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Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental
contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene
nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with
hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized
electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-
energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance
(TMR) behaviors on the junction of cobalt/SiO,/FGNPA electrode, serving as a prototype structure
for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in
TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-
edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by
modulating interpore distance. Annealing the SiO,/FGNPA junction also drastically enhances

TMR ratios up to ~100%. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901279]

Several key components of spintronics have been real-
ized in recent years, e.g., giant magnetoresistance (GMR),
tunneling MR (TMR), and spin valve devices.'™ Giant TMR
ratios, (Rap — Rp)/Rp, where AP and P refer to antiparallel
and parallel orientations of the spin configurations of the two
electrodes, of ~1000% have been obtained in CoFeB/MgO/
CoFeB junctions. A wide variety of materials have been uti-
lized for spintronic devices such as ferromagnetic metals
and™ ferromagnetic semiconductors.*® In all cases, however,
rare magnetic elements are essential to provide polarized spins
to the systems.

In contrast, it was theoretically predicted that graphene
edges with specified atomic structures (the so-called zigzag
edge, Fig. 1(b)) are spontaneously spin polarized, exhibiting
flat-energy-band ferromagnetism caused from extremely high
electronic density of spin states (i.e., the edge states) and a
strong spin interaction among the localized electrons.””
Importantly, this occurs despite the absence of rare magnetic
elements, considering just carbon atoms with sp2 orbitals. In
the case of graphene nanoribbons (GNR, Fig. 1(b)),”'° the
appearance of the spin polarization is highly sensitive to the
spin interaction between the two edges and is determined so
as to maximize exchange energy gain (similar to Hund’s rule
in atoms). In particular, spin ground states in GNRs under
absent magnetic fields are still under debating stages. These
properties suggest that novel types of spin-based devices may
be realized using graphene-based materials, without the need
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of rare magnetic atoms. Long spin diffusion lengths and the
introduction of the spin-orbit interaction by hydrogenation''-'?
are further recent examples of the potential of graphene
spintronics.

In prior works, we have experimentally confirmed the
formation of this flat-band ferromagnetism in hydrogen (H)-
terminated zigzag-edged GNPAs (Figs. 1(a) and 1(b))."*~'¢
Because the GNPA corresponds to a large ensemble of the
zigzag GNRs (i.e., interpore regions), it is effective to detect
small magnetic and electric signals arising from the pore
edge spins. Observation of the significant reduction of the G/D
peak ratios by the critical-temperature annealing (~800°C)
in Raman spectrum and the comparison with the previous
other experiments (e.g., extremely low G/D peak ratios in
the intentionally fabricated zigzag-edge hexagonal pores'’
and in the zigzag-edged graphene flakes,'® atomic recon-
struction to zigzag edge by Joule heating,'” and electron
beam irradiation®’) implied the formation of the zigzag-type
atomic structure of the pore edges by the reconstruction of
the edge atomic structure. Moreover, observation of the fer-
romagnetism induced by decreasing the interpore distance
and of the high density of the polarized spins at the pore
edges by magnetic force microscope in the ferromagnetic
graphene nanopore arrays (FGNPAs)'*'* suggested that the
observed ferromagnetism was attributed to the presence of
the polarized spins existing at the pore edges. Two theoretical
analysis (GNR theory and Lieb’s theorem®'*%) of the observed
magnetization values (~0.3 ug/edge dangling bond) also sug-
gested that the mono-hydrogenated zigzag pore edges were the
origin for the ferromagnetism.'>'> Recent our work has proved

© 2014 AIP Publishing LLC


http://dx.doi.org/10.1063/1.4901279
http://dx.doi.org/10.1063/1.4901279
http://dx.doi.org/10.1063/1.4901279
mailto:J-haru@ee.aoyama.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4901279&domain=pdf&date_stamp=2014-11-07

183111-2 Hashimoto et al.

lnterpo_ne GNR

Magnetic fields

10(1m

In-planeturrent path
Panso, P

Si substrate

FIG. 1. (a) AFM image of the FGNPA, which consists of a honeycomb-like
array of hexagonal nanopores. The typical interpore distance is ~30nm and
the pore diameter is ~80nm. (b) Schematic top view of a GNPA with
zigzag-type atomic structure at the pore edges Interpore regions correspond
to zigzag-type GNRs (e.g., with width of ~30nm), which are one-
dimensional strip lines of graphenes. In actual samples, larger number of
carbon unit cells exists in one interpore-GNR region. (c) Optical microscope
image of a top view of the electrode pattern of the Co/SiO,/FGNPA TMR
junction. MR between the top Co electrode and the Au electrode located at
the nearest right side was measured under constant current mode of 1 nA. (d)
Schematic cross section of the TMR junction. The white line illustrates the
constant current path. Thickness of the SiO, tunnel barrier of ~10nm was
confirmed by ellipsometry. Magnetic fields were applied in parallel with the
FGNPA plane. A back gate voltage (Vy,,) was applied from the back side of
the Si substrate via surface SiO, film of Si substrate.

this by increasing saturation magnetization in mostly 100 times
by increasing area of mono-hydrogen termination of the pore
edges using specified resist treatment.'> The edge states
were also confirmed by observation using ionic liquid gate.'®
Also from other viewpoints, GNPAs are highly expected
as quantum-information,” optical,”* and semiconducting-
operation® devices.

In the present study, TMR junctions utilizing such
FGNPAs as ferromagnetic electrodes are realized. The fabri-
cated TMR junction consists of Co/SiO,/FGNPA (Figs. 1(c)
and 1(d)), serving as a prototype structure for rare-metal free
graphene-based TMR. The honeycomb-like array of hexago-
nal nanopores forming the FGNPA is shown in the atomic
force microscope image (Fig. 1(a)) and in a schematic view
(Fig. 1(b)). Fabrication followed our previous non-lithographic
method,]3_]6 which realized the low defects and low contami-
nation of the zigzag pore edges.

The fabricated TMR structure using this FGNPA as one-
side electrode with the optical microscope is shown in Fig.
1(c) (top-view) and is schematically described in Fig. 1(d).
The TMR behavior is measured along the constant current
path illustrated in Fig. 1(d). The TMR ratio is defined as the
difference between the resistance values (Rp) at individual
magnetic fields (B) and the minimum MR value (R,,;,), which
is assumed to be the best parallel spin alignment between Co
electrode and FGNPA; i.e., TMR ratio = (Rg — R,,.i)/[Rin- A
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magnetization measurement of the overlayered structure of
the SiO,/FGNPA implies the persistence of the ferromagnetic
signal even after evaporation of the SiO, film on the pore
edges, although the magnitude is reduced somewhat compared
with that without SiO, film.

Figures 2(a) and 2(b) give the result of a typical TMR
measurement of the Co/SiO,/FGNPA junction (shown in
Figs. 1(c) and 1(d)) under in-plane parallel B at (a) 1.5K and
(b) 300 K. We identify the minimum resistance (R,,;,) as the
situation in which the external B induces best matching
between the spin polarizations of the magnetic materials
(i.e., parallel spin alignment between cobalt and FGNPA)
and take this as Rp in subsequent calculations of TMR ratios,
as mentioned in the figure caption. The observed TMR
behaviors in Fig. 2(a) are significantly different from those
of any other conventional TMR junctions. They exhibit the
following unique B-dependent characteristics. (1) TMR ratio
is tuned by the B and can reach a signal about 20%. (2) The
minimum of TMR ratio appears as B approaches to zero in
—B region. (3) The TMR ratios increases gradually crossing
B=0. (4) The peak of TMR ratio emerges in +B region. A
similar behavior is observed for polarity changes in B, i.e.,
when sweeping from +B to —B (the black line in Fig. 2). As
illustrated in the curves around zero-TMR ratio, the Co/
SiO,/bulk graphene junction (i.e., without the nanopores)
shows drastically different behavior, with showing no clear
TMR signatures. This suggests that the TMR-like behavior
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FIG. 2. The result of a typical TMR measurement of the Co/SiO,/FGNPA
junction (shown in Figs. 1(c) and 1(d)) under in-plane parallel B at (a) 1.5K
and (b) 300 K. In-plane magnetic field sweeps were performed from B = —1
to +1T (red line) and B=+1 to —1T (black line). Mostly constant zero
TMR ratios shown in (a) are TMR values for the bulk graphene/SiO,/Co
junction. Notation Fy;; means spin configuration of the two edges of an
interpore GNR region in the FGNPAs (left two black-arrows) and the Co
(right one red-arrow). (c) Density of states calculated for the GNPA with an
interpore distance of W ~10nm and a pore diameter of ~80nm and the
related zigzag GNR. (d) Conductance between zigzag GNR junctions with
different edge spin polarization states and cobalt electrode. Note the distinct
differences in the MR signal in the energy regime where edge states domi-
nate the electronic properties of the GNR.
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observed in the Co/SiO,/FGNPA junction is unique to the
present TMR structure, and is driven by spin tunneling prop-
erties between the Co electrode and the FGNPA. Present
reproducibility of the TMR behaviors is over 80%, because
six of seven samples showed similar behaviors to date.

TMR properties observed at room temperature are
shown in Fig. 2(b). Maximum TMR ratios decreases from
~20% to ~5% owing to the reduced flat-band ferromagnet-
ism and the behaviors become much ambiguous compared
with those at low temperatures, showing non-zero TMR
ratios at high B due to thermal spin instability. It should be
noticed that, nevertheless, TMR behaviors are still observable.

The observed unique TMR behavior can be qualitatively
understood by considering the spin alignment between two
opposing pore edges of the FGNPA (i.e., two edges of the
interpore GNR region in Fig. 1(b)) and the Co electrode. It
also clarifies spin ground states of the H-terminated zigzag-
type GNRs under no B. We support these interpretations by
atomistic simulations. First, we calculate the density of states
(DOS) of a GNPA reminiscent of the fabricated structure.
The calculated DOS (Fig. 2(c)) is compared to that obtained
for an infinitely long zigzag GNR (i.e., interpore GNR region
in Fig. 1(b)). Ignoring the tunnel barrier, the TMR device is
thus conveniently visualized as a junction between a Co spin
injector and an array of uncoupled zigzag GNRs, the spin
polarizations of which depend on the B. Based on this result,
we simulate the spin transport properties of the device via a
zigzag GNR-based junction, in which the spin polarization is
differentiated between left (Co spin injector) and right
(FGNPA) parts (Fig. 3(d)). We focus on the sweep from —B
to +B (red curve in Fig. 2(a)).

As indicated in Fig. 2(d), we identify three distinct regions
in the TMR response, corresponding to the situations where
the magnetization of the FGNPA (i.e., spin alignment of two
edges of the interpore GNRs) is ferromagnetic (F;;: the left
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FIG. 3. (a) Measurements of the sample shown in Fig. 2 for V,, from +30V
to —30V are shown by red curves, while a black line shows that for —B to
+B regions for reference. (b) Vy,, dependence of peak values of the TMR
ratios shown in Fig. 3(a). (c) Measurements of a sample similar to that in
Fig. 2(a) but with different W. Exhibited B regions are the same as Fig. 3(a).
(d) W dependence of peak values of the TMR ratios shown in Fig. 3(c).
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two black arrows at the subscript in the figure mean the spin
moment of two edges of the interpore GNR) with spins paral-
lel to the spin injector (Co) (F;;4: the right one red subscript
arrow in the figure is the spin moment of injector), anti-
ferromagnetic (AF, F; 1), and ferromagnetic with spins anti-
parallel to the spin injector (F| ;). At —B, the spins of the in-
jector and the FGNPA are largely parallel (F;1), resulting in
maximum conductance through the junction (Fig. 2(d)) and
thus the minimum of the TMR ratio in Fig. 2(a). As the B
approaches zero, the GNR array (i.e., ensemble of the two
edges of the interpore GNRs) gradually transitions to an AF
configuration (F;|), where half of the conductance channels
are suppressed, resulting in the half value of conductance (Fig.
2(d)) and gradual increase in the TMR ratio (F; ). As the B is
increased further to +B, the spin polarization of the GNR
array changes to the (F||) configuration, suppressing all edge
conductance channels, resulting in the conductance minimum
(Fig. 2(d)) and subsequent the peak of TMR ratio observed
around B=0.5T (F| ;). These calculations suggest that grad-
ual changes in TMR ratios can be actually possible. At higher
+B, the spins of the Co injector start to align with the mag-
netic field, gradually quenching the TMR ratio, while non-zero
TMR ratios in higher +B regions suggest instability of the
pore edge spins of the FGNPAs as well as those in —B region.

It implies that the edge polarized spins of the interpore
GNR regions can actually tunnel through SiO, barrier form-
ing the spin alignment with the spins of Co electrode and
also that the spin ground states of the H-terminated zigzag-
GNRs are AF under no B. This result is consistent with our
previous experimental results, which exhibited ferromagnet-
ism only when B is applied.m’14 It is important to note that
the main mechanism revealed by our simulations does not
depend on how the electrons are really injected from the
cobalt electrode to the GNPA, but how efficiently spin-
polarized electrons injected on the GNPA are further trans-
mitted depending on the magnetic ordering of the local
moments along the zigzag edges.

Here, we also demonstrate that the TMR characteristics can
be controlled by changing a back gate voltage (Vp,: Fig. 1(d))
(Figs. 3(a) and 3(b)), as well as to the interpore spacing (W,
i.e., width of interpore GNRs in Fig. 1(b)) (Figs. 3(c) and
3(d)). The TMR ratio exhibits a maximum value of ~20% at
Ve =+30V (Figs. 3(a) and 3(b)), while it is reduced with
decreasing Vy, toward —Vy, region. This is consistent with
the presence of evident spin-based phenomena observed
only at Vbgg =430V for previous in-plane MR behaviors of
FGNPAs."? This is because the Au electrode was placed at
the side position of the Co/SiO,/FGNPA junction and the in-
plane spin current path exists through the H-terminated
FGNPA between the TMR junction and the Au electrode in
the present specified sample structure (Fig. 1(d)). Although
the polarized spins at the pore edges and TMR ratio them-
selves have basically no correlation with the V,, the spin cur-
rent through the in-plane path is significantly reduced with
decreasing V, due to the n-type semiconducting behavior of
the interpore GNR regions of the GNPA.'? This makes TMR
features difficult to detect, resulting in the decreases in the
observed TMR ratios.

For larger interpore spacing of W~40nm, the TMR
value further decreases significantly (Figs. 3(c) and 3(d)).
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FIG. 4. TMR behaviors of the Co/SiO,/FGNPA junction improved by
annealing at (a) 1.5K and (b) 300 K. The annealing of SiO,/FGNPA junc-
tion at 500°C was carried out under high vacuum atmosphere right after
deposing of SiO, layer on FGNPA.

For such a large spacing, the spin polarization of opposing
pore edges (i.e., two edges of interpore GNRs) becomes unsta-
ble due to suppressed spin interaction,'? quenching the TMR
properties. TMR ratios also decrease when using FGNPAs
with smaller W (Figs. 3(c) and 3(d)), because W <20nm is
too narrow to form spin currents along the in-plane current
path through the FGNPA to Au electrode (Fig. 1(d)).
Although ferromagnetism is stronger for smaller W, induced
scattering by the nanopore array heavily obstructs spin flow to
the Au electrode, reducing the TMR ratio. This is again con-
sistent with previously observed spin-based phenomena in
FGNPAs with W ~30nm."? Therefore, the optimum W value
exists for the TMR ratios.

We have presented unique TMR behaviors in the Co/
SiO,/FGNPA junctions. Nevertheless, the maximum TMR ra-
tio is as low as ~20% at best (Fig. 2(a)). One of the main rea-
sons is the poor interaction at the lattice-mismatched SiO,/
FGNPA interface, particularly at the H-terminated pore edges,
which destructs transport of the spin-alignment current and
reduces TMR ratios. In contract, as shown in Fig. 4(a), we find
that annealing of the SiO,/FGNPA structure at ~500 °C right
after the deposition of SiO, tunneling layer drastically (i.e.,
=5times) improves the TMR ratios of Fig. 2(a), although
some instability of the pore edge spins still remain as some
irregular small TMR ratio peaks. At room temperature, the
maximum TMR ratio increases even by ~10 times (Fig. 4(b))
compared to that in Fig. 2(b).

This promises that introducing a lattice-matched tunnel
barrier layer (e.g., graphene oxide) instead of SiO, layer and
also improvement of magnitude of the ferromagnetism in the
FGNPAs (e.g., utilizing HSQ resist treatment'”) can increase
TMR ratios further and make evident room-temperature
operation possible. Moreover, realization of FGNPA/(lattice-
matched tunnel barrier)/FGNPA junction must significantly
improve the performance of the TMR behaviors toward
~1000% order.
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