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Abstract 13 

The NRT algorithm for near real time estimation of global LAI, FAPAR and FCOVER variables from 14 

VEGETATION (VGT) satellite data is here described. It consists of three steps (1) neural networks (one for 15 

each variable) to provide instantaneous estimates from daily VGT-P reflectances, (2) a multi-step filtering 16 

approach to eliminate data mainly affected by atmospheric effects and snow cover, and (3) Savitzky–Golay 17 

and climatology temporal smoothing and gap filling techniques to ensure consistency and continuity as well as 18 

short term projection of the product dynamics. Performances of NRT estimates were evaluated by comparison 19 

with other products over the 2005-2008 period: (1) the offline estimates from the application of the algorithm 20 

over historical time series (HIST), (2) the geoland2 version 1 products also issued from VGT (GEOV1/VGT) 21 

and (3) ground data. NRT rapidly converges closely to the HIST processing after 6 dekads with major 22 

improvement after 2 dekads. Successive reprocessing will therefore correct for some instabilities observed in 23 

the presence of noisy and missing data. The RMSE between NRT and HIST LAI is lower than 0.4 in all cases. 24 

It shows a rapid exponential decay with the number of observations in the composition window with 25 

convergence when 30 observations are available. NRT products are in good agreement with ground data 26 

(RMSE of 0.69 for LAI, 0.09 for FAPAR and 0.14 for FCOVER) and consistent with GEOV1/VGT products with 27 

a significant improvement in terms of continuity (only 1% of missing data) and smoothness, especially at high 28 

latitudes and Equatorial areas.  29 

Index Terms— Near real time; continuity; consistency; biophysical variables; global scale; VEGETATION 30 

 31 

1. Introduction  32 

Near real time (NRT) estimation of global biophysical variables from moderate spatial resolution satellite 33 

sensors are of high interest in a range of application areas including numerical weather forecasting or 34 

monitoring of rapid land surface changes (e.g. droughts, hurricanes, forest fires, floods). These NRT variables 35 

are also required to support policies on environment and water management, agriculture and food security 36 

(White and Nemani 2006). The NRT concept refers to the minimum delay required to deliver the product. This 37 

delay corresponds to the time necessary to acquire and process the images for daily products corresponding to 38 

a single image acquisition. However, most products are derived after compositing the images acquired 39 

successively within a compositing window that extends generally symmetrically before and after the date of the 40 

product. The delay associated to the NRT product has thus to be extended by half the compositing window. To 41 

reduce this delay, the compositing window needs to be dissymmetric by reducing the part after the date of the 42 

product. This may be achieved by short term projection from the past values at the product date. 43 

Although many studies point out the crucial need of NRT vegetation products (Fraser and Latifovic 2005; 44 

Ghulam et al. 2007; Running et al. 2004), only very few deal with near real time series (White and Nemani 45 

2006; Xiao et al. 2011), and up to now, there is no delivery of NRT global vegetation product.  Apart from this 46 
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NRT requirement, consistent and continuous long time series of global land surface variables are also essential 47 

to identify trends and anomalies and point out high risk areas.  48 

 49 

Europe develops operational land monitoring services within the Copernicus initiative previously known as 50 

GMES (Global Monitoring of the Environment and Security). It will provide a series of bio-geophysical products 51 

describing the status and evolution of land surfaces at the global scale from long time series of remote sensing 52 

observations including near real time products. This project focuses on Leaf Area Index (LAI) and Fraction of 53 

Absorbed Photosynthetic Active Radiation (FAPAR) variables recognized as Essential Climate Variables by 54 

GCOS (GCOS 2011). It targets the vegetation cover fraction (FCOVER) variable as well. The Copernicus global 55 

land component benefits from the pre-operational geoland2 FP7 project (Lacaze et al. 2010), in which the 56 

GEOV1 products were developed. 57 

 58 

GEOV1 products are derived from SPOT/VEGETATION data (hereafter called VGT) for the period 1999-59 

present (Baret et al. 2013). GEOV1 has been demonstrated to outperform current existing products both in 60 

terms of accuracy and precision (Camacho et al. 2013). VGT time series archive was subsequently extended 61 

back in time using AVHRR/LTDR data for the period 1981-2000 (Verger et al. 2012). The second version of 62 

vegetation products (GEOV2) aims at being consistent with GEOV1/VGT in terms of accuracy while being 63 

produced in near real time. NRT estimates will be complemented with offline time series from 1999 to present 64 

which are expected to improve GEOV1/VGT in terms of continuity and consistency, especially at high latitudes 65 

and Equatorial areas. Similarly to the GEOV1/VGT previous version, global GEOV2/VGT products at 10-day 66 

time step and 1/112° spatial resolution will be freely delivered at Copernicus portal (land.copernicus.eu). 67 

 68 

This paper focuses on the NRT aspect of forthcoming GEOV2/VGT products. The principles of the algorithm 69 

to generate near real time estimates of global biophysical variables from VGT data are first described. Then 70 

NRT estimates are evaluated based on the comparison with GEOV1/VGT and ground data. Particular 71 

attention is paid to the influence of noise and missing data on the estimation performances. 72 

2. Algorithm outline  73 

The NRT algorithm capitalizes on the efforts undertaken in the first version of GEOV1/VGT products (Baret et 74 

al. 2013) as well as in GEOV1/AVHRR (Verger et al. 2012) processing line. The main innovative relies in the 75 

near real time estimation achieved by performing short term projection of the product dynamics. It consists of 76 

using (1) neural networks to provide instantaneous variable estimates from VGT-P reflectances, (2) a multi-77 

step filtering approach to eliminate data mainly affected by atmospheric effects and snow cover, and (3) 78 

temporal techniques to ensure consistency and continuity. The main steps of the NRT algorithm (Fig. 1) are 79 

summarized hereafter (further details are provided in Baret  et al. (2012)).  80 

[Fig. 1] 81 

2.1. Instantaneous estimates from VGT-P data 82 

The derivation of the instantaneous biophysical 𝑃𝑉𝐺𝑇−𝑃(𝑑1) 1-day products (LAI, FAPAR, FCOVER) is based 83 

on neural networks (NNT) trained using VGT-P reflectance data and fused MODIS and CYCLOPES LAI, 84 

FAPAR, FCOVER products similarly as in GEOV1/VGT (Baret et al. 2013). One NNT was calibrated for each 85 

of the three P variables (LAI, FAPAR, FCOVER) considered.  86 

The inputs of the NNT are (1) the top of the atmosphere VGT-P reflectances in the four VGT bands (B0 (450 87 

nm, Δλ=40 nm); B2 (645 nm, Δλ=70 nm); B3 (835 nm, Δλ=110 nm); SWIR (1165 nm, Δλ=170 nm)) , (2) 88 

acquisition geometry information: cosine of the view zenith, sun zenith and relative azimuth angles, and (3) 89 

atmospheric conditions: the ozone and water contents extracted from the VGT-P product. Correction for 90 

Rayleigh and aerosol effects is expected to be achieved implicitly through the direct training of the networks 91 

over the surface level biophysical products.  92 

The output is the corresponding 𝑃𝑉𝐺𝑇−𝑃(𝑑1) instantaneous value of the biophysical variable (LAI, FAPAR or 93 
FCOVER). To be consistent with GEOV1/VGT algorithm, this output is computed similarly by fusing 94 
CYCLOPES version 3.1 (Baret  et al. 2007) and MODIS collection 5 products (Yang et al. 2006). It consists in 95 
a weighted average of both products. The weighing, 𝑤, is designed to enhance the specific advantage of each 96 
product while limiting their deficiencies (Baret et al. 2013).  97 
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𝑤 =
1

0.982
(1 −

1

(1 + exp(−2. 𝐿𝐴𝐼𝐶𝑌𝐶𝑉31 + 4))
) 98 

{
    𝐿𝐴𝐼𝑓𝑢𝑠𝑒𝑑     =         𝐿𝐴𝐼𝑀𝑂𝐷𝐶5. (1 − 𝑤) +  𝐿𝐴𝐼𝐶𝑌𝐶𝑉31 ∙ 𝑤

  𝐹𝐴𝑃𝐴𝑅𝑓𝑢𝑠𝑒𝑑     = 𝐹𝐴𝑃𝐴𝑅𝑀𝑂𝐷𝐶5 ∙ (1 − 𝑤) +  𝐹𝐴𝑃𝐴𝑅𝐶𝑌𝐶𝑉31  ∙ 𝑤
       (1) 99 

This smooth weighing function limits the brutal change observed for 𝐿𝐴𝐼𝐶𝑌𝐶𝑣31 = 4  in GEOV1 products (Fig. 100 
2). Similarly to GEOV1, 𝑤 = 0.5 when 𝐿𝐴𝐼𝐶𝑌𝐶𝑣31 = 2. Note that for FCOVER, no fusion was completed since 101 
CYCLOPES was the only existing product. 102 

[Fig. 2] 103 

To make the training process computationally tractable, it was achieved for the 2005-2008 period over the 104 

Benchmark Land Multisite Analysis and Intercomparison of Products (BELMANIP2) (Baret et al. 2006) sub-105 

sample of sites which are representative of surface types and conditions over the Earth. To improve the NNT 106 

performances, the learning data base was filtered to remove input data contaminated by large atmospheric 107 

BRDF effects (very high sun and view zenith angles) and by clouds, snow or water-bodies (blue reflectance 108 

values B0>0.25 and points lying bellow the soil line in the B2, B3 and SWIR bands). The 84789 samples 109 

retained after the filtering process were used to train the NNT. 110 

2.2. Multi-step outlier rejection process 111 

Despite the fact that water vapor and ozone were explicitly introduced as inputs in the NNT, that MODIS and 112 

CYCLOPES products are derived from atmospherically corrected reflectances, and that the training data set 113 

was filtered, the resulting instantaneous product estimates are still contaminated by residual cloud and 114 

atmospheric effects (Fig. 3). The remaining outliers are filtered using a three-step process: (1) data are 115 

excluded if they do not belong to the definition domain of reflectances defined by the convex hull formed by 116 

the training dataset or if the product is out of the physical range of variation of the variable (0-7 for LAI, 0-0.94 117 

for FAPAR and 0-1 for FCOVER), (2) a 3-iteration Savitzky-Golay filter (Verger et al. 2011) which leads to a 118 

smoothed curve fitted to the upper envelope of values in the time series (Fig. 3) and (3) a specific procedure 119 

for very noisy data (high latitude and equatorial forests) based on prior knowledge of the expected seasonality 120 

(further details are provided in Baret  et al. (2012)).  121 

[Fig. 3] 122 

 123 

2.3. Temporal composition  124 

A temporal composition was finally applied over the filtered daily 𝑃𝐹
𝑉𝐺𝑇−𝑃(𝑑1) estimates to generate the 125 

biophysical 𝑃(𝑑10) products at 10-day step. It combines TSGF (Verger et al. 2011) and CACAO (Verger et al. 126 

2013) techniques. TSGF (Temporal Smoothing Gap Filling) fits a second-degree polynomial over an 127 

asymmetric temporal window. The window is made of past and future semi-windows of adaptive length varying 128 

between 30 and 60 days. The length of the semi-window is determined by the availability of 6 valid 129 

observations the closest to the date of the dekad at which the product is estimated (Verger et al. 2011). If less 130 

than 6 observations exist in a 60 day semi-window, CACAO values evenly distributed every 10-days are used 131 

to fill gaps before the application of TSGF.  132 

CACAO (Consistent adjustment of Climatology to Actual Observations) consists in fitting the climatology to 133 

actual observations for each growth season by scaling the magnitude and shifting the phenology. CACAO 134 

allows to better cope with missing and noise contaminated data as compared to standard methods as found in 135 

Verger et al. (2013) and Kandasamy et al. (2013). The climatology is computed as the inter-annual average of 136 

GEOV1/VGT time series over the 1999-2012 period. If it is available for a given pixel, the CACAO method 137 

allows filling all the gaps in the time series, even for missing data during long periods. Indeed, 𝑃𝐶𝐴𝐶𝐴𝑂(𝑑1) is 138 

closer to the 𝑃𝐹
𝑉𝐺𝑇−𝑃(𝑑1) data than the original climatology 𝑃𝐶𝐿𝐼𝑀(𝑑1) (Fig. 4). However, the main limitation of 139 

CACAO reconstruction method is its inability to capture underlying atypical modes of seasonality including 140 

rapid natural and human induced disturbances in the time series that strongly differ from the average 141 

climatology (e.g. flood or fire events, changes in the land cover) (Verger et al. 2013). To prevent from such 142 

drawback, priority is given to TSGF smoothing since it is closer than CACAO to the actual 𝑃𝐹
𝑉𝐺𝑇−𝑃(𝑑1) 143 

observations, while CACAO is only used to fill large gaps in the time series before the application of TSGF. 144 
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The combination of the TSGF local fitting and the projection capacity of CACAO allows to process in near real 145 

time (NRT) when only past observations are available. It allows also to process in offline mode the historical 146 

time series (HIST) when observations are available before and after the considered date. In the NRT case, 147 

CACAO is applied systematically to provide data every 10-days in the 60-day period after the NRT date. TSGF 148 

is then applied using this 60 days semi-window in the future, while the past semi-window spreads over 30 to 149 

60 days length depending on the availability of 6 valid observations. 150 

The HIST and NRT processing is illustrated for LAI estimation in Fig. 4. For the NRT situation, although fitted 151 

only with past data, CACAO (dashed blue line) estimates are generally closer to the instantaneous valid LAI 152 

estimates from VGT-P (black circles) than the original climatology (dotted blue line). However, it can differ 153 

from the historical processing (HIST continuous blue line) for periods with rapid LAI variations (from 154 

senescence to dormancy in site #188) or when significant noise is observed in the data (e.g. second growing 155 

season in site #233). In this case, the climatology fitting benefits from the availability of data before and after 156 

the date at which LAI is estimated. The TSGF application partially mitigates the problems of CACAO and the 157 

resulting NRT estimates (green line) shows a better local adaptation to the data than the original CACAO 158 

(dashed blue line). Note that NRT (green line) and HIST (black line) time series are very similar although some 159 

instabilities in NRT solution are found for very noisy data (e.g. January-April in site #233).  160 

To avoid the instability in NRT estimates and improve the consistency with HIST time series, the products are 161 

updated each time a new dekad is available and processed (real time estimates). This results in the delivery of 162 

n successive updates of the n recent past values of the products in the convergence (CONV) period. To 163 

determine n, the difference between the CONV-n product and the HIST processing was computed for the year 164 

2008 over the BELMANIP2 sites. It was found that after 6 dekads the CONV-6 converges closely towards the 165 

HIST processing (Fig. 5). Therefore, products will be updated during 6 dekads and then remain stable.  166 

[Fig. 4] 167 

[Fig. 5] 168 

3. Evaluation of near real time estimates  169 

The NRT algorithm was applied over time series of VGT-P data by considering only observations in the past 170 

period of the date being processed. The performances of NRT and CONV-n estimates are assessed by 171 

comparison both with (1) the HIST solution resulting from the application of the algorithm in offline mode with 172 

observations before and after the date being evaluated; (2) and GEOV1/VGT products as well as the few 173 

ground data available. This was achieved over the BELMANIP2 (Baret et al. 2006) and DIRECT sites 174 

(Garrigues et al. 2008) were the variables were measured at the ground level. The temporal profiles over a 175 

sample of sites are first discussed. Then, the performance of NRT and CONV-n estimates is assessed 176 

focusing on the influence of noise and missing data. Finally, the accuracy of NRT estimates is assessed as 177 

compared to ground data. For the sake of brevity, results focus on LAI which, among the three derived 178 

products (LAI, FAPAR and FCOVER), is the most used by the scientific community and the most sensitive to 179 

uncertainties in the satellite data.  180 

3.1. Temporal profiles for a sample of sites  181 

Few BELMANIP2 and DIRECT sites showing typical features have been selected to illustrate the performance 182 

of NRT estimates as compared to HIST processing, GEOV1 product and ground based measurements 183 

(Garrigues et al. 2008). 184 

For regular sites having enough high quality data (Fig. 6), NRT and HIST solutions are very close and show a 185 

good agreement with GEOV1 product and ground measurements. Reasonable performances and no 186 

significant differences were found between the NRT estimates, the intermediate solutions in the convergence 187 

period (CONV-3) and the consolidated one (CONV-6). The NRT estimates show more instability due to the 188 

non-availability of actual observations in the semi compositing window after the date being processed 189 

(climatology values are used in this case).  190 

For sites near the equator, having a significant fraction of missing data and noise due to persistent clouds (Fig. 191 

7), NRT still provides reliable solutions and clearly outperforms GEOV1 in terms of consistency and continuity. 192 

The background information provided by the climatology fitting allows to efficiently fill the gaps: NRT estimates 193 

show less than 1% of missing data over the BELMANIP2 sites for the 2003-2010 period as compared to the 194 

20% (up to 40% for needleleaf and evergreen broadleaf forests) of gaps in GEOV1 product (Verger et al. 195 
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2014). Further, the outlier rejection applied for very noisy situations (e.g. Tapajos site) allows eliminating 196 

contaminated data while keeping the expected level of LAI as indicated by the good agreement with ground 197 

data.  198 

For sites located at very high latitudes (Lat>50º) (Fig. 8), GEOV1 shows some artifacts and anomalous 199 

seasonality in winter time (e.g. unexpected increase of LAI in October-November for Tundra and site #93). 200 

These problems are probably due to the instabilities in the Bidirectional Reflectance Distribution Function 201 

(BRDF) correction in extreme illumination conditions as well as possible residual snow pixel contamination 202 

(Baret  et al. 2007). These artifacts were corrected in NRT estimates because (1) the sun angle was explicitly 203 

considered in the NNT, (2) outliers were rejected (e.g. site #93) and (3) climatology background information 204 

regularizes the estimation leading to smooth and continuous temporal profiles. Some underestimation 205 

problems also occurred in GEOV1 for these high latitude sites in the summer period partly due to the 206 

significant amount of noise in the data. Although mostly corrected in the HIST and the consolidated CONV-6 207 

products, they can still be observed for NRT and CONV-3 (e.g. site #107, #93 and #418). This is further 208 

investigated by evaluating the impact of noise and missing data on NRT product in the next section. 209 

[Fig. 6] 210 

[Fig. 7] 211 

[Fig. 8] 212 

3.2. Sensitivity analysis to the number of observations and data noise  213 

To better assess the performance of NRT estimates and their expected convergence towards HIST, the root 214 

mean square error (RMSE) between HIST and CONV-n for n varying from n=0 (initial solution corresponding 215 

to the NRT case with no observations after the date of estimation) to n=6 (consolidated product) is 216 

investigated as a function of the noise in the data and the number of available valid observations before the 217 

date of the estimate in the compositing window. The RMSE between the daily 𝑃𝐹
𝑉𝐺𝑇−𝑃 observations and the 218 

HIST values is used as an estimate of the noise.  219 

The RMSE between CONV-n and HIST LAI linearly increases with the amount of noise in the data (Fig. 9a). 220 

The RMSE slope of CONV-n versus RMSE of 𝑃𝐹
𝑉𝐺𝑇−𝑃 relationship (both RMSE computed as compared to 221 

HIST) is higher for the lower n order of CONV-n solutions: the initial NRT solution (n=0) is the most affected by 222 

noisy data conversely to the consolidated solution (CONV-6). A rapid convergence is observed for the 223 

intermediate solutions which show a similar pattern after 2 dekads (CONV-2). In all the cases including the 224 

initial NRT (CONV-0), the slope of RMSE as a function of the noise is lower than 1 which indicates an 225 

improvement in the performance of NRT estimates as compared to the original instantaneous 𝑃𝐹
𝑉𝐺𝑇−𝑃.  226 

Regarding the relationship with the number of available observations (Fig. 9b), the RMSE between CONV-n 227 

and HIST shows a rapid exponential decay. It is almost zero for 30 observations, i.e. the maximum number of 228 

observations before the date of the estimate corresponding to the length of the half compositing window. The 229 

RMSE values when no data is acquired before the date of the estimation (Fig. 9b) are very similar to the 230 

RMSE values for a 0.5 noise level (Fig. 9a). In all cases, including the situations when few observations are 231 

available and/or data are associated to a high level of noise, the discrepancies between NRT and HIST are 232 

reasonably low (RMSE<0.4 for LAI).  233 

The number of available observations and the RMSE values of 𝑃𝐹
𝑉𝐺𝑇−𝑃appear to be pertinent indicators of the 234 

quality of the NRT, CONV-n and HIST products and may help the user exploiting the time series. 235 

[Fig. 9] 236 

The spatio-temporal distribution of the average number of valid 𝑃𝐹
𝑉𝐺𝑇−𝑃 observations before the date of 237 

estimation (Fig. 10a) shows obvious patterns, with fewer valid observations around the equator and in winter 238 

for the higher northern and southern latitudes. The distribution of RMSE between NRT (Fig. 10b), CONV-3 239 

(Fig. 10c), CONV-6  (Fig. 10d) and HIST show consistent spatio-temporal patterns with the number of valid 240 

observations: higher RMSE values are observed at locations and periods corresponding to the lower number 241 

of available data. It must be noticed that due attention to the phenology and the associated expected LAI value 242 

is required for a correct interpretation of the RMSE distributions. For example, the observed difference 243 
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between NRT and HIST for high latitude (lat>50) (Fig. 10b) are lower for the winter time than in the growing 244 

season consistently with the expected lower LAI values in winter (Fig. 8). The comparison of NRT and CONV-245 

3 distributions of RMSE shows that a clear improvement of CONV-3 performances (compare Fig. 10b and Fig. 246 

10c). Marginal differences exist between RMSE distributions for CONV-3 (Fig. 10c) and CONV-6 (Fig. 10d). 247 

These results are consistent with the previous findings (Fig. 9b) indicating a rapid convergence of the solution 248 

after 2 dekads. 249 

[Fig. 10] 250 

3.3. Accuracy assessment 251 

Both NRT and HIST estimates show a relatively good agreement with the available ground measurements of 252 

LAI as observed over different dates along the phenological cycle of sites displayed in Fig. 6, Fig. 7 and Fig. 8. 253 

More quantitative assessment was achieved using the 19 available ground-based measurements acquired 254 

over 15 different 3 km x 3 km sites in the 2003-2007 period and compiled by Garrigues et al. (2008). In 255 

addition to LAI, validation was achieved for FAPAR and FCOVER variables. For comparison purposes, 256 

GEOV1/VGT products were also validated over the same ground dataset. Each product was interpolated at 257 

the date of the ground measurements if two valid dekadal data exist within a maximum period of ±30 days. 258 

The comparison of NRT with the ground-based observations of LAI, FAPAR and FCOVER variables shows 259 

respectively an overall RMSE of 0.69, 0.09, 0.14 (Table 1, Fig. 11). Similar performances are found for HIST 260 

products over the same ground dataset (Table 1). NRT and HIST slightly outperform GEOV1 (lower RMSE, 261 

higher correlation and slopes and offset of the linear regression respectively closer to 1 and 0). However, this 262 

validation is limited by the low number of available ground-based measurements that were mostly achieved in 263 

non-problematic conditions close to the maximum peak of vegetation. Further confrontation with ground based 264 

data is required, particularly over sites located at equatorial regions (Fig. 7) or very high latitude (Fig. 8) where 265 

higher noise and occurrence of missing data is expected in the satellite surface reflectance data. 266 

[Fig. 11] 267 

[Table 1] 268 

4. Conclusions   269 

This paper presents the NRT algorithm to derive dekadal biophysical products both for the near real time 270 

conditions, as well as for the processing of the historical archive of VGT data at global scale. It capitalizes on 271 

the efforts undertaken in the first version of geoland2 products (GEOV1/VGT and GEOV1/AVHRR) through a 272 

3-step procedure including (1) neural networks to provide instantaneous estimates from VGT-P reflectances, 273 

(2) a multi-step filtering approach to eliminate data mainly affected by atmospheric effects and snow cover, 274 

and (3) temporal techniques (TSGF Savitzky-Golay adaptive local filter and CACAO climatology fitting) to 275 

ensure consistency and continuity as well as short term projection of the product dynamics. 276 

The NRT method was applied over actual satellite daily VGT-P observations for the 2005-2008 period over the 277 

BELMANIP2 and DIRECT ensemble of sites. Performances were evaluated by comparison of NRT estimates 278 

(i.e. when no available observation is available after the date of estimation) with historical (HIST) processing 279 

resulting from the application of the algorithm over the archive of VGT data (i.e. using observations before and 280 

after the considered date), GEOV1/VGT products and available ground data. Results show the potential of the 281 

NRT algorithm for continuous, consistent and near real time estimation of global biophysical products from 282 

satellite observations.  283 

NRT estimates show reasonable performances to reproduce the expected seasonality over a variety of 284 

vegetation conditions although some instabilities in the solution were identified in presence of noise and gaps 285 

in the data. To increase the robustness of the solution and improve the consistency with HIST time series, the 286 

products are updated each time a new dekad is processed until reaching convergence. NRT rapidly converges 287 

closely towards the HIST processing after 6 dekads (consolidated solution) with major improvements in the 288 

patterns of intermediate solutions after 2 dekads. The performances of the algorithm are closely linked to the 289 

number of observations available before the date of estimation and the noise in the data. Both of them are 290 

provided along with the product values as quality indicators.  291 

First validation results indicate that NRT products have high consistency with GEOV1/VGT products with a 292 

significant improvement in terms of continuity (less than 1% of missing data over the BELMANIP2 sites as 293 

compared to the 20% of gaps in GEOV1 products) and temporal consistency (smoother products less affected 294 
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by noise in the data), especially at high latitudes and Equatorial areas. Indeed, the use of the climatology 295 

allows filling gaps and improves robustness in time series. Note however that for long periods of missing data, 296 

NRT estimation is very challenging and solution may be affected by the inability of the climatology to capture 297 

underlying atypical modes of seasonality. The user is advised to use quality metrics and quality flags 298 

associated with the products. Finally, good agreement with the available ground measurements was observed 299 

(root mean square error of 0.69 for LAI, 0.09 for FAPAR and 0.14 for FCOVER) although this validation needs 300 

to be extended to other sites and years. Further, confrontations with other existing temporal methods for NRT 301 

estimation (e.g. Jiang et al. 2010) and assimilation techniques including Kalman Filters (e.g. Xiao et al. 2011) 302 

should also be conducted. 303 

The proposed method will be implemented in the Copernicus GIO land programme and GEOV2/VGT global 304 

biophysical products will be freely delivered through the Copernicus portal (land.copernicus.eu) at 1/112° 305 

spatial resolution every 10 days in NRT as well as in offline mode (time series from 1999 to present). NRT 306 

products are expected to support a wide range of applications and policies on the environment requiring 307 

information of the status and evolution of land surface at global scale. Since GEOV2/VGT products are based 308 

on the same principles as for the GEOV1/AVHRR (1981-2000) products (Verger et al. 2012), the combination 309 

of both datasets is expected to provide continuous and consistent long time series of global LAI, FAPAR and 310 

FCOVER variables for the last three decades. These long-term data records are expected to contribute to 311 

global climate monitoring and earth science modeling applications.  312 
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Table 1. Statistics of the comparison of NRT, HIST and GEOV1/VGT with ground measurements for LAI, 392 
FAPAR and FCOVER variables over the DIRECT sites for the 2003-2007 years: number of sites, number of 393 
samples (sites x dates), percentage of samples which meet GCOS requirements in terms of accuracy 394 
(max(20%, 0.5) for LAI, max(10%, 0.05) for FAPAR (and FCOVER) (GCOS 2011)), root mean square error 395 
(RMSE), correlation coefficient (R), slope and offset of the linear regression.  396 

 397 

 398 

 399 

  Nb.
site 

Nb. 
sample 

%OK 
GCOS 

RMSE R slope offset 

L
A

I 

NRT  15 19 89 0.69 0.94 0.89 -0.01 

HIST 15 19 80 0.78 0.92 0.86 0.03 

GEOV1  15 19 75 0.76 0.92 0.89 0.01 

F
A

P
A

R
 NRT 13 13 62 0.09 0.97 0.97 0.06 

HIST 13 13 54 0.09 0.95 0.90 0.07 

GEOV1 13 13 38 0.12 0.91 0.91 0.07 

F
C

O
V

E
R

 NRT 17 24 33 0.14 0.88 1.27 -0.10 

HIST 17 24 29 0.14 0.87 1.28 -0.10 

GEOV1 17 24 33 0.15 0.86 1.34 -0.14 
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Fig. 1. Flow chart showing the general principles of the NRT algorithm used to derive biophysical products 420 

from VGT-P reflectances. The three main steps identified in the text are highlighted in grey. The white ellipses 421 

correspond to the applied methods. The original, final and intermediate products with specification of their 422 

temporal sampling (d1 for daily and d10 for dekadal) are indicated in rectangular white boxes. For step 1, fused 423 

MODIS +CYCLOPES data are used only in the NNT training process. 424 

Fig. 2. The weighing function used for the fusion between CYCLOPES and MODIS LAI and FAPAR products. 425 
The dashed line corresponds to the weight used for generating GEOV1 products. The dotted line corresponds 426 
to 𝑤 = 0.5. 427 

Fig. 3. Illustration of the 3-iterations of TSGF filtering (continuous line) to eliminate contaminated data (filled 428 

circles). Empty circles correspond to valid data. The number of the BELMANIP2 site, the biome class 429 

(following the GLOBCOVER map, (Defourny et al. 2009)) and the latitude and longitude are indicated. 430 

Fig. 4. Illustration of the HIST and NRT LAI estimation over two BELMANIP2 sites. The number of each site, 431 

the biome class (following GLOBCOVER map, (Defourny et al. 2009), the latitude and longitude are indicated. 432 

Fig. 5. Evaluation of the differences between CONV-n and HIST processing over the BELMANIP2 sites for 433 

year 2008 as a function of the number of dekads after the date being processed, n. Zero dekads (𝒏 = 𝟎) 434 

corresponds to the NRT case with data available only for the past. The several gray values correspond to 75% 435 

(dark gray), 90% (medium gray) and 95% (light gray) of the population, and the dots to 5% percentile of 436 

residual outliers. The bold back solid line (close to 0:0 line) corresponds to the median value of the 437 

differences.  438 

Fig. 6. Temporal profiles of the NRT, CONV-n for n=3,6 dekads after the date being processed, HIST and 439 

GEOV1 LAI products for regular sites. The valid and filtered VGT-P LAI estimates as well as the available 440 

ground measurements are shown. The title of each plot indicates the DIRECT site name or BELMANIP2 site 441 

number, the GLOBCOVER (Defourny et al. 2009) biome class, the latitude and longitude in degrees. 442 

Fig. 7. Same as Fig. 6 but for sites near the Equator. 443 

Fig. 8. Same as Fig. 6 but for very high latitude sites. 444 

Fig. 9. RMSE between CONV-n and HIST estimates as a function of (a) noise in the data computed as the 445 

RMSE between the daily 𝑃𝐹
𝑉𝐺𝑇−𝑃 observations and the HIST product and (b) number of valid observations in 446 

the left semi-period of composition (i.e. before the date of estimation). n=0, 1…6 corresponds to the dekad 447 

number after the date of estimation results shown for the LAI over the BELMANIP2 sites for the year 2008. 448 

Zero dekads (𝑛 = 0) corresponds to the NRT case. 449 

Fig. 10. Spatio-temporal distribution as a function of the latitude (10° steps) and the date of acquisition 450 

(monthly step) of (a) the average number of valid daily VGT-P observations before the date of the NRT 451 

estimates, (b) the RMSE between NRT and HIST, CONV-n and HIST for (c) n=3 and (d) n=6 where n is the 452 

number of dekads after the date of estimation. Evaluation for LAI estimates over the 445 BELMANIP2 sites for 453 

the year 2008.  454 

Fig. 11. Comparison of NRT estimates with scaled ground measurements for LAI, FAPAR and FCOVER. The 455 
different symbols correspond to the five biome classes as derived from the GLOBCOVER (Defourny et al. 456 
2009) global landcover: Shrubs/Savana/Bare soil (SSB), Crops and Grassland (CG), Deciduous Broadleaf 457 
Forests (DBF), Needleleaf Forest (NF), and Evergreen Broadleaf Forest (EBF). The dotted line corresponds to 458 
the 1:1 line. The solid lines represent the GCOS accuracy criteria: max(20%, 0.5) for LAI, max(10%, 0.05) for 459 
FAPAR (and FCOVER) (GCOS 2011). The statistics of the comparison are provided in Table 1. 460 
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