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Abstract

We present an R package for the simulation of simple and complex survival data.
It covers different situations, including recurrent events and multiple events. The main
simulation routine allows the user to introduce an arbitrary number of distributions,
each corresponding to a new event or episode, with its parameters, choosing between the
Weibull (and exponential as a particular case), log-logistic and log-normal distributions.
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1. Introduction

This paper describes the R (R Core Team 2014) package survsim (Moriña and Navarro 2014)
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/package=survsim for the simulation of simple and complex survival data, including
multiple and recurrent survival data.

Compared to the simulation of other types of data, the process of simulating survival data
requires certain specific considerations. First, to simulate the (randomly right) censored
observations, we need to simulate a lifetime vector and, independently, a censoring time
vector. On the other hand, there are various situations which make true survival data much
more complex. The phenomenon of interest could occur more than once in a given individual
(recurrent events), or perhaps we are interested in the instantaneous analysis of multiple events
of different types. Moreover, we can work with dynamic cohorts in which an individual may
be incorporated to follow-up after the study has begun, or an individual may be incorporated
to follow-up after being at risk for some time. Discontinuous risk intervals or individual
heterogeneity (propensity of an individual to suffer an event due to hidden variables) are
other phenomena which involve situations that make simulation even more difficult.

http://www.jstatsoft.org/
http://CRAN.R-project.org/package=survsim
http://CRAN.R-project.org/package=survsim


2 survsim: Simulation of Survival Data in R

Function Purpose

simple.surv.sim Simulation of standard survival times.
mult.ev.sim Simulation of survival times in a context of multiple events.
rec.ev.sim Simulation of survival times in a context of recurrent events.
accum Aggregation of data generated by one of the above functions by

subject.

Table 1: Main functions of survsim package.

Although there is an increasing interest, and need, to apply survival analysis to data sets with
multiple and recurrent events per subject (Therneau and Grambsch 2000), very few published
articles are available in the literature which make use of the simulation of complex survival
data, one possible reason being a lack of easily used tools facilitating such simulations. Stata
(StataCorp. 2013) has the SURVSIM module for the simulation of complex survival data,
also in a context of non-proportional hazards, as described by Crowther (2011). Also, the
PermAlgo package (Sylvestre, Evans, MacKenzie, and Abrahamowicz 2013) is available on
CRAN, which allows simulating survival times based on an extension of the permutational
algorithm introduced in Abrahamowicz, MacKenzie, and Esdaile (1996). The analysis of this
type of data can be performed in R using the eha package (Broström 2014), which allows
fitting models for recurrent and multiple events, as well as other contexts (Broström 2012).

2. Overview

The basic structure of the package survsim is detailed in Table 1. The package is based on
three functions that generate data frames of simulated survival data in the contexts described
in Table 1. Once a simulated data frame containing individual data is generated, the function
accum allows the user to aggregate the data by subject.

In the next section we will describe the kind of data we are dealing with, in its simpler form,
and give an example of the use of the package on the simulation of simple, single-event survival
data. In Section 4, we will describe the simulation of multiple-event survival data and provide
an example of the use of the package related with the appearance of adverse events in a clinical
trial. The use of the package applied to recurrent events will be described in Section 5, based
on an example about recurrent sick leave episodes. The structure of the data frame returned
by the functions of the package is detailed in Section 6. Section 7 is focused on aggregated
data instead of individual results, where for each subject only the total number of episodes and
the accumulated follow-up are known. Finally, some applications using R packages survival
(Therneau 2014; Therneau and Grambsch 2000) and MASS (Venables and Ripley 2002) for
all the kinds of survival and aggregated data introduced throughout the paper are shown in
Section 8.

3. Simple survival data

3.1. Description

Survival analysis is generally defined as a set of methods for analyzing data where the outcome
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Table 2: Functions involved in the simulations. Θ is the standard normal cumulative distri-
bution.

variable is the time until the occurrence of an event. If the event of interest can occur only
once in the same individual, we talk of standard or simple survival analysis.

In order to simulate censored survival data, two survival distributions are required, one for
the uncensored survival times that would be observed if the follow-up had been sufficiently
long to reach the event and another representing the censoring mechanism. The uncensored
survival distribution could be generated to depend on a set of covariates with a specified
relationship with survival, which represents the true prognostic importance of each covariate
(Burton, Altman, Royston, and Holder 2006). survsim allows simulation of times using
Weibull (and exponential as a particular case), log-normal and log-logistic distributions, as
shown in Table 2.

In survsim, the first step to generate the uncensored survival distribution is to simulate a
process T ′i , i = 1, . . . , n subjects, based on the mentioned distributions. To induce individual
heterogeneity or within-subject correlation we generate Zi, a random effect covariate that
follows a particular distribution (uniform, gamma, exponential, Weibull or inverse Gaussian).

ti = t′i × zi (1)

When zi = 1 for all subjects, this corresponds to the case of individual homogeneity and the
survival times are completely specified by the covariates.

Random non-informative right censoring, Ci, can be generated in a similar manner to T ′i , by
assuming a particular distribution for the censoring times (Table 2), but without including
any covariates or individual heterogeneity.

The observation times, Y ′i , incorporating both events and censored observations are calculated
for each case by combining the uncensored survival times, Ti, and the censoring times, Ci. If
the uncensored survival time for an observation is less than or equal to the censoring time, then
the event is considered to be observed and the observation time equals the uncensored survival
time, otherwise the event is considered censored and the observation time equals the censoring
time. In other words, once ti and ci have been simulated, we can define Y ′i = min(ti, ci) as
the observation time with δi an indicator of non-censoring, i.e., δi = I(ti ≤ ci).

While all y′i start at 0, survsim allows to create dynamic cohorts. We can generate entry times
higher than 0 (individuals joining the cohort after the beginning of follow-up) by adding a
random value t0 from an uniform distribution in [0, tmax ], where tmax is the maximum time
of follow-up. We can also simulate subjects at risk prior to the start of follow-up (y′i = 0), by
including an uniform distribution for t0 between [−told , 0] for a fixed percentage of subjects,
where told is the maximum time a subject can be at risk prior to the start of follow-up. Then:

yi = y′i + t0, (2)
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Table 3: Properties of the distributions. E[t] is defined if β0 +Xjβj > 1. VAR[t] is defined if
β0 +Xjβj > 2.

where t0 ∼ U [0, tmax ] if entry time is 0 or more and t0 ∼ U [−told , 0] if entry time is less than
0.

Therefore, t0 represents the initial point of the episode, yi the endpoint and y′i is the duration.
Note that y′i + t0 can be higher than tmax , in which case yi will be set at tmax and δi = 0.
Observations corresponding to subjects at risk prior to the start of follow-up have t0 negative,
so for these the initial point of the episode will be set at 0. yi may also be negative, but in
this case the episode will not be included in the simulated data since it will not be observed
in practice.

In accordance with the parametrizations described in Table 2, the times T ′i and Ci may be
generated as indicated in Table 3.

3.2. Simulating simple survival data

In a context of single-event data without left-censoring, the main function is simple.surv.sim,
which calls the internal function simple.ev.sim in order to simulate the data for each indi-
vidual. A call to this function might be

simple.surv.sim(n, foltime, dist.ev, anc.ev, beta0.ev,

dist.cens = "weibull", anc.cens, beta0.cens, z = NA, beta = NA, x = NA)

The description of these arguments can be summarized as follows:

� n: Integer value indicating the desired size of the cohort to be simulated.

� foltime: Real number that indicates the maximum time of follow-up of the simulated
cohort.

� dist.ev: Time to event distribution, with possible values "weibull", for Weibull dis-
tribution, "lnorm" for log-normal distribution and "llogistic" for log-logistic distri-
bution.

� anc.ev: Ancillary parameter for the time to event distribution.

� beta0.ev: β0 parameter for the time to event distribution.

� dist.cens: String indicating the time to censoring distribution, with possible values
"weibull" for Weibull distribution (this is the default value), "lnorm" for log-normal
distribution and "llogistic" for log-logistic distribution. If no distribution is specified,
the time to censoring is assumed to follow a Weibull distribution.
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� anc.cens: Real number containing the ancillary parameter for the time to censoring
distribution.

� beta0.cens: Real number containing the β0 parameter for the time to censoring distri-
bution.

� z: Vector with three elements that contains information relative to a random effect
used in order to introduce individual heterogeneity. The first element indicates the
distribution, where "unif" stands for a uniform distribution, "gamma" stands for a
gamma distribution, "exp" stands for an exponential distribution, "weibull" stands
for a Weibull distribution and "invgauss" stands for an inverse Gaussian distribution.
The second and third elements indicate the minimum and maximum in the case of a
uniform distribution (both must be positive) and the parameters in the case of the rest
of distributions. Note that just one parameter is needed in the case of the exponen-
tial distribution. Its default value is NA, indicating that no individual heterogeneity is
introduced.

� beta: List of vectors indicating the effect of the corresponding covariate. The number
of vectors in beta must match the number of covariates, and the length of each vector
must match the number of events considered. Its default value is NA, indicating that no
covariates are included.

� x: List of vectors indicating the distribution and parameters of any covariate that the
user needs to introduce in the simulated cohort. The possible distributions are nor-
mal distribution ("normal"), uniform distribution ("unif") and Bernoulli distribution
("bern"). Its default value is NA, indicating that no covariates are included. The num-
ber of vectors in x must match the number of vectors in beta. Each vector in x must
contain the name of the distribution and the parameter(s), which are: the probability
of success in the case of a Bernoulli distribution, the mean and the variance in the case
of a normal distribution; and the minimum and maximum in the case of a uniform
distribution.

3.3. Example: First fall on residents admitted to a long-term care center

We are interested in simulating the time to first fall suffered by residents admitted to a long-
term care center. Using the estimates obtained for this data by Ancizu and Navarro (2009),
we generate a cohort of n = 300 residents, who are followed for 365 days. We consider two
covariates representing the cognitive and physical impairment.

R> library("survsim")

R> dist.ev <- "weibull"

R> anc.ev <- 1

R> beta0.ev <- 5.268

R> dist.cens <- "weibull"

R> anc.cens <- 1

R> beta0.cens <- 5.368

R> x <- list(c("bern", 0.3), c("bern", 0.4))

R> beta <- list(-0.4, -0.25)
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R> simple.dat <- simple.surv.sim(300, 365, dist.ev, anc.ev, beta0.ev,

+ dist.cens, anc.cens, beta0.cens, , beta, x)

As we will see in detail on Section 6, the object simple.dat has class ‘simple.surv.sim’, an
extension of class ‘data.frame’, with its own summary method, giving relevant information
about the simulated cohort:

R> summary(simple.dat)

Number of subjects at risk

----------------------------

sub.risk

300

Number of events

----------------------------

num.events

172

Proportion of subjects with event

----------------------------

mean.ep.sub

0.5733333

Total time of follow-up

----------------------------

foltime

28509.71

Time of follow-up (median)

----------------------------

med.foltime

64.68469

Density of incidence

----------------------------

dens.incid

0.006033032

4. Multiple event survival data

4.1. Description

Multiple event data occurs when each subject can have more than one event of entirely
different natures (Kelly and Lim 2000). Examples of this type of events are the occurrence of
tumors at different sites in the body or multiple sequalae after surgery.
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id start stop δ x k

1 0 19 0 0 1
1 0 19 0 0 2
1 0 19 0 0 3
2 0 5 1 1 1
2 0 30 0 1 2
2 0 23 1 1 3

Table 4: Occurrence of tumors.

For example, let k = 3 be possible adverse effects from taking some new drug in a clinical
trial. We assume that the researchers define malaise (k = 1), vomiting (k = 2) and headache
(k = 3). Table 4 represents the data structure for the events of two patients. This style of
input is used to represent the counting process formulation (Aalen 1978), where each subject
i is represented by k intervals: start ik, stopik, δik (non-censoring indicator), xik (covariate
vector), with (start ik, stopik] being the interval of risk.

The first patient, with value 0 in the covariate, had no event and was censored on day 19.
The second patient had malaise and headache, on days 5 and 23 respectively, and was at risk
of vomiting until the end of follow-up (30 days).

Simulations can be conducted to generate multiple event data. In a similar way that we can
simulate k simple independent survival distributions, we can obtain the observation time of
the kth event in the ith subject, yik. The difference here is that we simulate k uncensored
survival times and only one censoring time. Note that, in multiple-type events, Tik and Ci are
mutually independent and, furthermore, the failure in each event is independent of the others
(within each subject all yik are independent for all k). In the case of multiple events, startik
is defined to be always equal to 0, since we assume that one is at risk of any of the events
from the same instant in time and that no individuals were at risk before the beginning of
follow-up. Also, stopik = yik.

4.2. Simulating multiple events

In a context of multiple event data, the main function is mult.ev.sim, which calls the internal
function mult.ev.ncens.sim in order to simulate the data for each individual. A call to this
function might be

mult.ev.sim(n, foltime, dist.ev, anc.ev, beta0.ev, dist.cens = "weibull",

anc.cens, beta0.cens, z = NA, beta = NA, x = NA, priskb = 0, nsit)

The description of these arguments can be summarized as follows:

� dist.ev: Vector of arbitrary size indicating the time to event distributions, with possible
values "weibull", for Weibull distribution, "lnorm" for log-normal distribution and
"llogistic" for log-logistic distribution.

� anc.ev: Vector of arbitrary size of real components containing the ancillary parameters
for the time to event distributions.

� beta0.ev: Vector of arbitrary size of real components containing the β0 parameters for
the time to event distributions.
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� nsit: Number of different events that a subject can suffer. It must match the number
of distributions specified in dist.ev.

All remaining arguments are defined as specified for simple.surv.sim.

In order to get the function to work properly, the length of the vectors containing the param-
eters of the time to event and the number of distributions indicated in the argument dist.ev
must be the same.

4.3. Example: Simulated clinical data

We continue with the clinical trial example introduced in Section 4.1. In this case it is con-
venient, in the simulated cohort, to restrict the number of different events an individual may
suffer to 3, which we do by setting nsit = 3. Also, we consider that the time to right cen-
soring follows an exponential distribution, and hence we are dealing with a special case of
the Weibull distribution with a value for parameter anc.cens = 1. Imagine now that our
researchers suspect that the appearance of adverse effects is related with the values of three
covariates with distributions x ∼ N(26, 4.5), x.1 ∼ Unif (50, 75) and x.2 ∼ Bern(0.25). For
example, we could consider that x represents body mass index of the individuals, x.1 repre-
sents age at entry to the cohort of each individual and x.2 is a dichotomous variable indicating
whether or not the subject has hypertension (we assume a prevalence of hypertension in the
target population of around 25%). Notice that the parameter β corresponding to a covariate
can vary depending on the event. The simulation of a cohort such as that described could be
achieved by a call such as:

R> dist.ev <- c("weibull", "llogistic", "weibull")

R> anc.ev <- c(0.8, 0.9, 0.82)

R> beta0.ev <- c(3.56, 5.94, 5.78)

R> beta <- list(c(-0.04, -0.02, -0.01), c(-0.001, -0.0008, -0.0005),

+ c(-0.7, -0.2, -0.1))

R> x <- list(c("normal", 26, 4.5), c("unif", 50, 75), c("bern", 0.25))

R> clinical.data <- mult.ev.sim(n = 100, foltime = 30, dist.ev, anc.ev,

+ beta0.ev, dist.cens = "weibull", anc.cens = 1, beta0.cens = 5.2,

+ z = c("unif", 0.6, 1.4), beta, x, nsit = 3)

With this command we are generating a cohort of 100 individuals followed for a maximum
of 30 days. For the first event the aim is to generate times following a Weibull distribution
with decreasing hazard (anc.ev < 1) and an expected value of around 40 days (note that
in accordance with Table 3, specifying parameter anc.ev and the expected value of the
distribution results in determination of the other parameter, in this case we have beta0.cens

= 3.56). The beta parameter contains the coefficients of each one of the covariates BMI,
age and hypertension, respectively, for each of the events. The output data is a data frame
containing the episodes for each of the 100 simulated subjects.

R> head(round(clinical.data, 2))
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nid ev.num time status start stop z x x.1 x.2

1 1 1 13.39 1 0 13.39 0.86 28.37 71.88 0

2 1 2 30.00 0 0 30.00 0.86 28.37 71.88 0

3 1 3 30.00 0 0 30.00 0.86 28.37 71.88 0

4 2 1 0.76 1 0 0.76 0.61 27.19 52.77 0

5 2 2 30.00 0 0 30.00 0.61 27.19 52.77 0

6 2 3 30.00 0 0 30.00 0.61 27.19 52.77 0

A summary of the most relevant information about the simulated cohort may be obtained
by calling the summary function with an object of class ‘sim.mult.ev.data’ as argument,
including the number of subjects at risk, the total number of events observed, the total time
of follow-up, its median and the incidence density:

R> summary(clinical.data)

Number of subjects at risk

----------------------------

ev.num sub.risk

1 100

2 100

3 100

Number of events

----------------------------

ev.num num.events

1 86

2 13

3 16

Total time of follow-up

----------------------------

ev.num foltime

1 876.7141

2 2504.7251

3 2377.7440

Time of follow-up (median)

----------------------------

ev.num med.foltime

1 5.248077

2 30.000000

3 30.000000
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Density of incidence

----------------------------

ev.num dens.incid

1 0.098093547

2 0.005190190

3 0.006729068

The result is a summary of information for each of the possible events. For example, 86
subjects had the first event, 13 had the second and 16 had the third. The median follow-up
time to the first event was 5.25 and the total follow-up time to the first event was 876.71.

5. Recurrent event survival data

5.1. Description

Recurrent event data is a type of multiple event where the subject can experience repeated
occurrences of the same type (Kelly and Lim 2000), for example repeated asthma attacks
or sick leave episodes. In practice, the hazard of a recurrent event can vary depending on
the number of previous occurrences, in terms of shape and intensity (Reis, Utzet, Rocca,
Nedel, Mart́ın, and Navarro 2011; Navarro, Moriña, Reis, Nedel, Mart́ın, and Alvarado 2012).
However, simulations based on a mixture of distributions with different baseline hazard rates
are quite rare (Bender, Augustin, and Blettner 2005; Metcalfe and Thompson 2006). In a
recurrent data context, each subject can present different number of episodes. We talk of
episodes (or occurrences) rather than events since each occurrence is a new episode of the
same event.

Consider Table 5, which shows an example of information about three workers in a company.
We are interested in studying the possible association between a covariate x and the hazard
of having a sick leave episode due to respiratory problems (δ = 1). In this case the individuals
may have different numbers of intervals since they may have different numbers of sick leave
episodes. Imagine also that x can vary with time (for example x could be a dichotomous
covariate indicating whether the worker is exposed to carrying heavy loads, which obviously
may vary). Finally, the sick leave episodes may involve a period of time during which the
individual ceases to be a risk, corresponding to the time they are off work due to illness. The
time periods are expressed as semiclosed intervals (start2, stop2]. Thus, in Table 5 it may be
seen that the first worker has a single sick leave episode, starting on day 1027. As a result
this worker ceases to be at risk for five days. Subsequently, from day 1459 we find this worker
is exposed to heavy loads (x switches from 0 to 1) and is followed until they are censored at
the end of the follow-up period on day 1740. Note that in this case k represents the episode
which individual i is at risk of suffering in each interval. For example, the second worker only
begins to be at risk of their third sick leave episode on day 598 and they remain so until it
occurs, on day 712. This worker changes to another company on day 827 and is therefore
censored. If the study includes subjects at risk prior to the start of the follow-up period, we
may encounter individuals whose first episodes start at times greater than zero. In the sick
leave example this could happen if the origin of the time scale was the date the worker was
hired. This is the case of the third worker, for whom follow-up only began after they had
been in the job for six months (i.e., had accumulated six months of exposure by the time they
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id start2 stop2 δ x k

1 0 1027 1 0 1
1 1032 1458 0 0 2
1 1458 1740 0 1 3
2 0 328 1 1 1
2 341 591 1 1 2
2 597 712 1 1 3
2 758 827 0 1 4
3 180 715 1 0 1
3 723 1029 0 0 2

Table 5: Example of data entered for three individuals in a study of sick leave episodes.

were first observed). Note that in this case k might not correspond to the true number of
episodes suffered by the individual, in fact this value is usually unknown.

To generate recurrent event survival data survsim assumes that there is a different and in-
dependent distribution Yk depending on k, the number of episodes at risk. The simulating
process for each Yk is the same as that described in Section 4.1, but in this case, obviously, a
subject cannot to be at risk for the kth episode if he/she had not had the (k − 1)th.

Then,

� Y1 is simulated specifying T1 and C1, for all subjects: start2 ik = 0 and stop2 ik = yik.

� For k > 1, Yk is simulated specifying Tk and Ck, only for subjects with δ = 1 in Yk−1:
start2 ik = stop2 ik−1 + long ik−1 (long ik−1 is the duration of the previous episode and
stop2 ik = start2 ik + yik. If stop2 ik > tmax , then stop2 ik will be set to tmax and δi = 0,
where tmax is the maximum follow-up time).

5.2. Simulating recurrent events

The main function in the case of recurrent event data is rec.ev.sim, which calls the routines
rec.ev.ncens and rec.ev.cens in order to produce the simulation for the individuals which
were not at risk before the start of follow-up and for the individuals that were at risk before
the start of follow-up, respectively, according to the parameters used as arguments in a call
to the function, which are:

rec.ev.sim(n, foltime, dist.ev, anc.ev, beta0.ev,

dist.cens = rep("weibull", length(beta0.cens)), anc.cens, beta0.cens,

z = NA, beta = 0, x = NA, lambda = NA, max.ep = Inf, priskb = 0,

max.old = 0)

The description of these arguments can be summarized as follows:

� beta0.ev: Vector of arbitrary size of real components containing the β0 parameters for
the time to event distributions. If a subject suffers more episodes than specified distri-
butions, the last β0 parameter specified here is used to generate times corresponding to
later episodes.
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� dist.cens: Vector of arbitrary size indicating the time to censure distributions, with
possible values "weibull" for Weibull distribution (the default value), "lnorm" for log-
normal distribution and "llogistic" for log-logistic distribution. If no distribution is
specified, the time to censoring is assumed to follow as many different Weibull distribu-
tions as different parameters are introduced in beta0.cens.

� anc.cens: Vector of arbitrary size of real components containing the ancillary param-
eters for the time to censoring distributions. If a subject suffers more episodes than
specified distributions, the last ancillary parameter specified here is used to generate
times corresponding to later episodes.

� beta0.cens: Vector of arbitrary size of real components containing the β0 parame-
ters for the time to censoring distributions. If a subject suffers more episodes than
specified distributions, the last β0 parameter specified here is used to generate times
corresponding to later episodes.

� lambda: Real number indicating the mean duration of each event or discontinuous risk
time, assumed to follow a zero-truncated Poisson distribution. Its default value is NA,
corresponding to the case where the duration of each event or discontinuous risk time
is unnecessary information for the user.

� max.ep: Integer value that matches the maximum permitted number of episodes per
subject. Its default value is Inf, i.e., the number of episodes per subject is not limited.

� priskb: Proportion of subjects at risk prior to the start of follow-up, defaults to 0.

� max.old: Maximum time at risk prior to the start of follow-up.

All remaining arguments are defined as specified for simple.surv.sim and for mult.ev.sim.

In order to get the function to work properly, the length of the vectors containing the param-
eters of the time to event and time to censoring distributions and the number of distributions
indicated in the parameter dist.ev must be the same. Finally, priskb and max.old must be
positive numbers, with priskb being between 0 and 1. Notice that large values of max.old
can result in the routine taking a long time to simulate the cohort with the specified size.

The parameters for the simulation of cohorts in a context of recurrent events are very similar
to those described for the case of multiple events. A remarkable difference is that in the
latter situation, there is no interest in the duration of each event, and therefore there is no
lambda parameter, and also the addition of the parameter nsit, that indicates the number
of different situations that a subject can suffer.

5.3. Example: Recurrent sick leave episodes

Navarro et al. (2012) and Reis et al. (2011) analyze sick leave episodes occurring in a cohort
of workers in the Hospital das Cĺınicas da Universidade Federal de Minas Gerais, Brasil, with
a follow-up time of 10 years, in terms of a variety of diagnoses, including musculoskeletal
diseases, diseases of the respiratory system, mental and behavioral disorders and all causes.
Here we will focus on sick leave episodes due to respiratory diseases, as in the example in
Section 5.1 The methods used to obtain the distributions which best fit the data are detailed
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in Navarro et al. (2012), and the results for the case we are interested in may also be found
there.

The authors assume that the distribution of new episodes after the fourth should be very
similar to the fourth one, so four distributions and eight parameters are taken into account,
and therefore a call to rec.ev.sim could take the form:

R> dist.ev <- c("lnorm", "llogistic", "weibull", "weibull")

R> anc.ev <- c(1.498, 0.924, 0.923, 1.051)

R> beta0.ev <- c(7.195, 6.583, 6.678, 6.430)

R> anc.cens <- c(1.272, 1.218, 1.341, 1.484)

R> beta0.cens <- c(7.315, 6.975, 6.712, 6.399)

R> beta <- list(c(-0.4, -0.5, -0.6, -0.7))

R> lambda <- c(2.18, 2.33, 2.40, 3.46)

R> sim.data <- rec.ev.sim(n = 500, foltime = 3600, dist.ev,

+ anc.ev, beta0.ev, , anc.cens, beta0.cens, z = c("unif", 0.8, 1.2),

+ beta, x = list(c("bern", 0.5)), lambda, priskb = 0.5, max.old = 730)

where we are simulating a cohort of 500 subjects with a follow-up time of 3600 days, a mean
duration of λ1 = 2.18, λ2 = 2.33 and λ3 = 2.40 days for each event from first to third, and
a mean duration of λk = 3.46, k ≥ 4 for successive episodes, a β1 of −0.4 – representing a
reduction of approximately 33% in the acceleration factor or time ratio (TR) –, decreasing
on each recurrence and an heterogeneity random parameter following a uniform distribution
in the interval [0.8, 1.2]. We are also assuming that in our simulated cohort 50% of the
individuals have been at risk for 730 days or less prior to the start of follow-up, i.e., 50% of
the subjects began working before the start of follow-up, a maximum of 730 days before the
start of follow-up time. This is a common situation in this context, where some of the workers
may had sick leaves before the start of follow-up time.

The output data is a data frame containing the episodes for each of the 500 simulated subjects.

R> head(sim.data)

nid real.episode obs.episode time status start stop

1 1 1 1 985.99220 1 0.0000 985.9922

2 1 2 2 357.15540 0 986.9922 1344.1476

3 2 1 1 149.87287 1 0.0000 149.8729

4 2 2 2 74.33743 0 150.8729 225.2103

5 3 1 1 1025.00137 0 0.0000 1025.0014

6 4 1 1 1211.06578 0 0.0000 1211.0658

time2 start2 stop2 old risk.bef long z x

1 985.99220 2524.1993 3510.1915 NA FALSE 1 0.9211748 0

2 88.80854 3511.1915 3600.0000 NA FALSE NA 0.9211748 0

3 149.87287 846.0055 995.8783 NA FALSE 1 1.1405794 1

4 74.33743 996.8783 1071.2158 NA FALSE NA 1.1405794 1

5 449.42472 3150.5753 3600.0000 NA FALSE NA 1.1656982 0

6 1211.06578 2118.0060 3329.0718 NA FALSE NA 1.0894661 1

The first part of the output data consists of those individuals who were not at risk prior
to the start of follow-up, of whom there are (1−priskb) · n. In the example we are using,
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individuals 1 to 250 who meet this condition, and the rest, individuals 251 to 500 were at risk
prior to the start of follow-up. In order to see the first individual who was at risk prior to
follow-up we can do the following:

R> sim.data[sim.data$nid == 251, ]

nid real.episode obs.episode time status start stop

466 251 1 1 426.08792 1 0.0000 426.0879

467 251 2 2 451.80922 1 428.0879 879.8971

468 251 3 3 301.17946 1 880.8971 1182.0766

469 251 4 4 58.61317 0 1184.0766 1242.6898

time2 start2 stop2 old risk.bef long z x

466 221.26152 0.0000 221.2615 -204.8264 TRUE 2 0.8023607 1

467 451.80922 223.2615 675.0707 -204.8264 TRUE 1 0.8023607 1

468 301.17946 676.0707 977.2502 -204.8264 TRUE 2 0.8023607 1

469 58.61317 979.2502 1037.8634 -204.8264 TRUE NA 0.8023607 1

Again, a brief summary of the most relevant information about the simulated cohort may be
obtained from:

R> summary(sim.data)

Number of subjects at risk

-------------------------------------

ep.num sub.risk

1 500

2 208

3 112

4 66

> 4 45

All episodes 500

Number of events

-------------------------------------

ep.num num.events

1 208

2 112

3 66

4 45

> 4 108

All episodes 539

Total time of follow-up

-------------------------------------

ep.num foltime
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1 339014.66

2 83889.75

3 37693.08

4 17090.65

> 4 31739.59

All episodes 509427.73

Time of follow-up (median)

-------------------------------------

ep.num med.foltime

1 482.6887

2 274.4953

3 260.8960

4 198.2772

> 4 159.4306

All episodes 301.1795

Density of incidence

-------------------------------------

ep.num dens.incid

1 0.0006135428

2 0.0013350856

3 0.0017509845

4 0.0026330189

> 4 0.0034026903

All episodes 0.0010580500

In this case we obtain a global summary (indicated as All episodes) and a summary strati-
fied by episode number, those following the same distribution on the basis of a given occurrence
number being grouped together (in the example four different distributions had been specified
for the events, so that the results appear for the first four episodes and those for the fifth and
subsequent ones are grouped together). Notice that if we are interested in generating a single-
event cohort (see Example 3.3) but allowing for left-censoring, we can also use rec.ev.sim

with max.ep = 1.

6. Simulated data structure

Output data is structured as an object of class of ‘simple.surv.sim’, ‘mult.ev.data.sim’
or ‘rec.ev.data.sim’, depending on the nature of the simulated data. This class is just an
extension of the ‘data.frame’ class. Each row in the data frame is a new episode for the
corresponding subject. The resulting data set after a call to rec.ev.sim has the following
columns:

� nid: An integer number that identifies the subject.
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� real.episode: Number of the episode corresponding to the real history of the individ-
ual.

� obs.episode: Number of the episode corresponding to the follow-up time.

� time: Time until the corresponding event happens (or time to subject drop-out), with
respect to the beginning of the follow-up.

� status: Logical value indicating if the episode corresponds to an event (status = 1)
or a drop-out (status = 0).

� start: Time at which an episode starts, taking the beginning of follow-up as the origin
of the time scale.

� stop: Time at which an episode ends, taking the beginning of follow-up as the origin
of the time scale.

� time2: Time until the corresponding event happens (or time to subject drop-out), in
calendar time.

� start2: Time at which an episode starts, where the time scale is calendar time.

� stop2: Time at which an episode ends, where the time scale is calendar time.

� old: Real value indicating the time span that the individual was at risk before the
beginning of follow-up.

� risk.bef: Factor that indicates if an individual was at risk before the beginning of
follow-up or not.

� long: Time not at risk immediately after an episode.

� z: Individual heterogeneity, generated according to the specified distribution.

� x, x.1, . . . : Value of each covariate randomly generated for each subject in the cohort.

This structure defines the class ‘rec.ev.data.sim’. The output of function mult.ev.sim,
corresponding to multiple events context looks very similar, and is structured in the same way.
The structure of ‘simple.surv.sim’ objects, corresponding to single-event survival data, is
structured in a very similar, simpler way. Although these classes are essentially data frames,
they have a proper summary method, described in previous sections.

7. Aggregated data

Aggregated data is a classical representation of count data type, where for each subject we
know the total number of episodes and the accumulated follow-up. This data is often analyzed
by means of Poisson or negative Binomial regression.

If a user is interested in the aggregated instead of individual data, we provide the function
accum, which works in an analogous manner in either of the two defined contexts. The output
data after a call to accum contains the following columns with the corresponding aggregated
values:
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� nid: An integer number that identifies the subject.

� old: Real value indicating the time that the individual was at risk before the beginning
of the follow-up.

� risk.bef: Logical value indicating if the subject was at risk before the beginning of the
follow-up time or not.

� z: Individual heterogeneity, generated according to the specified distribution.

� x, x.1, . . . : Value of each covariate randomly generated for each subject in the cohort.

� obs.ep.accum: Aggregated number of episodes suffered by an individual since the be-
ginning of subject’s follow-up time.

� real.ep.accum: Aggregated number of episodes suffered by an individual since the
beginning of subject’s history.

� time.accum: Global time of follow-up for each individual.

� long.accum: Global time not at risk within the follow-up time, corresponding to the
sum of times between the end of an event and the beginning of the next.

Notice that aggregating data in a multiple events context may be confusing.

7.1. Example: Sick leave counts

If we want to work with aggregated instead of individual data, we can easily generate a data
entry of the relevant aggregated data. This structure is indicated in the common case in
which we were interested in the simulation of a study where only the total number of episodes
and follow-up are known for each subject. In this case the data could be analyzed by counts
modeling. For example, data corresponding to the sick leave introduced in Section 5.3 can be
aggregated by typing

R> agg.data <- accum(sim.data)

The output data is a data frame with 500 elements containing one row per subject corre-
sponding to the aggregated data.

R> head(agg.data)

nid old risk.bef z x obs.ep.accum real.ep.accum time.accum

1 1 NA FALSE 0.9211748 0 1 1 1074.80075

2 2 NA FALSE 1.1405794 1 1 1 224.21030

3 3 NA FALSE 1.1656982 0 0 0 449.42472

4 4 NA FALSE 1.0894661 1 0 0 1211.06578

5 5 NA FALSE 1.0253948 0 0 0 36.58911

6 6 NA FALSE 1.1424034 1 0 0 155.85532

long.accum

1 1
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2 1

3 0

4 0

5 0

6 0

8. Application

Cohorts simulated by survsim can be used in a direct way in the standard R survival functions.
For example, a simple Cox regression on the data frame generated in Section 3 can be fitted
by means of

R> library("survival")

R> single <- coxph(Surv(start, stop, status) ~ as.factor(x) + as.factor(x.1),

+ data = simple.dat)

A multiple event Cox regression can be fitted to the cohort generated in Section 4 by

R> multiple <- coxph(Surv(start, stop, status) ~ strata(ev.num) / (x + x.1 +

+ as.factor(x.2)) + cluster(nid), data = clinical.data)

An Andersen-Gill Cox regression model can be fitted to the cohort generated in Section 5, in
a recurrent events context, by means of

R> AG.event <- coxph(Surv(start2, stop2, status) ~ as.factor(x) +

+ cluster(nid), data = sim.data)

For aggregated data, a negative Binomial regression model can be fitted using function glm.nb

from package MASS. For exemple, we can use this over data frame agg.data, generated in
Section 7.

R> library("MASS")

R> nb <- glm.nb(obs.ep.accum ~ as.factor(x) + offset(log(time.accum)),

+ data = agg.data)

9. Conclusions and further work

In this article we present a set of functions which allow the user to simulate a cohort with the
objective of studying its behavior in a context of simple, recurrent or multiple events which
can be generated by a variety of different processes, following different distributions. Among
the improvements planned for the package survsim, we would like to mention the inclusion
of new distributions for events and for censoring, the consideration of other contexts within
the broader area of complex survival data such as competitive risks, and the inclusion of
categorical covariates with more than two categories.
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