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We report on the possibility to generate highly anisotropic quantum conductivity in disordered
graphene-based superlattices. Our quantum simulations, based on an efficient real-space implemen-
tation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength
of multiple scattering phenomena can strongly depend on the transport measurement geometry.
This eventually yields the coexistence of a ballistic waveguide and a highly resistive channel (An-
derson insulator) in the same two-dimensional platform, evidenced by a oy, /04. ratio varying over
several orders of magnitude, and suggesting the possibility of building graphene electronic circuits
based on the unique properties of chiral massless Dirac fermions in graphene.

PACS numbers: 73.23.-b, 72.15.Rn, 73.21.Cd

In recent years, graphene has received a great deal of
interest for its unusual electrical transport properties, in-
cluding phenomena such as Klein tunneling [1] and weak
antilocalization [2]. These phenomena preclude the for-
mation of an insulating state at low levels of disorder,
in contrast to traditional 2D metallic systems, which are
predicted to exhibit an insulating state for arbitrarily
small disorder strengths [3, 4]. This unique behavior
makes graphene a promising material for a wide range
of next-generation technological applications [5]. One
challenging research objective is to maximize the trans-
port anisotropy of graphene, such that it remains a good
conductor along one direction while being much more re-
sistive along the other. Such control over the transport
properties could be used to direct charge flow and thus
build electronic circuits or waveguides [6], optical circuits
[7], or communications devices [8]. For most types of
scattering sources, the transport properties in disordered
graphene remain isotropic. Meanwhile, more complex
forms of disorder, such as structural deformations pro-
duced by interaction with a substrate [9, 10] or chemi-
cal doping [11], can produce only a moderate transport
anisotropy in graphene.

A way around this problem involves the creation of
graphene superlattices, which are formed from a peri-
odic modulation of the electrical, mechanical, or chemi-
cal properties of pristine graphene. Indeed, it has been
theoretically predicted that a strong anisotropy in the
Fermi velocity of graphene can be induced by suitably
patterned periodic modifications of the graphene sur-
face [12]. Based on this work, the construction of novel
types of graphene electronic devices and circuits from
structurally-perfect engineered superlattices was fore-
seen, attracting a lot of attention [13]. To date how-
ever, the inherent and uncontrollable disorder introduced

through conventional lithography techniques and top-
down patterning approaches has impeded the realization
of these graphene-based superlattices, whose novel trans-
port and device characteristics depend entirely on band-
structure engineering [14-16], and thus are highly sen-
sitive to disorder. In particular, features relying on the
emergence of a band gap [17] have remained elusive.

In this Letter, we wish to advocate a different approach
to nanostructuring graphene, where instead of consid-
ering disorder an inevitable drawback, it may in fact
serve as beneficial for tuning the properties of graphene.
While structural disorder inherent to any fabricated
graphene-based superlattice (such as antidot lattices and
nanomeshes) jeopardizes the control of bandstructure
features, we demonstrate that at the same time disorder
enables the coexistence of transport regimes which are
generally incompatible in conventional conducting ma-
terials. By using efficient numerical methodologies, the
scaling properties of quantum transport through disor-
dered graphene-based superlattices are computed and are
shown to become exceedingly anisotropic, resulting in the
coexistence of a ballistic transport channel in one direc-
tion and a highly resistive channel in the other. These
results suggest that disorder, rather than being an in-
evitable problem, could instead serve as a new inherent
tool in the experimental realization of nanostructured
graphene, giving rise to unique transport properties of
chiral massless Dirac fermions. We note that similar
ideas have been proposed within the field of photonic
crystals [18].

We consider a disordered, rectangular lattice of perfo-
rations in an otherwise pristine graphene sheet. A given
superlattice is referred to via parameters {N,, N, }, with
N,, denoting the average number of hexagons between the
center of the holes along each direction. The lattice con-



FIG. 1: Geometry of a representative domain of a disordered
{16, 9} superlattice. Carbon atoms are indicated with black
points. The blue shading indicates the position of holes in the
pristine geometry.

stants of the pristine superlattice are thus A, = v3N,a
and A, = Nya, respectively, with a = 0.246 nm the
graphene lattice constant. The average size of the anti-
dots is defined via the radius R, which we set to R = 3a
for all results presented. We consider superlattices for
which N,/N, > 1 and refer to the y and x directions
as the easy and the hard directions, respectively. Dis-
order is included via the parameters 0., dy, dr, Drem,
and Nyem. Here, 6, 0, and dr denote the widths of
random fluctuations in the centres and radii of holes, re-
spectively. Edge disorder along the holes is added via
an iterative process repeated Nyen times, in which edge
atoms (defined as any atom with less than three near-
est neighbours) are removed with probability prem. We
remove any dangling bonds in the geometry, i.e., all car-
bon atoms have at least two nearest neighbours. While
structural relaxation is not included in the simulations,
the absence of dangling bonds leads us to expect only a
minor influence of potential geometrical relaxation [19].
Throughout this Letter we take 6, = d, = 2a, 0g = 0.5a,
Prem = 5%, and Nyem = 2. An example of a disordered
{16,9} superlattice is illustrated in Fig. 1. Note that
the figure only shows a small, representative domain of
the full structure used in the calculations, which contains
several millions of atoms. We stress that while we only
show results for N, > N,, we have confirmed that the
results do not depend qualitatively on the orientation of
the superlattice with respect to the graphene sheet.

To model the properties of the proposed structures, we
employ a nearest-neighbour tight-binding model with the
hopping element ¢ = —3 eV and set the on-site energy to
zero. Transport properties are determined numerically
via an efficient, order-N real-space Kubo approach [20-
23]. The time- and energy-dependent diffusion coefficient
is calculated via D, (E,t) = AX(E,t)?/t, with the mean
quadratic displacement given as AX (FE,t)* = Tr[6(E —
H)|X(t) — X(0)P]/p(E), where p(E) = Tr[s(E — H)
represents the total density of states. Traces are approx-
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FIG. 2: (a) Density of states of a pristine (solid line) and
a disordered (dashed line) {16,9} superlattice. Note the ab-
sence of any signatures of van Hove singularities for the disor-
dered structure. The inset shows the ratio of group velocities
vy /ve of the pristine superlattice. (b) Density of states near
the Dirac point for three different disordered superlattices
{Nz,9}. (c) Density of states at the Dirac point for several
disordered superlattices, illustrating the approximately linear
dependence of the Dirac point DOS on the hole density.

imated via initial random phase states and the Lanczos
method [24], while the time evolution operator is ex-
panded in Chebyshev polynomials. We use 1500 itera-
tions in the Lanczos method, with broadening included
via an imaginary part 7 = 0.04 eV of the energy, while
the number of Chebyshev polynomials is determined by
requiring unitarity of the time evolution operator (within
an error of < 107%). The Kubo conductivity, includ-
ing quantum interference effects, can be calculated from
the diffusion coefficients as 0, (FE,t) = €2p(E)Dy(e,t)/2,
while the semi-classical conductivity reads oSS (E,t) =
e?p(E)max; D, (E,t)/2. Transport properties along the
y-direction are calculated similarly.

In Fig. 2a, solid lines illustrate the density of states
(DOS) for a pristine {16, 9} superlattice. Note the quasi-
one-dimensional nature of the DOS with clear signatures
of van Hove singularities. This is consistent with a pic-
ture of the superlattice as an array of weakly coupled
nanoribbons aligned along the easy direction. The large
aspect ratio of the superlattice unit cell results in a sub-
stantial anisotropy of the group velocity v, /v, as illus-
trated in Fig. 2a(inset). Note that for larger energies
(not shown), such anisotropy is much less pronounced,
as expected from the suppression of band structure ef-
fects for energies where the electron wavelength becomes
much smaller than the hole spacing. While an anisotropic
Fermi velocity should affect transport properties, any
effect relying critically on periodicity is bound to be
quenched significantly in experimental realizations due
to the presence of disorder.

We here consider this issue by focusing on lattices dis-
playing significant structural imperfections, inspired by
recent experimental fabrication and characterization of
graphene nanomeshes (or antidot lattices) [25]. In stark
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FIG. 3: Time- and energy-dependent diffusion coefficients D,
for a disordered {16, 9} superlattice. Solid blue (red dashed)
lines show the diffusion coefficient along the easy (hard) direc-
tion. (a) Short-time behaviour of D, illustrating strong lo-
calization along the hard direction. (b) Long-time behaviour
of D, illustrating quasi-ballistic transport along the easy di-
rection. (c¢) Maximum diffusion coefficients within the simu-
lation time span, shown versus energy. The symbols indicate
the energies to which results in panels a and b correspond.

contrast to the pristine case, the DOS of such disordered
structures (dashed line in Fig. 2a) becomes largely fea-
tureless, except for the presence of a peak at the Dirac
point. The disorder is thus sufficiently strong to wash
out the characteristics of the bandstructure associated
with the superlattice. In Fig. 2b we show a closer view
of the zero-energy DOS peak, for three different values of
N,. While the DOS resembles that of bulk graphene with
short-range impurities [26], the source of the zero-energy
peak is slightly different in our case, as we explicitly avoid
dangling bonds in our geometries. Instead, we attribute
the zero-energy peak to states emerging due to local sub-
lattice imbalances around the holes. These midgap states
are localized predominantly on the hole edges [19, 27].
Consistent with this picture, we illustrate in Fig. 2c the
proportionality of the zero-energy DOS with the density
of holes, quantified here via the dimensionless quantity
1/(N,N,).

As discussed above, the disorder considered is strong
enough to quench any effects emerging due to the peri-
odicity of the superlattice (such as anisotropic group ve-
locities). Instead, the scattering sources are determined
by the randomness in the position, radius, and internal
geometries of the holes. Despite the largely featureless
density of states, this results in drastically different trans-
port properties along the two directions, as illustrated in
Fig. 3. Here, we show the diffusion coefficients D,,(E, t)
for a disordered {16, 9} superlattice, for different energies
within 1 eV of the Dirac point. Along the easy direction,
the time dependence of the diffusion coefficients exhibits
(within our accessible timescale of 20 ps) a quasiballistic
behavior since D,, does not saturate (see Fig. 3a and b,
blue solid curves). In sharp contrast, along the hard axis

D, (F,t) manifests a weak increase at short times (up to
the range of 20 fs) before reaching its maximum value
(from which one evaluates the elastic mean free path)
and then strongly decays in time, as a result of quantum
interferences and localization pheneomena (Fig. 3a and
b, red dashed curves) [32].

We note that the total elapsed time of 20 ps consid-
ered in our calculations corresponds to sample dimen-
sions on the order of 800 — 1000 nm along the easy di-
rection and 100 — 180 nm along the hard direction (us-
ing L, (E) = 2\/tmaxDyu(E, tmax)). These results suggest
that not only will conductivities along the two directions
be of different orders of magnitude, but the tempera-
ture dependence should also indicate different transport
regimes. In particular, for longer elapsed times (corre-
sponding to wavepacket exploration of larger samples), a
metallic behaviour for oy, (T") should be measured along
one direction, while an insulating behavior for o..(7T)
should develop along the other.

In Fig. 3¢ we show the maximum value of the diffusion
coefficient within the simulated time span. We attribute
the sharp dip near zero energy to the localized zero-
energy modes discussed above in relation to the DOS.
As these states are predominantly localized around the
hole edges, they will naturally be more sensitive to multi-
ple scattering phenomena. Indeed, we find that the peak
in the mean free path coincides perfectly with the min-
imum of the DOS on either side of the Dirac point (see
Fig. 4). Additionally, we find that increasing the edge
disorder further deepens the zero-energy feature, while
features outside the energy range of the DOS peak are
comparably much less affected.

We extend our analysis by superimposing a random
distribution of long range impurities over the disordered
superlattice potential. This enforces a saturation of the
diffusion coefficients along both directions, giving access
to effective mean free paths in the x and y-directions. We
consider the addition of N long-range impurities, the ef-
fect of which is included in the on-site energies V,, =
(n|H|n) as V,, = Zivl €; exp(—|r, — r;|?/(2€?)), where
¢ sets the effective range, while the ¢; € [-W/2,TW/2]
are randomly distributed [28-30]. We take usual param-
eters W = |t| and ¢ = \/3a, and consider a very low
impurity concentration of 0.02%, sufficient to give rise
to a diffusive regime but low enough so that scatter-
ing remains dominated by the superlattice-driven ran-
dom potential. The elastic mean free path is calcu-
lated from the maximum of the diffusion coefficient,
le(E) = Dynax(E)/(2vp), with vp the Fermi velocity and
Dyhax(E) the maximum of the average diffusion coeffi-
cient, D(E,t) = (D,(E,t) + Dy(E,t))/2. To study the
transport anisotropy of the designed structures, we de-
fine the directional effective mean free paths [ (E) =
max; D, (E,t)/(2v,(E)). We note that while we find a
significant renormalization of the Fermi velocity for pris-
tine superlattices, such an effect, as discussed above, is
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FIG. 4: (a) Directional mean free paths [ ,, in units of the

graphene lattice constant, for disordered superlattices { N, 9}
with long-range impurities. Red lines show results for the
’hard’ direction, 7 ,, while blue lines indicate results for the
‘easy’ direction, I . (b) Corresponding semiclassical conduc-
tivities, in units of 282/h, along each direction.

absent for the level of disorder we consider here. We
thus use the pristine graphene Fermi velocity in all cal-
culations of mean free paths.

As evident in Fig. 4a, the anisotropy of the structure
is readily apparent in the mean free paths [};, which not
only differ in magnitude, but also exhibit distinct energy
dependencies, with I (F) almost featureless except for
the presence of a small dip near zero energy. The energy
dependence of [ is considerably richer, with a behaviour
similar to that seen in Fig. 3c, albeit with the peak and
subsequent dip slightly smeared by the addition of long-
range impurities. Our interpretation of the energy de-
pendence of [y remains the same as that discussed above
in relation to Fig. 3c. The directional mean free paths in
Fig. 4a are shown for increasing values of N,, illustrating
how this parameter serves as an effective way of tuning
the anisotropy of the scattering-mediated transport. In-
deed, [y is approximately linearly dependent on N, for
energies near the Dirac point. We stress that even though
the directional mean free paths are of similar magnitude
near the Dirac point, the transport regimes remain dis-
tinctly different, namely diffusive along the easy direction
while strongly localized along the hard direction. The
corresponding semi-classical conductivities are shown in
Fig. 4b, illustrating how, along the easy direction, the dis-
tinct behaviour of the mean-free path near zero energy is
counteracted by the corresponding density of states, re-
sulting in a largely flat plateau near the Dirac point. Note
that the width of the plateau decreases as N, is increased,
while the height of the plateau increases approximately
linearly with N,. The semi-classical conductivity along
the hard direction shows an entirely different energy de-
pendence, with a slight peak near the Dirac point. We
find that the zero-energy semi-classical conductivity is
nearly independent of N,, and shows an approximately
quadratic dependence on N, at non-zero energies near
the Dirac point. The horizontal dashed line in Fig. 4b
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FIG. 5: (a) Conductivity vs length for the disordered {16,9}
superlattice. Red lines show results for the 'hard’ direction,
Ozz, while blue lines indicate results for the ’easy’ direction,

oyy- Note the logarithmic scale on the ordinate. The hori-

zontal dashed line indicates the minimum value o5, in the

absence of quantum interference. (b) Ratio of conductivities
calculated at the maximum lengths of the simulated time span
of 20 ps. The dashed line indicates the ratio when quantum
interference effects are neglected for oxx. Circles indicate the
energies corresponding to the results in panel a.

indicates the minimum value, 05§ = 4e?/mh, a value

that has been demonstrated to fix the minimum semi-
classical conductivity in disordered graphene [31, 32].

While the ratios JSE /oS¢ of the semi-classical conduc-
tivities shown in Fig. 4 are less than an order of magni-
tude, transport along the hard direction enters the An-
derson localized regime, which will further maximize the
resulting transport anisotropy. To illustrate this behav-
ior, we study the disordered {16,9} superlattice in ab-
sence of long-range impurities. Fig. 5a shows the con-
ductivities 0, as a function of the sample dimensions
L, and L,. The location of the minimum semi-classical
conductivity o5¢ = 4e?/mh, indicated by the horizontal
dashed line in Fig. 5a, separates the different transport
regimes. For o, > o5¢ the system remains metallic
and the conductivity remains finite down to zero temper-
ature, whereas the length-dependent decay of o, below
o3¢ is evidence of the dominant role played by quan-
tum interferences, which successively drive the electronic
state from weak localization to the strong (Anderson)
localization regime.

Note that outside the initial transition regime, con-
ductivity along the easy direction becomes more than
an order of magnitude larger than along the hard di-
rection within our accessible computational time (or
length) scales. This trend is illustrated in Fig. 5b,
where the ratio oyy(Ly max)/0zz(Lemax) is shown. The
strongest anisotropy is seen near the Dirac point, where
scattering due to edge states around the holes is most
pronounced. As we further upscale sample size, the
transport anisotropy oyy(Ly)/0zz (L) will continuously
increase. A crossover to very strong anisotropy will



take place once the sample size along the hard di-
rection reaches the directional localization length &,.
This length scale can be estimated using & (F) =
IX(E) exp(rhoSC(E)/(2¢?)) [3]. For the {16,9} super-
lattice in absence of long-range impurities, we find that
the localization length along the hard direction is of the
order of 10 nm. In an experiment, our results suggest
that depending on the measurement geometry, the low
temperature conductivity could manifest a variable range
hopping in the hard direction (similar to the case of dam-
aged graphene [33]), whereas a metallic behaviour (and
finite conductivity value) will be measured in the per-
pendicular direction. To date such strong conductivity
anisotropy has never been reported in metallic materials,
or disordered graphene. By applying an external mag-
netic field, one may further tailor the anisotropy in the
semiclassical regime [34], while the modulation of magne-
totransport features at low fields and the quantum Hall
effect at high fields both deserve further consideration.
In conclusion, we have shown that disorder, while de-
stroying anisotropic velocity renormalization in perfect
graphene superlattices, retains a large anisotropic con-
ductivity by inducing strong localization along the hard
direction of transport. These results indicate that in-
evitable sources of disorder can serve as an important tool
in tailoring the unique transport properties of graphene.
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