related again with the sustained thermophilic phase observed in OF_wood and MSW 356 

processes in comparison with OF_tube. Also, a higher DRI reduction was achieved in 357 

these wastes, reflecting a higher biological activity. Observing Figure 1, DRI reduction 358 

is in agreement with the comparison of OUR profiles, where OF_wood and MSW 359 
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present higher values than OF_tube. Initial OF_wood has a higher DRI than the other 360 

treated wastes, which means a high content of biodegradable organic matter that could 361 

lead to the occurrence of anaerobic zones and the achievement of higher temperatures 362 

during the process. 363 

 364 

Gaseous emissions and process evolution 365 

Traditionally, the composting process can be divided into three stages, 366 

depending on the temperature evolution. The first period begins at day 0 of the 367 

experiment until the thermophilic temperature is reached (45ºC). The second stage 368 

coincides with the thermophilic period (>45ºC) and the third period corresponds to the 369 

return to mesophilic temperatures (<45ºC) (Haug, 1993).370 

No CH4 was emitted during the first period of OF_wood composting process, 86 371 

% in the second period and 14 % in the third period. In OF_tube, CH4 was also emitted 372 

mainly during the second period (74 %), 7% in the first period and 19% third period. 373 

These differences could be caused by the fast OUR increase in OF_wood composting 374 

process and, therefore, a high airflow at the beginning of this process. The percentage 375 

distribution in MSW composting process is very similar than that of OF_tube: 17%, 376 

73% and 10% (1st, 2nd and 3rd period, respectively).  377 

N2O emissions during the first period of OF_wood composting were 2 %, 92% 378 

during the second period and 7 % during the third period. In OF_tube composting N2O 379 

emissions are 8 % in the first period, 83 % during the second period and 9 % during the 380 

third period. N2O emissions detected in MSW composting process were: 14% (1st 381 

period), 84% (2nd period) and 2% (3rd period). N2O emissions for OFMSW and MSW 382 

were lower than raw sludge emissions in the same conditions (Maulini-Duran et al., 383 

2013). For all the processes, the emission is higher during the thermophilic stage in the 384 
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three cases. However, N2O concentration values were close to the detection limit of the 385 

analysis, thus involving higher errors between replicates (Figure 2b). This fact makes 386 

difficult to discard the inhibition of N2O production at thermophilic temperatures.  387 

Similar trends are also detected in NH3 emissions during all the composting 388 

processes carried out. Only 3 % of the NH3 emissions in OF_wood composting process 389 

occurred during the first period, 93 % was emitted during the second period and 4 % 390 

during the third one. In MSW emission percentages distribution was 1% (1st period), 391 

92% (2n period) and 7% (3rd period) while in OF_tube composting, 78% of NH3 was 392 

emitted during the second period and 28% during the third one; no NH3 was emitted 393 

during the first period.  394 

Also VOC emission detected during the composting processes studied follows a 395 

similar distribution during the three established periods for the three wastes. For 396 

OF_wood and MSW, the percentages are exactly the same: 9% in the first period, 90% 397 

during the second period and 1% in the third period. During OF_tube composting 398 

process, 15% of VOC were emitted during the first period, 82% during the second one 399 

and 3 % during the third period.  400 

Analyzing these data, it is clear that gaseous emissions are strongly related with 401 

OUR values and temperature rise and, consequently, with the biological activity of the 402 

process. In a previous work, where raw and anaerobically digested sludge were 403 

composted, the relationship between composting periods and compounds emissions 404 

distribution was not so clear (Maulini-Duran et al., 2013). However, values of OUR, 405 

airflow and temperatures were clearly lower, especially in the case of anaerobically 406 

digested sludge where no thermophilic temperatures were reached. 407 

The trends in VOC, CH4, N2O and NH3 emissions and the emission factors 408 

reported in Table 2, could be of interest for plant designers and operators, particularly, 409 
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to the design of gaseous emissions equipment and to its operation. It is worthwhile to 410 

mention that the deviation found between duplicates is in the low range (three values 411 

out of twelve higher than 40%) when compared to similar studies of composting 412 

emissions of wastes of high heterogeneity (Colón et al., 2012; Maulini-Duran et al., 413 

2013; Maulini-Duran et al., 2014).  414 

On the other hand, although N2O emission factor is the lowest among the 415 

analyzed contaminants, the greenhouse effect of this compound has to be taken into 416 

account. The global warming potential of N2O is 298 kg CO2 eq., higher than the 417 

methane potential (34 kg CO2 eq) (IPCC, 2013). 418 

The use of a synthetic bulking agent points to a reduction in CH4, NH3 and VOC 419 

emissions and to a lower compaction. However, from our results wood chips have some 420 

advantages in front of PE bulking agent, such as moisture adjustment, higher 421 

temperatures, better organic matter stabilization and the fact that another organic waste 422 

is being valorized (pruning waste, shredded pallets…) 423 

 424 

3.3. VOC characterization by SPME/GC-MS  425 

A large number of emitted VOC was identified during the six composting 426 

processes. These compounds have been classified into the following chemical families: 427 

alcohols, esters, furans, ketones, aliphatic hydrocarbons, aromatic hydrocarbons, 428 

aldehydes, halogenated compounds, nitrogen-containing compounds, sulphur-429 

containing compounds and terpenes. The total percentages of each VOC family emitted 430 

are summarized in Table 3 for each composting process. A quantitative analysis has 431 

also been carried out with some specific and typical VOC emitted during a composting 432 

process (Scaglia et al., 2011). In particular, fifteen typical VOC have been identified, 433 
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but only 10 of these compounds have been found in the composting processes studied. 434 

These 10 compounds and their amounts are summarized in Table 4.  435 

As can be seen in Table 3, aldehydes emission was almost zero during all the 436 

composting processes studied. Also halogenated compounds have been only found 437 

during one of the MSW composting processes, in a very low percentage (Table 3). 438 

Avoiding source selecting before composting, batteries and remains of some toxic 439 

products were found in the initial waste. That could be the reason for finding 440 

halogenated compounds in gaseous emissions only during MSW composting process. 441 

Furans and esters were present in gaseous emissions from almost all the 442 

composting trials with similar percentages, all of them around 1% (Table 3). These 443 

compounds were emitted at low concentrations during the whole composting processes. 444 

At the end of the process these percentages rise slightly due to the decrease in the 445 

emission of the other VOC found. No relationship seem to exist between furans and 446 

esters emissions and process evolution suggesting that these compounds were not 447 

generated during the composting process but their emission could be a consequence of 448 

stripping. Some of the esters found are phthalate acid esters that have been used for over 449 

50 years in the manufacture of resins and plastics such as PVC (Clarke and Smith, 450 

2011). This fact could explain why esters emission was higher in MSW composting 451 

processes. 452 

Nitride molecules have been also emitted with similar percentages in all the 453 

trials (Table 3). This family is mainly represented by pyridine, related to putrid odor 454 

(Suffet et al., 2009). Pyridine emissions have been quantified and reflected in Table 4. 455 

The quantity of pyridine emitted is similar in OF_wood and MSW trials, but lower in 456 

OF_tube. 457 
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Percentages of sulphide molecules emitted during MSW and OF_wood 458 

processes are higher than in OF_tube composting process. The same trend is observed 459 

in Table 4, with the main sulphide molecule emitted: dimethyl disulphide. This 460 

compound is the most emitted VOC during MSW and OF_wood composting processes. 461 

Dimethyl disulphide is a strong odorant and its concentration should be kept bellow 462 

odor threshold values to avoid complaints against waste treatment installations. 463 

Dimethyl disulphide was detected in all the samples analyzed during the different 464 

experiments, always over the odor threshold, 0.007 mg m-3 (Environmental Protection 465 

Agency, 2010).  466 

Percentages of aliphatic and aromatic hydrocarbons are clearly higher in MSW 467 

composting process than in OF_wood and OF_tube. The quantitative analysis confirms 468 

this trend with toluene, xylene and decane, present in MSW composting emissions but 469 

not detected during source selected OFMSW composting trials. Styrene, another 470 

aromatic hydrocarbon, has been detected during all the processes with similar 471 

quantities. Styrene emission may be related to the organic fraction itself while the origin 472 

of toluene, xylene and decane is more related with impurities. Aromatic hydrocarbons 473 

are described as indicators of hazardous compounds and odor nuisance sources 474 

(Palmiotto et al., 2014). 475 

Ketones emission could be a consequence of alcohols oxidation, also in other 476 

studies percentages of ketones and alcohols are related (Maulini-Duran et al., 2013). 477 

Alcohols percentage is higher in OF_tube and OF_wood than in MSW composting. The 478 

same trend is observed for ketones. 2-pentanone and various cycloketones are common 479 

in air contaminants. 2-pentanone has been quantified, similar emission factor have been 480 

found in all the experiments carried out. 481 
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Summarizing, predominant VOC families (percentages in emissions over 5%) 482 

and individual compounds for OF_wood were terpenes, alcohols, ketones and sulphide 483 

molecules, with dimethyl disulphide as the main emitted compound. In the case of 484 

OF_tube, terpenes and alcohols dominate in VOC emissions being limonene and 485 

dimethyl disulphide the individual compounds with higher concentration. Finally in 486 

MSW composting, terpenes, aromatic hydrocarbons and aliphatic hydrocarbons 487 

presented the higher percentages while dimethyl disulphide and limonene presented the 488 

highest concentration. 489 

One of the aims of this study was to ascertain the main origin of terpenes in the 490 

composting emissions. Terpenes are always the VOC family presenting the highest 491 

percentage in composting emissions not only in the case of OFMSW and MSW but also 492 

in other wastes such as sludge (Maulini-Duran et al. 2013). Staley et al. (2006) 493 

described terpenes as the main compounds responsible for odorous pollution at 494 

composting facilities. Eitzer (1995) noted that terpenes were the characteristic 495 

intermediates produced from the aerobic degradation of organic matter during 496 

composting. 497 

Also in the experiments presented in this work, terpenes were the most emitted 498 

family of VOC in all the trials carried out. The difference observed in terpenes emission 499 

percentages between OF_wood-I and OF_wood II trials (Table 3) is due to the different 500 

amount of alcohols emitted in the two processes. Accordingly, the same percentage 501 

effect is observed during MSW processes. In the case of MSW-I more hydrocarbons 502 

(aliphatic and aromatic) were emitted than in MSW-II. Unexpectedly, the highest 503 

percentage of terpenes is emitted during OF_tube composting process, with very low 504 

variation between duplicates. Regarding Table 4, the quantitative analysis of limonene 505 

is highly homogenous between the different composted wastes, being slightly higher in 506 
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MSW composting processes. However, alpha-pinene emission is clearly higher in 507 

OF_wood trials than during OFMSW composting processes without wood chips as 508 

bulking agent. The same trend is observed for beta-pinene emission, but with lower 509 

differences between the different wastes. Alpha-pinene comparison is even clearer if 510 

only OF_tube and OF_wood are considered (total absence of wood materials in MSW 511 

cannot be assured). From the comparison of OF_tube and OF_wood it can be stated that 512 

the same waste with different bulking agent emits similar quantities of all the other 513 

compounds quantified, but not alpha-pinene, which emission is 100-fold higher during 514 

OF_wood processes than in OF_tube ones. Büyüksönmez and Evans (2007) composted 515 

wood chips and pruning wastes, concluding that terpenes are the single most important 516 

type of VOC emitted. Specifically, alpha-pinene was the most prevalent compound 517 

representing either the largest or the major portion of the total emissions. 518 

 519 

4. Conclusions 520 

VOC, CH4, N2O and NH3 emissions during MSW and OFMSW composting at 521 

pilot scale were mainly produced in coinciding with maximum temperature and 522 

biological activity. 523 

VOC, CH4 and NH3 emission factors in OFMSW composting with wood chips 524 

as bulking agent were higher than in OFMSW composting with PE tube (synthetic 525 

bulking agent). Terpenes were the main VOC family found in all cases, regardless the 526 

presence of wood in the reactor. Alpha and beta pinene emission was higher during 527 

composting with wood chips. However, wood chips present some composting 528 

advantages in front of PE such as moisture adjustment and waste stabilization. 529 
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Figure Legends 

 

Figure 1. Evolution of temperature, airflow, OUR and oxygen content during 

composting:  (a) OF_wood,  (b) OF_tube and (c) MSW. Due to the similarity of 

profiles, only one graph is shown for each waste representing the six trials carried out. 

Legend in Fig 1a is the same for Fig 1b and 1c. 

 

Figure 2. Daily emission factors (kg of compound Mg-1 treated waste) evolution for (a) 

CH4, (b) N2O, (c) NH3 and (d) VOC, for the six trials carried out. Values presented are 

an average of the two duplicated reactors for each waste with the corresponding 

deviation. Legend in Fig 2a is the same for Fig 2b, 2c and 2d. 
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Table 1. Characterization of the initial waste mixtures and materials obtained at the end of the process.  

Material 
Dry Matter 

Organic 
Matter DRI* 

pH 
Conductivity 

(µs/cm) 

Air filled 
porosity  

(%, wb*) (%, db*) (mg O2 g
-1 OM h-1) (%) 

OF-wood 40 ± 5 78 ± 1 2.9 ± 0.2 7.05 2034 70 

OF-wood-I (final product) 37 ± 0.3 72 ± 2 0.5 ± 0.1 8.72 2789 67 

OF-wood-II (final product) 37 ± 2.4 73 ± 3 1.1 ± 0.0 8.78 3198 66 

OF-tube 38 ± 2 82 ± 0 1.9 ± 0.0 5.80 1877 80 

OF-tube-I (final product) 38 ± 2 73 ± 6 1.2 ± 0.2 8.74 2930 85 

OF-tube-II (final product) 39 ± 1 65 ± 4 1.0 ± 0.01 8.69 2540 84 

MSW 41 ± 2 68 ± 2 1.9 ± 0.1 6.72 3750 69 

MSW-I (final product) 41 ± 5 32 ± 5 0.8 ± 0.1 8.78 2370 69 

MSW-II (final product) 43 ± 1 45 ± 1 0.9 ± 0.1 8.56 3560 69 
 



31 
 

Table 2. Emission Factors for VOC, CH4, N2O and NH3 (kg of compound emitted Mg-1 

of dry matter). For each waste, values for each replication are presented jointly with the 

average of the two duplicated reactors with the corresponding deviation. 

 

Trials CH4 N2O NH3 VOC 

OF_wood-I 1.34 0.0250 6.32 1.16 

OF_wood-II 1.21 0.0169 2.37 0.813 
OF_wood_mean 1.27 ± 0.09 0.0210 ± 0.006 4.34 ± 2.79 0.989 ± 0.249 

OF_tube_I 0.0155 0.0173 0.422 0.630 

OF_tube_II 0.0214 0.0250 0.802 0.745 
OF_tube_mean 0.0185 ± 0.004 0.0211 ± 0.005 0.612 ± 0.269 0.688 ± 0.082 

MSW-I 0.0428 0.0429 1.15 1.19 

MSW-II 0.0670 0.0221 0.860 0.924 
MSW_mean 0.0549 ± 0.017 0.0325 ± 0.015 1.00 ± 0.20 1.05 ± 0.18 



32 
 

Table 3. Percentages of different VOC families emitted during the six processes studied. 

Trial Terpenes Furans Esters Alcohols Ketones 
Nitride 

molecules 
Sulphide 
molecules 

Aliphatic 
hydrocarbons 

Aromatic 
hydrocarbons Aldehydes 

Halogenated 
compounds 

OF_wood-I 58.6 1.0 0.0 15.5 9.3 1.8 7.4 3.1 3.3 0.0 0.0 
OF_wood-II 72.3 1.4 0.0 5.2 7.1 0.8 7.4 2.5 3.2 0.0 0.0 
OF_tube_I 81.6 0.0 0.9 8.7 3.2 0.7 2.0 1.0 1.8 0.1 0.0 
OF_tube_II 81.5 0.1 0.9 6.9 3.3 0.8 3.2 1.7 1.5 0.1 0.0 

MSW-I 47.5 1.3 0.8 2.1 1.2 0.6 4.8 16.0 25.1 0.0 0.5 
MSW-II 61.0 1.4 1.6 6.0 2.9 0.5 6.6 6.6 13.3 0.0 0.0 
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Table 4. Total emission of quantified VOC (kg of compound emitted Mg-1 of dry matter). 

Trial Styrene 2-pentanone 
alpha-
pinene  

beta-
pinene limonene  

dimethyl 
disulfide  Pyridine Toluene Xylene Decane 

OF_wood-I 0.0000646 0.00191 0.01636 0.0116 0.0914 0.0734 0.000882 n.d. n.d. n.d. 
OF_wood-II 0.00140 0.00144 0.03636 0.00647 0.0760 0.118 0.00206 n.d. n.d. n.d. 
OF_tube_I 0.00171 0.0134 0.00053 0.000882 0.113 0.0121 0.000290 n.d. n.d. n.d. 
OF_tube_II 0.00122 0.00333 0.00038 0.00143 0.0593 0.0138 0.0000582 n.d. n.d. n.d. 

MSW-I 0.00205 0.00649 0.00514 n.d. 0.175 0.327 0.00249 0.0176 0.00340 0.0151 
MSW-II 0.00154 0.00548 0.00700 0.00415 0.124 0.285 0.00108 0.00451 0.00255 0.00783 
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Figure 1 
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Figure 2 
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