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The physicochemical properties of transition metal oxides are 

directly determined by the oxidation state of the metallic cations. To 

address the increasing need to accurately evaluate the oxidation 

states of transition metal oxide systems at the nanoscale, here we 

present ‘Oxide Wizard’. This script for Digital Micrograph 

characterizes the oxidation states based on the energy-loss near edge 

structure (ELNES) and the position of the transition metal edges in 

the electron energy loss spectrum (EELS). This script allows the 

quantitative determination of the oxidation states with high spatial 

resolution. The power of the script is demonstrated by mapping 

manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles 

with sub-nm resolution in real space. 

 

 

Keywords: EELS, spectrum image, transition metal oxides, oxidation state, 

Digital Micrograph script, manganese oxide. 

 

1. Introduction 

Transition metal (TM) oxides have maintained the interest of researchers 

during decades due to their appealing physiochemical properties, which have 

resulted in many different applications in a broad variety of fields. Interestingly, 



many of these properties stem directly from their numerous possible oxidation 

states. Manganite perovskites, for example, have attracted much attention for 

their colossal magnetoresistance (CMR) properties which enable applications 

such as magnetoresistive tunnel junctions (Sun et al., 1997). Actually, CMR is 

closely related to the electronic inhomogeneity and double exchange ensuing 

from the Mn+3/Mn+4 mixed valence present in some doped manganites. Other 

fields where the TM valence is of great importance include mineralogy (van 

Aken et al., 1995; Cave et al., 2006; Loomer et al., 2007; Zhang et al., 2010), 

catalysis (Suchorski et al., 2005), electro-chemistry (Graetz et al., 2004) or 2D 

superconducting materials (Logvenov et al., 2009) among many others. 

The oxidation state can be defined as the number of electrons a given 

atom contributes to the bond, i.e. the hypothetical charge the atom would have 

in a purely ionic picture (McNaught & Wilkinson, 1997), and it is directly linked 

to the occupation of the 3d energy bands near the Fermi level of the material. 

However, the formal oxidation state differs from the actual charge on the TM 

atom (Luo et al., 2007), as the bonds have a marked covalent character. 

Importantly, for the accurate characterization of complex TM oxides and 

to properly understand their functional properties, measuring the oxidation 

state, i.e. the 3d band occupation, is of vital importance. Electron energy-loss 

spectroscopy (EELS) has been routinely used in order to obtain information on 

this electronic property, and there are a vast number of publications about the 

link between the oxidation state and the energy-loss near-edge structure 

(ELNES) of the L2,3 edges (2𝑝 → 3𝑑 − like transitions) (Rask et al., 1987; 

Paterson & Krivanek, 1990; Colliex et al., 1991; Garvie & Craven, 1994; Garvie & 

Buseck, 1998; Botton et al., 1995; Wang et al., 2001; Daulton et al., 2002; 
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Turquat et al., 2001; Gloter et al., 2001; Cave et al., 2006; Kourkoutis et al., 

2006; Schmid & Mader, 2006; Riedl et al., 2006; Meneses et al., 2007; Loomer 

et al., 2007; Riedl et al., 2007; Riedl et al., 2008; Arevalo-Lopez et al., 2009; 

Varela et al., 2009). Many methods have been reported to relate the L2,3 ELNES 

and oxidation state, mainly through the measurements of L23 intensity ratios. 

However, most of these methods are not reliable when the signal-to-noise ratio 

(SNR) is poor, as is typically the case in 2D EEL spectrum images with short 

acquisition times per pixel. Here, we present Oxide Wizard, a script for Digital 

Micrograph which characterizes the shape and position of the transition metal 

edge and reliably produces maps of the 3d metal oxidation state. 

 

2. Background, materials and methods 

2.1 Background 

Given the importance of the accurate determination of oxidation state in 

these materials, several procedures exist in order to correlate the features in the 

ELNES of the TM absorption edges with the oxidation state. Here we describe 

some of those procedures, based on the analysis of the L2,3 edge or the O K edge 

observed in a typical EELS spectrum as in Fig. 1, which are already reported in 

the literature: 

 White line ratio: in the case of TMs there are two clear peaks near 

the L2,3 edge onset. These are the so-called white lines (WL), its name arising 

from the fact that they appeared as bright, overexposed stripes in X-rays and 

still appear as bright stripes in EEL spectra (Leapman et al., 1982). They 

originate in transitions from the 2p to the 3d bands and their separation 



corresponds to the spin-orbit splitting from the ground states of the transition 

(2p3/2 → 3d) and (2p1/2 → 3d). Intuitively, the ratio between the two peaks 

should correspond as well to the occupation of the ground states (2:1) if the final 

density of states was the same for all electrons. Experimentally, this is not 

observed although in many cases, and the changes in the ratio have been 

successfully related to oxidation states (van Aken et al., 1998; Graetz et al., 

2004; Schmid & Mader, 2006; Riedl et al., 2006; Varela et al., 2009). There are 

several methods for extracting the WL intensities. Amongst them, the Pearson 

or step function method (Pearson et al., 1993; Estrade et al., 2012), where a 

linear model of the continuum is subtracted. The measurement of the L23 

intensity ratios has been one of the most used techniques for oxidation state 

investigations, but it is very important to keep in mind that other characteristics 

than oxidation state, such as spin state, coordination geometry and ligand types, 

may play an important role (Daulton et al., 2002; Gilbert et al., 2003). 

Moreover, WL ratio increases with increasing thickness of the sample, but this 

effect can be removed by deconvolution of the low-loss spectrum (Tan et al., 

2012). Methods based on the second derivative (Botton et al., 1995) have also 

been used. 

 TM L edge onset (chemical shift): the onset of edges will roughly 

correspond to the lowest energy of the final state. The position of the edge will 

change with changes in binding energy of the core level. In general, the edges 

move to higher energies for higher oxidation states (Tafto & Krivanek, 1982; 

Rask et al., 1987; Daulton et al., 2002; Gilbert et al., 2003; Riedl et al., 2007;, ). 

This energy shift is usually referred to as chemical shift (Egerton R. F., 1996).  

 O K onset: even if the nominal oxidation state of oxygen atoms is -

2, the position of the K edge can be substantially different for different 
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compounds. In manganese compounds, the position of the oxygen K edge 

moves monotonically to lower energies for higher oxidation states of the cation 

(Gilbert et al., 2003; Laffont & Gibot, 2010; Tan et al., 2012), but this trend is 

not maintained for all TM oxides. 

 L3 FWHM: two important aspects influence the width of the L3 

peak: the oxidation state and the mixture of oxidation states. A slight change in 

the width of the peak with oxidation state was shown by Riedl et al. (Riedl et al., 

2007) while it had previously been calculated by Sherman (Sherman, 1984) and 

Kurata and Colliex (Kurata & Colliex, 1993). However, the sensitivity to the 

oxidation state is very low, around 20% as calculated by Riedl with good SNR. 

However, the width of the peak contains information about mixed valences. The 

L2,3 edges for materials containing TMs in different oxidation states can be 

regarded as the superposition of two edges of the different oxidation states 

rather than a single edge of the average valence. 

 TM L to O K energy distance: taking into account that the oxygen 

K edge onset and that of the TM both shift, the relative distance between the two 

of them is an interesting feature of the spectrum when no absolute energy 

positions can be determined. This quantity is related to the energy difference 

between the 1s level of the oxygen and the 2p3/2 level of the TM. While it may be 

equivalent to the TM edge onset if the O 1s state remains the same (Arevalo-

Lopez et al., 2009), this quantity is generally different due to the non-

monotonicity between the oxidation state and the O K edge position. This 

feature is still particularly useful when no absolute positions can be determined.  

 L2-L3 energy distance: the difference in energy between the L3 and 

the L2 peaks is a feature rarely used in previous work. The separation of the 

peaks arises from the spin-orbit splitting from the ground states of the 



transitions (2𝑝3/2 → 3𝑑) and (2𝑝1/2 → 3𝑑). Therefore, any change in the 

separation is related with the changes in the ground states.  

 O K peak-separation method: The energy separation between the 

O K pre-peak and the edge main peak is a highly successful and accurate 

approach to measure oxidation states, which has been tested both 

experimentally (Varela et al., 2009) and (Luo et al., 2009). This method, 

however, is difficult to use in complex heterosystems such as interfaces between 

two oxides due to beam broadening and cross-talk effects. 

 

All these methods yield consistent results when used on data with good 

SNR. However, a good SNR is hardly found when working with complex data 

sets such as two dimensional spectrum images. Thanks to the recent advances in 

electron microscopes (Gubbens et al., 2010) the number of spectra available in a 

single spectrum image (SI) is rapidly increasing. Therefore, a procedure to 

extract reliable oxidation state information from a great number of spectra at a 

time is needed. In order to address this need, we have developed the Oxide 

Wizard software, an automated routine for Gatan Digital Micrograph (DM). As 

we will show, our approach offers a method for characterizing the white lines of 

transition metals in a reproducible, reliable manner, including all the necessary 

tools in a single interface. 

 

2.2. Materials and methods 

To demonstrate the power of the script we have studied the Mn oxidation 

states in Fe3O4/Mn3O4 core/shell nanoparticles. The nanoparticles were grown 
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using the seeded-growth method (Salazar-Alvarez et al., 2011, Lopez-Ortega et 

al., 2012), the Mn-oxide layer was grown on Fe3O4 11 nm seeds by hot injection.  

Importantly, to calibrate the script, bulk materials with known oxidation 

states are necessary. In our case, since we are interested in the Mn oxidation 

states, a number of different bulk manganese oxides (MnO, Mn3O4, Mn2O3 and 

MnO2) were synthesized by our colleagues in Ciència de Materials i Enginyeria 

Metal·lúrgica in the department of chemical engineering of the University of 

Barcelona. The structure of the samples was confirmed by X-ray diffraction. The 

calibration was carried out in a Jeol JEM 2010F operated at 200kV and 

equipped with a Gatan GIF spectrometer. 

EEL spectrum images of the nanoparticles studied where acquired in an 

aberration-corrected Nion UltraSTEM200 operated at 200 kV and equipped 

with a Gatan Enfinium spectrometer at Oak Ridge National Laboratory. 

 

2.3. Steps of the analysis 

The script, written in Digital Micrograph scripting language, is divided in 

several sequential steps which are summarized in the flow chart in Fig. 2. 

The first three steps are optional and allow the user to improve the 

quality of the data to ease further analysis. The first step consists on the 

deconvolution of the low-loss region of the spectrum. Core-loss edges are 

usually broadened because of the effects of multiple scattering. If the sample is 

not thin enough, it is likely that the electrons suffering inelastic scattering will 

also undergo at least a plasmon excitation, broadening the ELNES and, hence, 



changing the shape of the continuum. If the measurements are carried out in a 

thin specimen or in an area of the sample with constant thickness and only used 

for comparison purposes, low-loss deconvolution is not necessary. Otherwise, 

deconvolution of the low-loss region is typically required. This step can be 

achieved using the Fourier ratio deconvolution already available in the DM 

EELS package. Binning can be achieved by summing spectra, and it can be 

helpful when the dataset is very noisy or when performing test runs on very 

large spectrum images. 

Next, an energy drift correction procedure can be carried out. This 

step is based on the presence of other peaks other than the TM or the oxygen in 

the spectra. It consists on choosing an edge in one single spectrum with a region 

of interest (ROI) tool provided by the script. The energy drift is calculated using 

a cross correlation of that region of the reference spectrum and the rest of the 

spectra. A new, drift-corrected spectrum image is created. If it is not possible to 

use an edge other than the oxygen or the TM, drift correction is still useful. If 

the energy drift is too large, the adequate ROI for a single spectrum will be 

inadequate for the rest and the analysis can fail. The absolute peak position of 

the TM edge is lost if we apply the drift correction procedure on it, but the 

relative position to O K edge may still be valuable 

Subsequently, the onset of the oxygen K edge is analyzed. The onset 

is located at the minimum of the rise. Choosing the first peak of the oxygen with 

a ROI, the onset is found as a minimum in a modified second derivative, 

equivalent to the second derivative filter in DM, where maxima in the original 

function correspond to maxima in the filtered version. The modification inverts 
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the second derivatives in order to locate maxima that correspond to minima in 

the actual second derivative of the function. 

Finally, the ELNES of the TM is characterized by finding the positions 

of the maxima of the two white lines, the onset of the L3, the minimum in 

between and the end of the L2. It must be noticed that before this analysis the 

background needs to be subtracted (by using power-law fits in DM or other 

models). After placing a ROI on the white lines of a single spectrum, the script 

calculates the second derivative, finds the maximum and fits a Gaussian curve to 

it. This maximum corresponds to the first white line. This curve is then used to 

calculate the position of the by cross correlating it with the second derivative of 

the spectrum. A cross-correlation is used since it is easily and rapidly calculated 

in DM, and it is robust against noise and it enhances actual white line peaks in 

the second derivative against local maxima and minima. 

The cross-correlation has a few distinct features: a global maximum 

placed at zero position and a series of peaks which match the greater features of 

the second derivative of the spectrum. The minimum before the first white line 

is taken as the onset of the edge. The global maximum not corresponding to the 

zero position, found as the maximum of the cross-correlation after a few eV 

from the zero, corresponds to the second white line. The two other features are 

less important for the analysis, but are calculated anyway for further data 

treatment. The valley between the WL and the end of the ELNES are found as 

the minima after the first and second white lines respectively. The result can be 

used to detect any error in the peak detection. 

Once the features of the ELNES are located, we already have the 

information about the absolute positions of the lines. However, if we want to 



integrate the areas under the peaks, it is necessary to remove the contribution of 

the continuum (Pearson et al., 1993). A few methods have been devised for this 

purpose, such as modeling it with Hartree-Slater cross sections. This method 

calculates the continuum contribution with a neutral atom cross section. 

However, a simpler alternative is a linear fitting of the continuum, i.e., the 

Pearson method, which has been chosen for its simplicity and for having results 

similar to those of Walsh Dray (Pearson et al., 1993). For this method, the 

continuum is modeled as a two step function with the steps centered under the 

peaks, with a height ratio of 2:1 from first to second and with a slope calculated 

by a linear fit of the continuum after the peaks. This function is subtracted from 

the data before the intensity under the peaks is calculated. The script allows the 

user to decide the width of the integrating windows and also the continuum 

modeling region. 

The script can present the results for a single spectrum or for the whole 

spectrum image. In both cases the results can be refined by fitting the peaks 

after the continuum subtraction with two Gaussian curves. The final results 

provided by the script are the TM edge onset, the white line L23 ratio, the energy 

split between the two WLs, the energy between the O K and the TM L2,3 edge 

and the FWHM of the first WL.  

 

3. Results 

3.1. Calibration test on MnxOy oxides 

In Figure 3, single spectra for the four different bulk manganese oxides 

considered (MnO, Mn3O4, Mn2O3 and MnO2) are shown. The differences in the 
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O K edges and the Mn L2,3 edges are clear, the L3/L2 ratio decreases with 

oxidation state and the O K onset position increases. Rather than calibration 

curves, we have preferred the two-parameter method introduced by Daulton 

(Daulton et al., 2002) in chromium and performed by Tan on manganese and 

iron oxides (Tan et al., 2012). This method presents the results of the two WL 

features in the same plot. While a single parameter can be misleading, the two-

parameter method makes the characterization easier. The results of this 

procedure are plotted as two-parameter charts in Figure 4. The Mn L2,3 onset is 

discarded, as there was no absolute measure of the position. Similarly, the L3 – 

L2 distance is not used since it did not show relevant changes in the data. The 

white line ratio did show the expected changes, and in Figure 4a it is plotted 

against the O K to Mn L3 distances, which also showed a large change between 

oxidation states. In the chart, although the different formal oxidation states are 

separated, the Mn3O4 (in red) and Mn2O3 (in blue) show data clouds very close 

to one another, with some data points overlapping. To avoid ambiguity in the 

analysis, a third parameter, FWHM of L3 peak, is introduced. As it can be clearly 

seen in Figure 4b, in this case all the data clouds, and particularly Mn3O4 and 

Mn2O3 ones, are well separated. 

 

Mn2O3 has a single oxidation state, with Mn3+, while Mn3O4 contains a 

mixture of Mn3+ and Mn2+ in a two-to-one ratio. The measured edge can be seen 

as a superposition of both oxidation states. The onset of the edge for Mn3O4 is, 

therefore close to that of the Mn2O3 edge, both given by the Mn3+ contribution. 

However, there was a variation in O K position, so the distance between O and 

Mn edges showed a change. The white line ratio is also very close for the two 



compositions. However, the FWHM of the mixed oxide is expected to be larger, 

since the L3 will be a superposition of two displaced peaks. The experimental 

results corroborate this point. 

 

3.2. Mn oxidation state determination application 

Once the parameters for the edges of the diverse manganese oxide 

reference materials have been established, the routine can be applied to a 

sample of unknown oxidation state. The sample consists of core-shell 

nanoparticles, where the core corresponds to an iron oxide and the shell to a 

manganese oxide. A high angle annular dark field (HAADF) image of a 

nanoparticle is shown in Figure 5a. In this image, the core and the 

inhomogeneous shell are difficult to tell apart. If we carry out a multiple linear 

least squares (MLLS) fitting of the EELS spectrum image for the iron and 

manganese edges, we can obtain a composite image with compositional 

contrast, as shown in Figure 5b. In this figure, the iron oxide core appears as a 

round particle presented in red, while the manganese oxide grows as 

discontinuous crystallites around the core (in green). 

The spectrum image has been fitted to two single spectra in Fig. 6a from 

the surface (orange) and the inner part (blue) of the Mn oxide shell. The two 

spectra had different characteristics, pointing to different oxidation states. The 

red spectrum, extracted from the surface region has higher WL ratio, a thinner 

L3 and with an onset shifted to lower energies than the green spectrum 

extracted from the inner parts of the manganese oxide shell. The result of the 

fitting is shown in Fig. 6b, where we can observe a distribution of manganese 
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oxidation states. However, the MLLS fitting maps only offer qualitative 

information if we do not have more prior information about the sample. We 

then apply OW to quantify the results. 

 

The spectra were rather noisy, so multivariate analysis was applied prior 

to OW. This kind of analysis will be explained next. The script has been applied 

to the whole spectrum image, consisting on 100x70 single spectra as the one 

shown in Fig. 5c, both with and without low-loss deconvolution, The differences 

in both procedures were negligible, mainly due to the small thickness of the 

particle, which, along with the carbon support summed only 0.3 inelastic mean 

free paths. The results of the deconvolved spectra are shown in Fig.7. The Mn 

white line ratio (Fig. 7a) in the particle ranges from 3 to 3.5. The FWHM of the 

L3 line (Fig. 7b) has values between 4 and 6 eV, and the energy separation 

between the O K edge and the Mn L2,3 (Fig. 7c) goes from 112 to 115 eV. 

 

4. Discussion 

In the manganese oxide shell, two different regions can be seen, 

corresponding to the surface and the inner areas of the shell. At the surface, the 

values of both the WL ratio (3.5) and the O-Mn distance (112 eV) point to a 

MnO-like composition according to the two parameter chart in Fig. 4 with an 

oxidation state of Mn2+. In the inner regions of the shell, displayed in green in 

Fig. 7a and in the range green to yellow in Fig. 7b, the WL ratio is around 3, and 

the O-Mn distance is around 115 eV. In Fig.4, however, these values do not 

correspond to any of the reference oxidation states. The values lie between Mn2+ 



and Mn2.66+. The spectra for the inner regions of the manganese oxide result 

from a superposition of the inner and outer areas, as the electron travels 

through the entire thickness of the sample. Therefore, the actual oxidation state 

in the inner part must be higher than measured. Using the FWHM 

measurements, the differences between the surface and the interior of the 

manganese regions is of 2 eV, the same difference found between Mn2+ and 

Mn2.66+. Therefore, we can assume that the oxidation state of manganese ranges 

from Mn2+ at the surface to Mn2.66+ in the inside. Interestingly, in our bulk 

compounds a nominal oxidation state of +2.66 would on average be found in 

Mn3O4. Consequently, our results indicate than the shell of the particles may be 

composed by an inhomogeneous Mn oxide, with a mixture of MnO at the 

surface and Mn3O4 rich areas within the shells. 

5. Conclusions 

A script for Digital Micrograph, Oxide Wizard, has been developed to 

characterize the white lines found in the ELNES of transition metals, dealing 

with large spectrum images in a systematic, reproducible, way. As an output, the 

script plots the white line ratio, the oxygen K edge onset, the TM edge onset, the 

difference between both, the FWHM of the TM first WL and the separation of 

the WLs. From these parameters, and using the WLs reference compounds, 

quantitative information on the oxidation state of the samples can be easily 

obtained. This procedure has been applied to iron oxide/manganese oxide 
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core/shell nanoparticles with unknown manganese oxidation states. The results 

evidence, with sub-nm resolution, the existence nano-domains with distinct 

oxidation states consistent with the presence of Mn3O4 in the interior of the 

shell and MnO rich regions near its surface. Hence, Oxide Wizard has been 

demonstrated to be very effective and reliable script capable of dealing with 

large datasets that permits real time processing of data within the Digital 

Micrograph interface.  
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Figure 1: Single spectrum of a manganese oxide, including the oxygen K 

edge and the Mn L2,3 white lines. 
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Figure 2: Flow chart of the script, starting with a spectrum image and 

ending in the results. 

  



 

Figure 3: Single spectra of the different manganese oxide reference 

materials used for data extraction for Mn formal oxidation ratios ranging from 2 

to 4, displaced in the intensity direction. The spectra are aligned at the Mn L2,3 

edge. 
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Figure 4: Two-parameter chart combining a) white line ratios and O K 

to Mn L3 distances and b) O K to Mn L3 distances and FWHM of the L3 peak for 

Mn formal oxidation ratios ranging from 2 to 4. 

  



 

Figure 5: a) HAADF image of the particle and b) composite image of 

MLLS fitting of the spectrum image to the iron and manganese L edges. c) 

Single spectrum showing the oxygen K, manganese L2,3 and iron L2,3 edges. 
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Figure 6: a) Mn L2,3 edges extracted from the border (in orange) and 

the inner area (in turquoise) of the manganese oxide shell and b) composite 

image of MLLS fitting of the spectrum image to the two spectra in a. 
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Figure 7: Different outputs of the Oxide Wizard script: a) WL ratio. b) 

L3 FWHM after Gaussian fitting. c) O K to Mn L3 distance. 
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