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Abstract
We report on stress induced changes in the dispersion relations of acoustic
phonons propagating in 27 nm thick single crystalline Si membranes. The static
tensile stress (up to 0.3GPa) acting on the Si membranes was achieved using an
additional strain compensating silicon nitride frame. Dispersion relations of
thermally activated hypersonic phonons were measured by means of Brillouin
light scattering spectroscopy. The theory of Lamb wave propagation is devel-
oped for anisotropic materials subjected to an external static stress field. The
dispersion relations were calculated using the elastic continuum approximation
and taking into account the acousto-elastic effect. We find an excellent agree-
ment between the theoretical and the experimental dispersion relations.

Keywords: acoustic phonons, ultra-thin Si membranes, Brillouin light scattering

1. Introduction

In the last two decades the interest devoted to phonon engineering has grown. In particular it
has been shown that dispersion relations can be significantly modified e.g. by means of
phononic crystals [1–7], spatial confinement [8–13] or external stress field [14–20]. Recently,
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single-crystalline inorganic membranes with thicknesses ranging from few hundred nanometers
to the ultimate down-scaling limit represented by graphene, a truly 2D system, have received
considerable attention [21]. Here, the dynamic features at reduced dimensions offer
opportunities in basic and applied research, as well as in technology.

One such area concerns the thermal conductivity in nonmetals, which results from the
cumulative contribution of the transport of phonons with a broad range of wavevectors and
mainly from long-wavevector phonons. Thus, heat transport at room temperature can be
influenced by the reduction of the membrane thickness as the dispersion relation of the short-
wave-phonons starts to be affected by emerging new vibrational modes arising from the
boundary conditions at the membrane surface [22]. At low temperatures, however, the
wavelength of the dominant thermal phonons is large enough so that their dispersion relation is
strongly affected by characteristic sizes of the order of the micrometer [23]. The introduction of
a controlled stress on the membrane presents an additional degree of freedom to modify the
phonon dispersion relation, which could lead to the tuning of the thermal conductivity [16].
Understanding the effect of stress on the characteristic mechanical modes of ultra-thin
membranes offers an excellent avenue toward experimental and theoretical research on the
thermal properties in low dimensional structures. The vibrational acoustic properties of
nanomembranes have been studied by inelastic light scattering. Recently, synchrotron x-ray
thermal diffuse scattering was used to probe phonons with wave vectors spanning the entire
Brillouin zone of nanoscale silicon membranes [24]. In this paper we show experimental
evidence on the stress induced changes in the dispersion relations of hypersonic acoustic
phonons propagating in ultra-thin Si membranes. Experimental results obtained by means of
Brillouin light scattering (BLS) are compared with theoretical calculations based on the elastic
continuum approach and acousto-elastic theory.

2. Materials and experimental methods

Typically stress-dependent optical or electrical measurements are carried out following many
diverse approaches. For example, compressive hydrostatic stress measurements are usually
conducted using a diamond anvil cell, typically using He or alcohol mixtures as pressure
transmitting media [25]. Experiments under uniaxial compressive stress are done using a lever
arm or gas chamber to increase the uniaxial force acting on the sample [26]. The case of biaxial
stress is usually approached using the ball-on-ring technique as described in [27–29]. A
fundamental difference between these techniques is that whereas hydrostatic or uniaxial
measurements are usually done applying compressive stress, biaxial experiments are based on
tensile stress. An alternative approach to apply stress is given by heteroepitaxy, i.e. making use
of the lattice mismatch between two materials to apply biaxial stress [30, 31]. Herein, we use a
method based on a similar concept by taking advantage of the controllable tensile stress of
chemical vapour deposited (LPCVD) Si3N4 films. The biaxial static tensile stress acting on
membranes was achieved by the strain tuning method of [32], where a Si3N4 frame generates
well defined biaxial stress (see figures 1(a) and (b)). The tensile stress can be adjusted by
changing the strain compensation ratio =R w w/c c m, where wc stands for the width of the area of
the released membrane covered with the Si N3 4 and wm is the width of the uncovered Si part of
the membrane. Measurements were performed on three suspended single crystalline Si
membranes with the same membrane thickness of =d 27 nm and three different values of the
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tensile stress σ 0 ( ±0.1 0.025 GPa, ±0.2 0.025 GPa and ±0.3 0.025 GPa) obtained by Raman
spectroscopy. Details on the sample fabrication and Raman stress measurements can be found
from [32].

BLS spectroscopy allows the investigation of thermally activated acoustic phonons
(waves) in the GHz range of frequencies. BLS is a well established technique commonly used
in nondestructive testing of elastic properties in bulk materials and thin films [33–37]. BLS has
been also found as an excellent tool to characterize phonons propagation in the nm-scale
systems, such as ultra-thin free standing membranes [13] and phononic crystals [3, 5, 38]. BLS
experiments provide information on the relative change in the frequency (Stokes and anti-
Stokes components) of laser light undergoing inelastic coherent scattering by acoustic phonons.
Brillouin spectroscopy measurements were performed on a six-pass tandem type Fabry–Perot
interferometer (JRS Scientific Instruments) in the p–p (incident and scattered light polarization
parallel to the plane of incidence) backscattering geometry, which ensured the best intensity of
the inelastically scattered light [39]. The light source was a solid-state laser generating light at
λ = 532 nm. The light was focused and collected by using an Olympus ×10 microscope
objective with a numerical aperture of 0.5. The laser spot diameter was approximately of 12.5
μm and the incident power was kept below 2mW. For the backscattering geometry (see
figure 1(c)), the angle of the laser beam incidence onto a given surface studied is equal to the
scattering angle and denoted by θ. For opaque or semi-transparent materials, the main

Figure 1. Schematic illustration of (a) the membrane structure, (b) top view—relative
orientation of sample and biaxial stress, (c) lateral view—Brillouin light scattering
geometry. Symbol d stands for the membrane thickness, wc is the width of the area of the
released membrane covered with the Si N3 4 and wm is the width of the uncovered Si part

of the membrane, σ 0 is the component of the stress tensor σij. k i, ks and q denote
incident light, scattered light and scattering wavevectors respectively, θ is the scattering
angle.
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contribution to the scattered light comes from the surface ripple mechanism. Therefore, the
momentum conservation holds only for the in-plane components and the magnitude of the
scattering wavevector q is given by [33, 34, 40]:

π
λ

θ=q
4

sin . (1)

BLS measurements were performed at room temperature for scattering angle θ varied in
the range °11 – °50 , which according to (1), corresponds approximately to the range of
wavenumbers q: 0.0451– −0.0180 nm 1.

3. Lamb waves in pre-stressed anisotropic membranes

In the case of plates and membranes, normal acoustic modes are classified in terms of the spatial
symmetry of the deformation with respect to the plate mid-plane into asymmetric (flexural),
symmetric (dilatational) and SH (shear-horizontal) families of Lamb waves (LW). Although
they were described for the first time by Lamb in 1917 [41], they are still of particular interest,
resulting in a large number of both theoretical and experimental papers, monographs and
technological applications [8–10, 13, 42, 43]. The undeformed, original state of a membrane in
the absence of any strain and stress is called the natural state. According to the linear theory of
elasticity, the velocity of any possible acoustic wave depends only on elastic parameters defined
at the natural state. Therefore, constant values of these parameters during a deformation cannot
lead to any change of the acoustic wave velocity. The initial state (further denoted by the
superscript 0) describes the pre-deformed state of the membrane under the action of an applied
static stress. A motion of an acoustic wave in the membrane in the initial state leads to the
final state with an additional dynamic deformation, which is assumed to be small in
comparison to the static one. The problem of acoustic wave propagation requires applying the
nonlinear theory of elasticity due to the large deformation from the natural to the initial state
[14, 44]. The schematic representation of the considered issue in the adopted coordinate system
(x1, x2, x3) is shown in figure 1(b), where x1 and x2 are the directions parallel to diagonals of the
square defined by the membranes. The initial biaxial stress acting on the membrane, given by
the Cauchy stress tensor σij

0, after the rotation to the coordinate system associated with the

membrane takes the form:

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟σ

σ
σ=
0 0

0 0
0 0 0

, (2)ij
0

0

0

where =i j, {1, 2, 3}. The initial pre-deformation of the membrane is static, thus σij
0 satisfies

the equation of equilibrium, which using the convention of summation over repeated subscripts
takes the form: σ∂ ∂ =x/ 0ij j

0 . Additionally, we assume that σij
0 can be related to the initial strain

tensor ukl
0 by means of Hookeʼs law σ = C uij ijkl kl

0 0. Here Cijkl is the fourth order elastic tensor,

which can be expressed as 6 × 6 matrix of second order elastic constants (SOE) in the Voigt
notation ( →C Cijkl IJ and → → → → → →11 1, 22 2, 33 3, 23 4, 13 5, 12 6). The nonzero

and independent SOE constantsCIJ for the natural state of silicon (cubic symmetry) are given by
C11, C12, C44 [45]. Considering the above, the equation of motion for the pre-stressed and
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hyperelastic body is [44]:

⎛
⎝⎜

⎞
⎠⎟σ σ ρ∂

∂
+

∂
∂

= ′
∂
∂x

u

x

u

t
, (3)

j
ij jl

i

l

i0
2

2

where ui denotes the components of a displacement from the initial to the final state. The mass
density ρ′ of the initial and final state can be approximated using the definition of the cubic

dilatation as uii
0 and ρ of the natural state ρ ρ′ ≈ −( )u1 ii

0 . The stress tensor σij (related to wave

propagation) satisfies Hookeʼs law, which for this case is given by σ = ′C uij ijkl kl. ′C ijkl stands for

the elastic tensor modified by the static pre-deformation, which can be expressed as:

′ = − +
∂
∂

+
∂
∂

+
∂
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+
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+( )C C u C
u

x
C

u

x
C

u

x
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x
C u1 , (4)ijkl ijkl nn mjkl

i

m
imkl

j

m
ijml
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ijkm

l

m
ijklmn mn

0
0 0 0 0

0

where Cijklmn are third order elastic (TOE) constants. For the natural state of silicon TOE, which

are invariant due to the symmetry operations of the Fd m3 space group, are given in the Voigt
notation ( →C Cijklmn IJK) by: C111, C144, C112, C155, C123, C456 [44, 46]. For a homogeneous elastic

medium one can assume a solution of the equation of motion (3) in the form of the linear
combination of the plane waves with the amplitudes ui0:

⎡⎣ ⎤⎦ν= −( )u u iq l x texp , (5)i i j j0

where ν denotes the phase velocity along the = ( )q l l lq , ,1 2 3 vector, which lies on the x x1 2

plane and the direction cosines of which are given by li. Substituting the plane wave
equation (5) into the equation of motion (3) gives nontrivial solutions for ui only if

Γ δ ρ ν− ′ = 0, (6)ik ik
2

where Γ δ σ= ′ +( )C l lik ijkl ik jl j l
0 is called the acoustic tensor and δik is the Kronecker delta.

Boundary conditions for the membrane, which is infinite in the x x1 2 plane and limited in the x3

direction so that − ⩽ ⩽d x d/2 /23 , are given by:

σ σ= ==− =0 and 0. (7)i x d i x d3 2 3 23 3

In the general case, calculations of dispersion relations for LW propagating in an
anisotropic free standing membrane require applying a numerical procedure based on the partial
waves approach [47].

The main goal of this method (see appendix) is to find phase velocities of LW satisfying
simultaneously the elastodynamic equation of motion (3) and the stress-free boundary
conditions given by (7). Due to the symmetry of the problem one can separate the numerical
solutions in terms of the displacement about the midplane of the membrane (x x1 2 plane at

=x 03 ) , into so-called symmetric (S), asymmetric (A) and shear horizontal (SH) families of
waves. In the general case, A and S modes in anisotropic materials can have a small component
of the displacement perpendicular to the sagittal plane, here, the plane containing the phonon
wavevector and perpendicular to the x x1 2 plane). Pure A and S waves are typical for isotropic
media or high symmetry directions in anisotropic materials.
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4. Results and discussion

Measurements of angle-resolved BLS were performed for the 27 nm thick membranes with the
orientation as shown in figures 1(b), (c). Figure 2 presents several representative spectra
differing in the scattering angle and obtained for the membrane with tensile stress magnitude
σ = 0.3 GPa0 . Peaks identified as coming from the inelastic light scattering by A0 (fundamental
flexural) acoustic waves were fitted using a Lorentzian function. Here, the position of the
particular peak indicates the value of the phonon frequency or the Brillouin shift Δf

B
(in GHz).

Thus, using (1) the phase velocity is given by:

ν
πΔ

Δ λ
θ

= =
f

q
f

2

2 sin
. (8)B

B

Apart from the value of the Brillouin shift, figure 2 also contains information related to the
intensity and the spectral full width at half maximum (FWHM) of the scattered light. The
intensity depends on the mean-squared amplitude of the out-of-plane surface displacement,
while the FWHM can be expressed as a function of the phonon lifetime [34, 40]. However, both
also depend strongly on the optical setup characteristics and its alignment, therefore, any
quantitative conclusions concerning absolute out-of-plane displacement and phonon lifetime
need further measurements, e.g., reference samples and calculations. In the range of observed
reduced wavenumbers (qd) the total displacement of the S0 (fundamental dilatational) waves is
dominated by the in-plane longitudinal component [48], therefore they are not visible in the
BLS spectra.

Figure 3 shows the experimental dispersion curves in the form ν q( ) compared to the

theoretical calculations for three exemplary values of σ 0. As expected, the measured changes in
ν progressively depend on the stress magnitude. The theoretical curves in figure 3 are calculated
using the formalism presented in section 2 and appendix A without any free parameter. The
elastic properties used can be found in table 1 and are taken from [46], while the stress
magnitude σ 0 is estimated independently by Raman spectroscopy in the same samples [32].

Figure 2. Brillouin spectra (anti-Stokes components) of the A0 mode of the 27 nm thick
Si membrane obtained for different scattering angles θ and the applied load
σ = 0.3 GPa0
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Flexural waves are not detectable for small θ due to the presence of an elastic scattering peak
(see figure 2), thus the smallest measurable values of Δf

B
were about 0.3 GHz. The agreement

between experimental data and theory also confirms the values of the stress tensor adopted in
calculations and measured by Raman spectroscopy. Dispersion relations can also be presented
in the ω q( ) form (see insets in figure 3), which is more convenient as a starting point to study
phonon group velocities, density of states, heat capacity and thermal conductivity [19, 49].

Based on the formalism presented in section 2 and appendix A we can investigate
theoretically the changes of A0 modes propagation in terms of tensile or compressive stresses.
In the appendix we show also dispersion relations for the families of A, S and SH waves
propagating in the Si membrane subjected to the static positive or negative biaxial stress.
Figure 4 presents dispersion curves in the form (a) ν q( ) and (b) ω q( ), which were calculated for
a 27 nm thick membrane for the wavenumbers which coincide with the range reachable by
angle-resolved BLS following (1). Here we can find remarkable changes of the A0 mode both
for compressive and tensile stresses. For small values of q and σ = 00 (black line in figure 4(a))
the phase velocity of the A0 mode is proportional to the wavenumber with ν → =q( 0) 0. From
figure 4(a) we can find that both tensile and compressive stresses lead to the nonlinear
behaviour of ν q( ), which was also predicted recently for graphene [19, 20]. Considering the
stress influence on dispersion curves in the form ω q( ) (see figure 4(b)) we can find that for

small q values, ω q( ) cannot be approximated by a quadratic function as for σ = 00 case. We
can validate further the theory by calculating the limiting cases and recovering well-known

Figure 3. Comparison between experiment and theory of the A0 mode dispersion
relations in the form of ν q( ) and ω q( ) (inset) of the 27 nm thick Si membrane under the
applied load (a) σ = 0.1 GPa0 , (b) σ = 0.2 GPa0 and (c) σ = 0.3 GPa0 .

Table 1. Mass density ρ ( )kg/m3 , second (SOE) and third (TOE) order elastic constants

of Si at 298 K in units of (GPa) [46].

ρ C11 C12 C44 C111 C112 C123 C144 C155 C456

2329 165.64 63.94 79.51 −795 −445 −75 15 −310 −85
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physical effects as corollaries. In the tensile stress case we see that as q tends to 0, ν attains
values different than 0. Solving (A.5) with →q 0 we find that for the A0 mode:

ν σ ρ→ = ′( )q( 0) . (9)0
1
2

That is, ν depends only on the stress component parallel to q and on a single material
parameter ρ′. It is interesting to note that (9) is also the solution of the well-known problem of a
wave velocity in a stretched (guitar) string. Moreover, for the compressive loads we find ranges
of forbidden wavenumbers q. For the range of wavenumbers between 0 and q

b
, velocities ν and

frequencies ω of A0 modes were found to be imaginary values. This behaviour can be explained
taking into account the stability of the membrane subjected to compressive forces. Therefore,
for small negative values of σ 0 and ν = 0 we find from (A.5) that:

σ
=

−
q d

C

C C
2 3 , (10)

b
11

0

11
2

12
2

which is the Euler load equation [43, 50] describing the critical compressive load necessary to
produce buckling of a plate, beam or membrane. On the other hand, for a given membrane with
thickness d, (10) determines the width of the membrane ( π<w q2 /m b

) that does not undergo the

buckling instability due to the compressive stress (see figure 1). At this point it is worth
noticing, that BLS allows directional measurements of stress, since the value of (9) depends
only on the stress component parallel to the wavevector. It offers the possibility of further
measurements in the presence of a non-uniform biaxial stress, to obtain, e.g., stress mapping of
the sample.

Figure 4. Calculated dispersion curves (a) ν q( ) and (b) ω q( ) of the A0 mode
propagating in a 27 nm thick membrane under exemplary values of stress σ 0.
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5. Concluding remarks

Using BLS we measured the fundamental flexural mode of 27 nm thick membranes subjected to
different homogeneous tensile biaxial stresses. We showed that dispersion relations of LW in
ultra-thin silicon membranes can be tuned in a controlled manner by means of applied stress.
The experimental results show a good agreement with theoretical calculations based on the
elastic continuum approach without any free parameter. The experimentally proved stress
tuning of flexural phonons dispersion relations opens the door to thermal management and
energy conversion in low dimensional structures. It is expected that this effect of tuning the
dispersion relation translates into changes in the thermal properties when the wavelength of the
phonons involved in the heat transport is commensurate to the thickness of the membrane
[15, 16, 49] or at low temperatures [23]. In addition, we showed how Brillouin spectroscopy
provides a contactless and nondestructive tool for the stress measurements in the nm-scale
systems. Our findings are essential for micro- and nano-electromechanical (MEMS and NEMS)
systems development and have deep implications in engineering of the thermal conductivity.
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Appendix

A detailed derivation of (3) and (6) can be found in [44]. The general solution procedure
assumes that (6) is solved for l3 with ν as a parameter. All of n = 6 possible solutions l n

3
( ) satisfy

the wave equation (5), therefore, in the general case the displacement ui is given by the
superposition:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑ ν= + −( ) ( )u A u iq l x iq l x l x texp exp , (A.1)i
n

n i
n n

6

0
( )

3
( )

3 1 1 2 2

where ui
n

0
( ) are normalized components of an amplitude which are eigenvectors corresponding to

l xn
3
( )

3 and the eigenvalue ρ ν′ 2. Six weighting factors An should satisfy the boundary conditions
given by (7), which can be rewritten as a set of six homogeneous equations:

∑ ′ =( )C A u l iql dexp 2 0, (A.2)
n

i kl n k
n

l
n n

6

3 0
( ) ( )

3
( )

∑ ′ − =( )C A u l iql dexp 2 0. (A.3)
n

i kl n k
n

l
n n

6

3 0
( ) ( )

3
( )

This homogeneous set of six linear equations can be rewritten in matrix form as a
multiplication of the ×(6 6) D matrix of the coefficients by the ×(6 1) column vector A of the
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weighting factors:

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ζ ζ

ξ ξ

′ ⋯ ′
⋮ ⋱ ⋮

′ ⋯ ′
⋮ = ⋮

C C

C C

A

A

0

0
, (A.4)

kl kl kl kl

kl kl kl kl

13
(1)

13
(6)

33
(1)

33
(6)

1

6

where ζ = ( )u l iql dexp /2kl
n

k
n

l
n( )

0
( ) ( )

3
and ξ = −( )u l iql dexp /2kl

n
k

n
l

n( )
0

( ) ( )
3

. The nontrivial solutions

for An exist if the determinant of the D matrix equals zero:

=D 0. (A.5)

In the general case the adopted iterative search procedure sweeps ν and qd as the
parameters looking for the phase velocities of LW for the given qd, corresponding to the
minima of the boundary condition determinant. Moreover, these solutions can be classified in
terms of the polarization or symmetry by means of the evaluated weighting factors An and
(A.1). All calculations were performed for Si membranes oriented as shown schematically in
figure 1 (b). Figure A1 presents the dispersion curves with exemplary values of both tensile and
compressive biaxial load for A, S and SH modes, respectively, with ∥q 110[ ]. From figure A1
we can find that the magnitude or even the sign of the applied load does not lead to simple and
unambiguous changes in the dispersion relations. In general, the change of phase velocity
depends on the direction of propagation with respect to applied load, qd, type of wave/
polarization and order of a given mode.
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