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Abstract

The objective of this study was to investigate the association of functional variants of the human CX3CR1 gene (Fractalkine
receptor) with the risk of Amyotrophic Lateral Sclerosis (ALS), the survival and the progression rate of the disease symptoms
in a Spanish ALS cohort. 187 ALS patients (142 sporadic [sALS] and 45 familial) and 378 controls were recruited. We
investigated CX3CR1 V249I (rs3732379) and T280M (rs3732378) genotypes and their haplotypes as predictors of survival, the
progression rate of the symptoms (as measured by ALSFRS-R and FVC decline) and the risk of suffering ALS disease. The
results indicated that sALS patients with CX3CR1 249I/I or 249V/I genotypes presented a shorter survival time (42.2764.90)
than patients with 249V/V genotype (67.6567.42; diff 225.49 months 95%CI [242.79,28.18]; p = 0.004; adj-p = 0.018). The
survival time was shorter in sALS patients with spinal topography and CX3CR1 249I alleles (diff = 229.78 months; 95%CI
[249.42,210.14]; p = 0.003). The same effects were also observed in the spinal sALS patients with 249I–280M haplotype
(diff = 227.02 months; 95%CI [249.57, 24.48]; p = 0.019). In the sALS group, the CX3CR1 249I variant was associated with a
faster progression of the disease symptoms (OR = 2.58; 95IC% [1.32, 5.07]; p = 0.006; adj-p = 0.027). There was no evidence
for association of these two CX3CR1 variants with ALS disease risk. The association evidenced herein is clinically relevant and
indicates that CX3CR1 could be a disease-modifying gene in sALS. The progression rate of the disease’s symptoms and the
survival time is affected in patients with one or two copies of the CX3CR1 249I allele. The CX3CR1 is the most potent ALS
survival genetic factor reported to date. These results reinforce the role of the immune system in ALS pathogenesis.
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Introduction

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s

disease or maladie de Charcot, is the most common adult onset

neurodegenerative motor neuron disease [1,2]. Patients present

progressive weakness, spasticity and amyotrophy due to a

progressive degeneration of the motor neurons in the cortex,

brainstem, and spinal cord. Involvement of the respiratory

muscles, especially the diaphragm, leads to respiratory failure

and death. Most patients consequently die within 5 years of

diagnosis, although the spectrum of survival time is broad [1,2].

There is as yet no known etiology for the disease in most

patients. Epidemiological studies suggest that major genetic defects

make fewer than 10% of ALS patients susceptible to the disease.

Environmental factors have been suggested for populations with a

higher than average incidence, e.g. professional soccer players,

veterans of the 1991 Gulf War and the population of the Western

Pacific. For the majority of the population, ALS is considered a

multifactorial disease with multiple interactive pathogenic mech-

anisms [3–6]. This variability of pathogenic mechanisms may be

the reason why ALS is a heterogeneous disorder from the clinical

perspective, in terms of the age at onset, progression, initial

topography and survival.

It is unknown why some patients with ALS deteriorate much

faster or survive much less time than others. An important

challenge to ALS research is to find out how endogenous factors

modify the disease to account for these different disease courses.

The discovery of new biomarkers associated with different rates of

progression and survival could offer new insights into the

pathophysiological determinants of disease progression in ALS

[7,8]

At least 15 GWAS have been published in ALS. The majority of

these have made a major contribution to the discovery of new

genes causing this disease [9]. Some risk loci have also been

identified in some of these GWAS, although the role of many of
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them (FGGY, ITRP2 and DPP6) has not been replicated when

they have been studied in other populations. In addition to these

risk loci, some of these GWAS have sought genes influencing the

phenotype. Examples include KIFAP3 and EPHA4. The age of

onset has recently been reported as being modulated by a locus on

1p34.1 [10]. The involvement of neuroinflammation in the

pathogenesis of ALS has been a subject of increasing interest in

recent years. Neuroinflammation has been reported as a

pathological hallmark of ALS [11]. Microglia activation and the

crosstalk between immune cells appear to play a significant role in

neuronal death in both in vivo and in vitro studies [12–14]. In ALS,

microglial activation correlates with disease progression and

symptoms, and might therefore modify the outcome of this

devastating disease [15–19].

The CX3CR1 gene (chemokine (C-X3-C motif) receptor 1, also

known as Fractalkine receptor, OMIM: 601470) in the brain is

only expressed by microglia [20] and it has been proposed as a key

mediator of neuron-microglia interactions that is upregulated in

many inflammatory conditions [21,22]. CX3CR1 mediates

microglia neurotrophic functions and its reduction would reflect

an impaired microglial function [23]. Actually, CX3CR1 signaling

impairment has a direct influence on neurodegenerative diseases

of the central nervous system (CNS) that course with neuroin-

flammation, microglia and/or t-cell recruitment [24–26]. Two

functional variants (V249I and T280M) have been described in

the CX3CR1 gene [27,28]. These variants affect the activity of the

CX3CR1 protein and have been associated with several inflam-

matory diseases such as multiple sclerosis [29], Crohn’s Disease

[30], AIDS [31], age-related macular degeneration [32] and

coronary artery disease [32]. However, there are controversial

results and there is to date no evidence that CX3CR1 could be a

relevant risk factor for these diseases using GWAS.

In this paper, we hypothesized that the functional variants

V249I and T280M in the CX3CR1 gene may modify the risk of

suffering from ALS and the disease’s outcome/prognosis. Here we

report the association between these two CX3CR1 variants and the

survival time and the progression rate of the disease symptoms in a

cohort of Spanish sporadic ALS (sALS) patients.

Methods

Study population and clinical data
A cohort of 223 ALS patients (wALS) meeting the World

Federation of Neurology revised El Escorial criteria for laboratory-

supported or definite ALS was included in this study [34]. A

control cohort of 750 non-related and non-affected subjects was

recruited from the Spanish National DNA Bank (Salamanca,

Spain). The control and ALS patients were Spanish citizens of

European origin.

The majority (n = 187) of ALS patients was clinically charac-

terized, monitored and received quarterly follow-up in the

Hospital Universitari Vall d’Hebron ALS Unit. Sex, age at onset,

initial topography and survival time between the clinical onset of

symptoms and either the indication of non-invasive ventilation, or

tracheostomy ventilation, or the date of death were ascertained for

each patient using the homogeneous criteria of a unique observer

(Dr. Gamez) (see Table 1 for a detailed demographic description of

the populations).

The patients were classified as (i) familial or sporadic ALS, (ii)

bulbar, spinal or respiratory onset, and according to (iii) the rate of

progression and (iv) survival time. In order to classify the patients’

rate of progression, the patients were decreasing ordered

according the mean slope for ALSFRS-R decline and for FVC

decline criteria. The distribution in tertiles was used to classify

patients in three subgroups: rapid progression (subgroup P1, first

tertil for ALSFRS-R and FVC values); normal progression

(subgroup P2, second tertil for ALSFRS-R and FVC values);

and slow progression (subgroup P3, third tertil for ALSFRS-R and

FVC values).

Survival time was defined as the time between the onset of

clinical symptoms and the date of death, or the date of

tracheostomy ventilation, or the date when non-invasive ventila-

tion of more than 22 h/day was required.

DNA purification and Genotyping
Genomic DNA samples were extracted from whole blood

samples of patients using QIAamp DNA Mini Kit (QIAGEN,

USA) following the manufacturer’s instructions.

The CX3CR1 V249I (rs3732379) and T280M (rs3732378)

alleles were genotyped using the KASPar SNP Genotyping system

(KBioscience, UK) according the standard provider procedures.

The CX3CR1 gene T280M and V249I variants were identified

after amplification with V249I primers set (249_V: CTT CTG

GAC ACC CTA CAA CG; 249_I:CCT CTT CTG GAC ACC

CTA CAA CA; 249rev: GAG CTT AAG YGT CTC CAG GAA

AAT CAT) and T280M primer set (280_T: GGC CCT CAG

TGT GAC TGA GAC; 280_M: GGC CCT CAG TGT GAC

TGA GAT; 280_rev: GAG AGG ATT CAG GCA ACA ATG

GCT A). Fluorescence was measured at 25uC in a 7300 real time

PCR System (Applied Bioscience, USA). Genotype calling was

carried out using 7300 system SDS software v1.4 (Applied

Bioscience, USA) and Klustercaller software (KBioscience, UK).

Statistical Design, Analysis and Power
The study design consisted of a pragmatic, case-control,

retrospective clinical study. The sample analyzed consisted of

223 ALS patients and 474 controls (two controls per case),

matched for age and sex, who were randomly selected for each

case to assess the risk of disease. CX3CR1 V249I (rs3732379CT)

and T280M (rs3732378GA) genotypes, or their haplotypes, were

used as predictors of the progression rate of the symptoms, the

survival time, the risk of suffering from ALS and the age at onset.

Associations for each SNP, the odds ratios and the 95%

Confidence Interval (CI) were computed using generalized linear

models (either for quantitative or binary traits), as implemented in

SNPassoc package from R Software [35]. Analyses were done

under 4 different inheritance models: dominant, recessive, additive

and codominant. The best model was chosen using the Akaike

information criteria (AIC) and the Hardy-Weinberg equilibrium

(HWE) was calculated using Fisher’s exact test implemented in the

SNPassoc package. Ordinal logistic regression was carried out

using SPSS software. Single marker analyses of disease risk were

carried out using conditional logistic regression in R (package

survival). Haplotype analyses of CX3CR1 SNPs were performed

with the SNPassoc package.

Single marker and haplotypes analyses were performed adjusted

by sex and when necessary, stratified by topographic clinical onset.

Bonferroni correction for 2 SNPs was used to correct for multiple

comparisons. An additional factor of correction of 2.5 was applied

to account for the use of 4 different genetic models [35,36]. Using

this criterion, the uncorrected level for statistical significance was

set to p,0.011. The uncorrected and corrected p-values are

shown.

Survival analysis was performed using Kaplan-Meier curves and

COX regression (SPSS software) and multiple linear regression

analysis (SNPassoc) including all the dead patients and those alive

with either non-invasive ventilation for longer than 22 hours a day

or ventilation by tracheostomy.
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This study has a prior statistical power of 80% (alpha = 5%) for

detecting a difference of 22 months in survival between groups of

patients (main population survival = 49.27641.6 months, minor

allele frequency = 0.288), and a beta of 90% (alpha = 5%) for

detecting a difference of 25,2 months. Concerning to the risk to

suffer ALS this study have a power of 80% (alpha = 5%) for

detecting an OR.1.7 between cases and controls.

Ethics Statement
This genetic study was approved by the local IRBs at the Vall

d’Hebron Research Institute and the Spanish National DNA

Bank. The study has been conducted according to the principles

set out in the Declaration of Helsinki. All patients gave their

written informed consent to participation in the study in paper

format, and a blood sample for genetic analysis was obtained from

all of them. The categorization of the ALS patients was performed

according to their clinical features (familial or sporadic ALS forms,

bulbar or spinal or respiratory onset, rate of progression and

survival time).

Results

CX3CR1 variants and ALS susceptibility
A DNA sample for genetic analysis of a total of 187 ALS

patients (wALS group) and 378 controls randomly selected from

the 750 representatives of the Spanish population control cohort

was obtained. 45 were familial ALS cases (fALS group), and 178

patients were sporadic cases (sALS group). We had full clinical

details for all familial and sporadic cases. All the DNA samples

were genotyped for the functional variants V249I (rs3732379) and

T280M (rs3732378) of the CX3CR1 gene. Both genetic variants

were within the Hardy-Weinberg equilibrium in the different

groups (wALS, sALS, fALS and controls, HWE (all groups) for

V249I = 0.579; for T280M = 0.399; Table S1).

The CX3CR1 variants 249I (rs3732379T allele) and 280M

(rs3732378A allele) were assessed as genetic risk markers for ALS.

Single marker and haplotype analysis showed no statistically

significant differences between these variants in the controls and

ALS cases of the wALS group in any of the 4 tested genetic

inheritance models (Table S2). Genetic association analysis of the

sALS or fALS groups also showed no statistically significant

differences compared to the controls.

CX3CR1 variants and Survival
Single marker analyses associating variants in CX3CR1 gene

with the survival time of ALS patients, measured in months, were

performed in the three ALS groups (wALS, sALS and fALS). The

generalized linear models analysis showed that sALS patients with

the CX3CR1-V249I/I and V249V/I genotypes had a shorter

survival time (42.2764.90) than patients with the 249V/V genotype

(67.6567.42) under a dominant and additive inheritance model

(diff = 225.49; 95%CI [242.79, 28.18]; p = 0.004; corrected p-

value = 0.018; Table 2). The dominant model had the lower AIC.

In the wALS and fALS groups, this difference was not significant

(Table 2).

We grouped sALS patients under a dominant model and

performed a Kaplan Meyer Survival curve analysis. The results

evidenced statistical differences between CX3CR1 249V/V (medi-

an = 59.0 months, 95%CI [53.7, 64.3]) and 249V/I or 249I/I

(median = 35.00 months, 95%CI [21.1, 48.9]) patients (long

Rank = 6.357; HR = 1.72 95%CI [1.15, 2.67]; p-value = 0.014;

Figure 1A).

We subsequently carried out a genetic analysis stratifying for the

topography of the disease onset (classic spinal, bulbar and

respiratory). Spinal sALS patients with CX3CR1 249V/I and

249I/I genotypes had a shorter survival time than patients with

249V/V genotype (diff 229.78, 95%CI [249.42, 210.14], p-

value = 0.003). This effect was not statistically significant in the

spinal wALS group. For sALS patients with spinal topography, the

survival curves also showed differences between 249V/V patients

(median = 61.00 months, 95%CI [56.7, 65.3]) and 249V/I and

249I/I (median = 45.0 months, 95%CI [22.9, 67.1]) patients under

a dominant model (long rank = 4.507; HR = 1.76 95%CI [1.03,

3.01]; p-value = 0.038; Figure 1B).

The haplotype analysis showed that sALS patients with the

249I–280T haplotype presented a shorter survival time than

patients with the 249I–280M or 249V–280T haplotypes (Table 3)

under an additive genetic inheritance model. The spinal sALS

Table 1. Demographic data of the different groups analyzed.

Controls sALS fALS wALS (all)

Subjects alla 378 (750) 142 45 187

Sex Men 198 (52.4%) 75 (52.8%) 23 (51.1%) 98 (52.4)

Women 180 (47.6%) 67 (47.2%) 22 (48.9%) 89 (47.6)

Age allc 58.23614.53 61.66613.32 55.15611.55 60.60613.41

range 28–99 27–91 36–80 28–91

Menc 54.4268.72 61.63613.34 54.83613.36 60.03613.18

Womenc 62.44618.11 61.70613.39 56.0369.76 60.25613.18

Age at onset Allc - 57.53613.96 49.76611.27 57.88613.63

Age at death allc - 63.64612.49 56.12610.33 58.78613.46

Mortality allb - 83 (58.5%) 25 (55.6%) 108 (57.8%)

Topography Spinalb - 102 (71.8%) 32 (71.1%) 134 (71.7%)

Bulbarb - 38 (26.8%) 13 (28.9%) 51 (27.3%)

Respiratoryb - 2 (1.4%) 0 (0.0%) 2 (1.1%)

Statistics format: an (control cohort);
bn (%);
cmean 6SD.
doi:10.1371/journal.pone.0096528.t001
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patients with the CX3CR1 249I–280M haplotype (diff 227.02,

95%CI [249.57, 24.48], p-value = 0.019, model p-Val-

ue = 0.0001) and patients with the CX3CR1 249I–280T haplotype

(diff 222.9295%CI [246.13, 0.29] p-value = 0.053; model p-

value = 0.0001) also presented a shorter survival time.

CX3CR1 variants and disease progression
Single marker analyses for the rate of progression of the ALS

symptoms were carried out in the wALS, sALS and fALS groups.

An increased frequency of patients with CX3CR1 249I/I and 249V/

I genotypes was found in the wALS subgroup with a rapid

progression rate, under a dominant inheritance model (OR = 1.89;

subgroup P1 vs P3) (Table 4). This effect was higher (OR = 2.58) in

the sALS subgroup with a rapid progression rate. Patients with the

CX3CR1 249V/V genotypes were most common in the slow

progression rate subgroups (P3 vs P1 in wALS and sALS) (see

Table 4). In the fALS group, this difference in the progression rate

of the disease’s symptoms did not reached statistical significance.

In the subgroup of spinal sALS patients with fast progression,

the 249I/I and 249V/I genotypes were more frequent than the

249V/V genotype (I/I+I/V = 18 vs V/V = 9) under a dominant
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inheritance model. Conversely, in the subgroup of spinal sALS

with slow progression (P3), the 249V/V genotype was more

common than the 249I/I and 249V/I genotypes (I/I+I/V = 9, V/

V = 19). The OR for the CX3CR1 V249I variant for the fast

progression of the disease symptoms was 2.85 (95%CI [1.27, 6.38],

p = 0.011).

CX3CR1 variants and age at onset and site of clinical
onset

The results of the genetic analyses of the CX3CR1 variants using

a single marker or haplotype did not show any statistically

significant difference for an earlier age at onset of ALS, or predict

the site of clinical onset in any of the analyzed groups (wALS,

sALS and fALS).

Discussion

In this study, we report on the association of a shorter survival

time and faster progression rate of the disease’s symptoms with the

CX3CR1 V249I genetic variant (rs3732379T allele) among the

patients of our ALS series in the sporadic ALS group. The sALS

patients with the CX3CR1 249I/I or 249V/I genotypes have a

shorter survival time than patients with 249V/V genotype. The

survival time was shorter in the group of sALS patients with spinal

topography and 249I alleles, and with the 249I–280M haplotype. A

higher frequency of the CX3CR1 249I variant was also found in

patients with a fast progression of symptoms. Taken together,

these results suggest that the CX3CR1 acts as a disease-modifying

gene in sALS patients, and point to its role in ALS pathogenesis.

The CX3CR1 is the most potent ALS survival genetic factor

reported to date. Using GWAS analysis, The KIFAP3 [37]

EPHA4 [38], the UNC13A [39] and the SLC11A2 genes [40]

have recently been described as factors modifying survival in USA

and European populations. The UNC13A gene, associated with a

reduction in survival of 5 to 10 months, encodes for a protein that

regulates the release of neurotransmitters at neuromuscular

synapses [39]. The SNP rs1541160 in the KIFAP3 gene, a gene

related with the immune system pathway, reduces the survival of

ALS patients in 14–14.9 months [37]. The SLC11A2 gene, that

encodes the divalent metal transport 1 (DMT1) mediating iron

transport in cerebral endosomal compartments, has been associ-

ated with a shorter duration of ALS disease of 17 months (HR

1.5)[40]. In our study, the CX3CR1 249I allele (under a dominant

genetic model) reduces survival time by a median of 25.49 months

(95%CI [242.79, 28.18] in the sALS group, which is much

higher than those observed for the UNC13A rs12608932 and

KIFAP3 rs1541160 polymorphisms. A comparison of the hazard

ratios (HR) shows that the risk of survival reduction is higher for

patients with CX3CR1 249I than for UNC13A rs12608931A/A, A/C

variants (1.72 vs 1.28). Other genes, such as SMN1 and SMN2,

have also been considered as possible survival risk factors, with

differing results [41–43].

This is the first report that investigates the influence of genetic

factors on the progression rate of the disease symptoms. Our

results identified CX3CR1 249I allele as a factor that modifies ALS

clinical progression. When analyzing the effect of this genetic

variant on the FVC and ALSFRS-R slopes, the key non-biological

markers of the disease’s progression, the OR for the risk of fast

progression was 2.3 for CX3CR1 249I carriers. When stratifying for

the site of clinical onset, sALS patients with spinal onset with the

CX3CR1 249I alleles showed an increased risk of fast progression of

2.6 compared to homozygous 249V patients. This is clinically

relevant for identifying patients at high risk of requiring vital

support measures, such as mechanical ventilation or gastrostomy

tube feeding.

In our cohort, we found three sALS cases and five fALS cases

with C9orf72 expansions distributed in the fast, the normal and

the low disease progression subgroups, and the short and normal

survival subgroups. In our sALS cohort, the expansions in the

C9orf72 gene did not influence the results of CX3CR1 as regards

survival and disease progression.

The effect of the CX3CR1 variants on survival time and

progression rate was observed in the sALS group and not in the

fALS group. The genetic heterogeneity observed in fALS is the

major genetic factor influencing the resulting phenotype. For

example, the p.D91A (D90A in the old nomenclature) variant in

the SOD1 gene in a homozygous state has been reported as

predicting a long survival time (.30 years) in ALS1 Scandinavian

patients [44], and a similar effect has been observed in the p.G38R

(G37R in the old nomenclature) variant worldwide [45]. By

contrast, the p.A5V (A4V in the old nomenclature) variant has

been associated with survival times shorter than 12 months [45].

Mutations in ALSIN gene also predicted juvenile onset [46]. Our

fALS series included four symptomatic family members carrying

p.G38R with a very slow progression and long survival (144

months) [47]. Consideration of the phenotype heterogeneity of

these and other mutations in the 14 major genes causing fALS

may explain why the CX3CR1 variants are not associated with

survival in our fALS series. Actually, this is one of the reasons why

fALS group is rarely included in ALS progression biomarker

studies, as its heterogeneity could affect the statistical association of

sALS.

In the CNS the CX3CR1 gene is only expressed by microglia,

being a gene marker for microglia [20]. The V249I and T280M

variants in the human CX3CR1 affect the functionality and activity

of the CX3CR1 protein [27,28,33]. The 249I variant has been

associated with reduced number of fractalkine binding sites and

reduced fractalkine binding affinity on peripheral blood mononu-

clear cells, resulting in a loss of function [33]. The mechanisms

underlying 280M effects are not clear. Some studies have reported

reduced cell-to-cell adhesion under physiological conditions of the

280M allele [28,31,33], while other authors have described 280M

as promoting excess adhesion [27]. Despite these controversial

results, this variant has been associated with an atheroprotective

effect [48]. Our results indicate that the contributions of allele 249I

and 280M in the CX3CR1 haplotypes are associated with

decreased survival in sALS with spinal topography. However the

presence of the single allele 249I is responsible for the association

with survival in the sALS group. Our results indicated neither an

additive effect of 249I and 280M alleles, nor a protective effect like

that reported for cardiovascular disease [28,49].

In animal models, Cx3cr12/2 knockout mice inbred with the

SOD1G93A transgenic ALS model present a worsened disease

outcome, more extensive neuronal loss and increased microglial

activation [22]. CX3CR1 performs neurotrophic functions and its

reduction would reflect an impaired microglial function [50].

Thus, decreased CX3CR1 activity may contribute to ALS

pathogenesis in part by enhancing inflammatory activity of

microglia, which rather than initiate motor neuron degeneration

would accelerate the disease progression.

This study is well powered (beta = 90%, alpha = 5%) for

detecting changes in the survival in sALS patients with different

CX3CR1 genotypes. However, these findings should be confirmed

in further studies with larger cohorts of ALS Spanish patients and

in other populations. On the other hand, the sample size is a major

limitation to evaluate the risk to suffer ALS. This study has enough

power (beta = 80% alpha = 5%) to detect a risk effect if OR.1.7
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(under a dominant genetic model) or if OR.2.2 (under a recessive

model). Our risk analysis for CX3CR1 variants indicates that the

OR is about 0.88 with 95%CI [0.64 21.22]. If CX3CR1 could be

associated with the risk of suffer ALS, this means post-hoc power

of only 11.6%. Based on our results and on public results of

GWAS for ALS, these findings could indicate that the CX3CR1

rs3732378 and rs3732379 are probably not a risk factor for

suffering ALS. Alternatively, these two SNPs in CX3CR1 could be

a low risk factor for ALS (OR,1.22).

Conclusions

Our results indicate that CX3CR1 is a modifying gene in

sporadic ALS, which affects the progression rate of the symptoms

and the survival time in patients with one or two copies of the

CX3CR1 249I allele. CX3CR1 V249I and T280M variants may

therefore be used as genetic markers in the clinical setting as

prognostic factors for ALS survival and the progression of the

disease. Our results are clinically relevant and reinforce the role of

the immune system in ALS pathogenesis.
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