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Abstract 23 

Unmanned airborne systems (UAS) technology opens new horizons in precision agriculture for 24 

effective characterization of the variability in crop state at high spatial resolution and high revisit 25 

frequency. Green area index (𝐺𝐴𝐼) is a key agronomic variable involved in many processes and used 26 

for decision making. This paper describes a physically based algorithm for estimating 𝐺𝐴𝐼 from UAS 27 

acquisitions. The UAS plane platform used here was equipped with four cameras in green (550 nm), 28 

red (660 nm), red-edge (735 nm) and near infrared (790 nm). It provided multiple views by 29 

overlapping images along and between the tracks. A look up table was generated to invert the 30 

PROSAIL radiative transfer model using the reflectances in the four bands and the specific view-sun 31 

angles for each individual image. The average of the ensemble of solutions corresponding to the 32 

individual images allows regularizing the solutions of the ill posed inverse problem. Around six 33 

images were required to get stable 𝐺𝐴𝐼  estimates and the corresponding root mean square error 34 

(RMSE) value used as a proxy for the associated uncertainties. Comparison with ground based 35 

measurements showed that the accuracy of UAS 𝐺𝐴𝐼 estimates over wheat and rapeseed crops was 36 

around 0.2 in terms of RMSE. The use of normalized reflectances compared to absolute reflectances 37 

improved the performances of GAI estimates (0.17 compared to 0.26 GAI in terms of RMSE) 38 

particularly under unstable illumination conditions. High repeatability in the estimates from UAS 39 

flights at different acquisition time was observed. The use of the red-edge band normalized (absolute) 40 

reflectances brought 30% (10%) improvement of accuracy for the low to medium 𝐺𝐴𝐼 values. 41 

Keywords: Green area index; radiative transfer inversion; look up tables; unmanned airborne 42 

systems; precision agriculture 43 

 44 
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1 Introduction 47 

One of the paramount challenges of farmers in the 21st century is to solve the apparent contradiction 48 

of producing more using fewer non-renewable resources. This should allow facing the increasing 49 

demand for food, fiber and fuel production while decreasing the footprint of agriculture on the 50 

environment. Any input to the crop should be used with a maximum efficiency by fine tuning the 51 

cultural practices. This is one of the objectives of precision agriculture (McBratney et al. 2005) where 52 

the cultural practices are adapted in space and time to the actual status of the canopy. This requires 53 

obviously describing the status of the canopy and its variability in the field and along the growth 54 

cycle.  55 

Remote sensing based methods have been recognized very useful to monitor frequently large areas 56 

within an affordable cost. They were first mainly based on satellite, airborne or tractor-borne 57 

observations of canopy reflectance in the optical domain (400-2500 nm) (Comar et al. 2012; Combal 58 

et al. 2001; Coquil and Bordes 2005). The recent technological advancement in the unmanned 59 

airborne vehicles (UAV) or systems (UAS) and the miniaturization of sensors resulted in the current 60 

explosion of their application to the monitoring of the environment as well as to precision agriculture 61 

(Huang et al. 2013; Zhang and Kovacs 2012) and phenotyping (Lelong et al. 2008; Perry et al. 2012). 62 

As a matter of fact, UASs offer the possibility to cover frequently spatial domains from few hectares 63 

to few square kilometers within few minutes or few hours which is out of the scope of any tractor-64 

based system. The low flight altitude combined with relatively low speed allows getting very high 65 

spatial resolution, typically between few millimeters to few decimeters. The payload varies from few 66 

hundred grams to few kilograms, with autonomy of few minutes up to few hours. Several sensors 67 

have been tested, ranging from hyperspectral imaging systems, LIDARS, thermal cameras, RGB 68 

commercial cameras to multispectral cameras. The latter are the most widely used systems because 69 

they are affordable and provide pertinent information on the crop through the measure of radiances 70 

in few spectral bands. 71 
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The measured radiances are generally transformed into vegetation indices to produce maps showing 72 

the relative variability within fields (Seelan et al. 2003). They can be also transformed into crop 73 

biophysical variables such as leaf area index (LAI). LAI is defined as half the total area of leaves per 74 

unit horizontal ground area (Chen and Black 1992). LAI is involved in key canopy functioning 75 

processes including photosynthesis, respiration and evapotranspiration. It reflects the potential 76 

growth of the canopy and is a key variable when modeling biomass production as well as yield and 77 

yield loss. LAI can be used as an input into a decision support system  (Zhang et al. 2002) either based 78 

on expert knowledge and statistical relationships calibrated over dedicated experiments, or based on 79 

the use of crop models (Houlès et al. 2004). In both cases, LAI estimated from the remote sensing 80 

observations should be in good agreement with values that could be measured in the field either using 81 

destructive methods or indirect methods based on light transmittance (Jonckheere et al. 2004; Weiss 82 

et al. 2004). Since LAI is to be used to characterize the functional parts of the canopy, it implicitly 83 

refers to the green parts that can be either leaves or other green elements such as stems or ears in the 84 

case of wheat crops. It is therefore preferred to use the term green area index (𝐺𝐴𝐼) in place of LAI 85 

(Baret  et al. 2010; Duveiller et al. 2012).  86 

Several methods have been developed to estimate 𝐺𝐴𝐼 from remote sensing observations (Baret and 87 

Buis 2007). They can use vegetation indices that are transformed into 𝐺𝐴𝐼  using a statistical 88 

relationship calibrated over experimental measurements (Liu et al. 2012; Verrelst et al. 2012; Viña et 89 

al. 2011) or over radiative transfer model simulations (Baret and Guyot 1991; Haboudane et al. 2004). 90 

GAI may be also estimated using a radiative transfer model inversion scheme (Laurent et al. 2013; 91 

Verger et al. 2011; Weiss et al. 2000). The latter approach offers the advantage to include a much 92 

wider range of situations as compared to empirical relationships and allows also taking into account 93 

the actual illumination conditions. Further, radiative transfer model inversion allows also to exploit 94 

ancillary information on the canopy resulting generally into improved retrieval performances 95 

(Combal et al. 2002). 96 
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Remote sensing 𝐺𝐴𝐼  estimates can be coupled with crop process models using assimilation 97 

techniques (Dorigo et al. 2007). Despite remarkable technological and theoretical advances in remote 98 

sensing and crop modelling, limited progress has been achieved in their assimilation partially because 99 

of the coarse spatial resolution of the available data with high temporal resolution as required in crop 100 

models (Duveiller and Defourny 2010). UASs technology opens new horizons for the retrieval of 101 

crop state variables at high spatial resolution and high revisit frequency (Guillen-Climent et al. 2012; 102 

Zarco-Tejada et al. 2012). However, relatively few investigations have been devoted to the estimation 103 

of 𝐺𝐴𝐼  from UAS data (Duan et al. 2014; Lelong et al. 2008; Mathews and Jensen 2013). The 104 

objective of this study is to develop and evaluate a method of 𝐺𝐴𝐼 estimation from UAS reflectance 105 

measurements in the context of precision agriculture applications with emphasis on wheat and 106 

rapeseed crops. Special attention is paid to the radiative transfer inversion technique and methods to 107 

extract the solution of the ill posed inverse problem using multiangular and multispectral 108 

observations. In a first section, the UAS system is described along with the preprocessing steps 109 

required to get geolocated reflectance measurements. Then, the radiative transfer inversion method 110 

implemented is described followed by a presentation of the experiment used to evaluate the estimates 111 

of 𝐺𝐴𝐼 from the UAS measurements. Finally, results are discussed with emphasis on the radiative 112 

transfer model inversion process and on the comparison with the ground measurements. A conclusion 113 

provides the main outcomes of this study and possible issues to be further investigated. 114 

2 Material and methods 115 

2.1 Description of the UAS and the camera system  116 

The system used is based on a UAS 2-m-wingspan plane (Figure 1a) designed and developed by 117 

Airinov (WWW1). It is built in expanded polypropylene that absorbs impacts without breaking 118 

allowing to land directly on the plane’s belly. It weighs about 2kg including the payload, enabling it 119 

to be hand-launched, and easing the compliancy to air traffic regulation. The UAS is battery-powered, 120 

and can fly for 50 minutes at 50 km/h at altitudes ranging from 20 m to 150 m. Its usual flight height 121 
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is 150 m and it can bear wind speed up to 43 km/h. It scans a 15 ha area in 10 minutes. The flight is 122 

automatically controlled through a set of ground control points (GCPs) distributed over the field to 123 

be sampled. Real time positioning is based on a GPS system with usual accuracy of few meters 124 

(section 3.1). The attitude of the plane is monitored by accelerometers.  125 

A patented camera developed by Airinov, composed of four complementary metal oxide 126 

semiconductor (CMOS) sensors was attached under the plane (Figure 1b) to get images in four 127 

spectral bands using interferential filters: green (550 nm), red (660 nm), red edge (735 nm) and near 128 

infrared (NIR, 790 nm). The spectral resolution (Full Width at Half Maximum, FWHM) is 40 nm for 129 

the green, red and NIR bands and 10 nm for the red edge band. The spectral sensitivity of the sensor 130 

and that of the spectral filter is shown in Figure 2 for the four bands. Each CMOS camera has 752 x 131 

480 pixels. The lens provides a field of view of ±20.5º across-track. 132 

[Figure 1] 133 

[Figure 2] 134 

2.2 Flying the UAS to map a field 135 

The UAS made parallel tracks each 37 meters. At the typical 150 m altitude flights, the spatial 136 

resolution was around 0.15 m with a 112 m across-track swath. The images were acquired 137 

continuously during the flight at 1.25 Hz. This acquisition scheme provides 80% overlap between 138 

images along-track and 66% across-track. This allows both automatic mosaicking of the images as 139 

well as getting multiple views for each pixel as illustrated in Figure 3. The view direction was 140 

generally close to nadir, with maximum zenith angle close to 30°. The flights were preferentially 141 

oriented in a compass direction perpendicular to the sun to minimize possible bi-directional effects 142 

(Roujean et al. 1992; Verger et al. 2002) along a track where the directional sampling is the denser 143 

(Figure 3b). Acquisitions were also preferentially made when the sun direction was not parallel to the 144 

row direction to avoid this very specific configuration where the illuminated soil contributes 145 

importantly to the radiance measured by the cameras. 146 
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[Figure 3] 147 

2.3 Geolocation of the pixels 148 

The cameras were first corrected from distortion caused by the lens (Brown 1966). Ortho-projected 149 

images were then generated using a fully automatic processing chain combining commercial off-the-150 

shelf software used for photogrammetric engineering (Agisoft Photoscan, WWW2) and algorithms 151 

developed specifically. The process included the identification of ground control points, matching 152 

points between the several overlapping images, bundle adjustment to affine geometry of the shot, 153 

reconstruction of surface geometry (digital surface model, DSM) and re-projection of images on this 154 

DSM (Hartley and Zisserman 2004). Ground control points were manually added to the scene before 155 

the bundle adjustment, allowing the mosaic and the ortho-photos to be aligned over the ESUs. This 156 

was achieved on the green band only. Then, the pixels corresponding to images in each of the four bands 157 

were co-registered. The considered algorithm matched feature points between the reference green 158 

band and each of the other three bands. Rotation angles with respect to the reference band, as well as 159 

intrinsic model parameters were optimized using these points and the previously computed surface 160 

model.  161 

2.4 Radiometric calibration  162 

Imperfections of the lenses create vignetting effect characterized by pixels on the edges of the images 163 

receiving less light than those on the center. This effect was corrected using a statistical method 164 

proposed by Lelong et al. (2008) and derived from Li Causi and De Luca (2005). The average of an 165 

ensemble of around 1500 images was computed. Assuming that the directional effects cancel out 166 

statistically, the variability within the average image represents the vignetting effect (Figure 4). A 167 

multiplicative correction factor, νi (x, y) is finally computed for each band 𝑖 (1 ≤ 𝑖 ≤ 4), and pixel 168 

[x, y] as the ratio between the maximum digital count (DN) value, 𝑚𝑎𝑥(𝐷𝑁𝑖̅̅ ̅̅ ̅̅ ), over the average 169 

image which is found in the center and the average value 𝐷𝑁𝑖 (𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ for pixel [𝑥, 𝑦]: 170 

                                                         ν𝑖 (𝑥, 𝑦) =
𝑚𝑎𝑥(𝐷𝑁𝑖̅̅ ̅̅ ̅̅ ̅)

𝐷𝑁𝑖 (𝑥,𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                        (1) 171 
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The digital count values in each band 𝑖  and pixel (𝑥, 𝑦)  were transformed into bidirectional 172 

reflectance factors, 𝐵𝑅𝐹𝑡𝑎𝑟𝑔𝑒𝑡
𝑖 (𝑥, 𝑦) (Nicodemus et al. 1977), using  a reference panel: 173 

                 𝐵𝑅𝐹𝑡𝑎𝑟𝑔𝑒𝑡
𝑖 (𝑥, 𝑦) = 𝐷𝑁𝑡𝑎𝑟𝑔𝑒𝑡

𝑖 (𝑥, 𝑦)
𝑛∙  𝜈𝑖 (𝑥,𝑦)

∑ 𝐷𝑁𝑟𝑒𝑓
𝑖 (𝑥𝑘,𝑦𝑘)∙ 𝜈𝑖 (𝑥𝑘,𝑦𝑘)𝑛

𝑘=1

 
 𝑡𝑟𝑒𝑓∙

𝑖 𝐼𝑟𝑒𝑓
𝑖  

𝑡𝑡𝑎𝑟𝑔𝑒𝑡
𝑖 ∙𝐼𝑡𝑎𝑟𝑔𝑒𝑡

𝑖 𝐵𝑅𝐹𝑟𝑒𝑓
𝑖  174 

 (2) 175 

Where 𝑛 is the number of pixels in the image of the reference panel, 𝐷𝑁𝑡𝑎𝑟𝑔𝑒𝑡
𝑖 (𝑥, 𝑦) and 𝐷𝑁𝑟𝑒𝑓

𝑖 (𝑥, 𝑦) 176 

are the signals measured in band 𝑖 at pixel (𝑥, 𝑦) over respectively the target and the reference panel. 177 

The integration time over the target and the reference panel are  𝑡𝑡𝑎𝑟𝑔𝑒𝑡
𝑖  and 𝑡𝑟𝑒𝑓

𝑖  for band 𝑖. Finally, 178 

𝐼𝑡𝑎𝑟𝑔𝑒𝑡
𝑖  and 𝐼𝑟𝑒𝑓

𝑖  are the incoming radiation measured during acquisition of the target and reference 179 

panel in band 𝑖. A PAR sensor (LI-190 Quantum Sensor) was placed on the ground close to the field 180 

to be flown with the UAS and was recording continuously at the 1 Hz frequency the incoming 181 

radiation to provide 𝐼𝑡𝑎𝑟𝑔𝑒𝑡
𝑖  and 𝐼𝑟𝑒𝑓

𝑖 . 𝐵𝑅𝐹𝑟𝑒𝑓
𝑖  is the bidirectional reflectance factor of the reference 182 

panel made of a gray carpet that was characterized spectrally and directionally. Figure 5 shows that 183 

this reference panel has a reflectance value close to 0.22 and a relatively Lambertian behavior. Prior 184 

to the flight, the UAS was attached to a metal frame and positioned at a distance of about 1 m above 185 

the gray reference carpet (40 cm x 40 cm) used to measure 𝐷𝑁𝑟𝑒𝑓
𝑖 (𝑥, 𝑦),  𝑡𝑟𝑒𝑓

𝑖  and 𝐼𝑟𝑒𝑓
𝑖  . The 186 

reflectance values in the four spectral bands of onboard UAS cameras from multi-angle acquisitions 187 

over different samples are illustrated in Figure 3c. 188 

 [Figure 4] 189 

[Figure 5] 190 

 191 

2.5 Radiative transfer model inversion  192 

A number of inversion techniques are available as reviewed by Baret and Buis (2007). The look up 193 

table (LUT) approach was selected here to exploit all the images that were acquired over a single 194 

elementary sampling unit (ESU). The minimum size of the ESU is few square meters to be consistent 195 
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with the assumptions of the radiative transfer model assuming a statistically representative sample of 196 

canopy elements and their organization. Further this size limits the local influence of possible 197 

different neighboring elements. The BRF measured for each pixel in an image was therefore averaged 198 

for each band over the ESU support area. The LUT approach presents the advantage to be very 199 

flexible, relatively computer efficient and avoids trapping in local minimum as this may happen with 200 

iterative convergence algorithms. One limitation of LUTs is the necessity to populate densely the 201 

space of canopy realization to get a solution with a reasonable accuracy. The PROSAIL radiative 202 

transfer model (Jacquemoud et al. 2009) was used to build the LUT. PROSAIL is a combination of 203 

the SAIL canopy reflectance model (Verhoef 1984, 1985) modified to account for the hotspot effect 204 

(Kuusk 1991) and the PROSPECT leaf optical properties model (Jacquemoud and Baret 1990). 205 

Canopy structure is characterized by 𝐺𝐴𝐼, the average leaf angle inclination (𝐴𝐿𝐴) and the hot-spot 206 

parameter (ℎ𝑜𝑡). This 1D model provides a good balance between realism and simplicity. It has been 207 

extensively used over a range of crops with relatively good success (Jacquemoud et al. 2009; Verger 208 

et al. 2011). Leaf characteristics are the chlorophyll (𝐶𝑎𝑏), the dry matter (𝐶𝑑𝑚), the relative water 209 

(𝐶𝑤_𝑅𝑒𝑙) and the brown pigment (𝐶𝑏𝑝) contents as well as a parameter (N) describing the mesophyll 210 

structure. The PROSPECT 3 specific absorption coefficients were used here (Fourty and Baret 1997). 211 

A soil data base was used (Liu et al. 2003) from which 282 spectra were extracted showing a large 212 

range in soil types. A soil brightness factor was then used to simulate further variations due to 213 

roughness, effect of the direction of observation as well as moisture.  214 

Uniform distributions were used for the variable of interest (𝐺𝐴𝐼) to get more even performances 215 

across the whole range of possible situations. Gaussian distributions were used for the rest of model 216 

input variables (Table 1) according to the prior knowledge derived from the literature (Verger et al. 217 

2011). This provides denser simulations for the most frequent cases. A full orthogonal experimental 218 

plan was adopted to combine the 9 input variables by splitting the whole range of variation of each 219 

variable into a small number of classes (Table 1). This allowed populating more evenly the 9 220 
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dimensions of the space of canopy realization. For each combination of the input variables, top of 221 

canopy reflectance was then computed for each wavelength between 500 nm to 850 nm with a 1 nm 222 

step, and then integrated according to the spectral sensitivity of UAS bands (Figure 2) assuming a 223 

standard atmosphere condition for characterizing the spectral distribution of the incoming radiance. 224 

A total of 20736 cases were simulated for a given observational geometry. Several LUTs were 225 

generated for a range of observational geometry with view zenith angle 𝛳𝑜 = [0°: 10°: 30°],   sun 226 

zenith angle 𝛳𝑠 = [20°: 10°: 90°] and relative azimuth angle  𝜙 = [0°: 45°: 180°] .Within the 160 227 

LUTs generated corresponding to the several observational geometries, the 8 bounding simulated 228 

cases containing the actual observational geometry were identified and combined to generate the 229 

corresponding LUT using linear interpolation. 230 

[Table 1] 231 

2.6 Cost functions: GAI estimation 232 

Two simple quadratic cost functions were used to measure the distance between the measurements 233 

(𝐵𝑅𝐹𝑖) and the simulations (𝐵𝑅𝐹𝑖)̂  in the four bands. The first one, 𝐽𝑎𝑏𝑠 = ∑ (𝐵𝑅𝐹𝑖 − 𝐵𝑅𝐹�̂�)
24

𝑖=1 , 234 

considers the absolute values of the BRF. The second one, 𝐽𝑟𝑒𝑙 = ∑ (𝐵𝑅𝐹𝑖
∗ − 𝐵𝑅𝐹𝑖

∗̂)
24

𝑖=1 , considers 235 

the BRF normalized by the average BRF value across the four bands used, 𝐵𝑅𝐹𝑖
∗ = 4

𝐵𝑅𝐹𝑖

∑ 𝐵𝑅𝐹𝑖
4
𝑖=1

. This 236 

second cost function was investigated to be more robust in case of spatial variability of the incoming 237 

light not represented by the single point measurement of 𝐼𝑡𝑎𝑟𝑔𝑒𝑡
𝑖  in the field (see Equation 2). The 238 

solution extracted corresponds to the simulated case providing the minimum of the cost function.  239 

The ensemble of solutions corresponding to the images available over the ESU were then averaged 240 

to provide the estimated value at the ESU level. Outlier rejection as well as exclusion of images not 241 

covering completely the ESU were tested but not retained since no improvement in the estimates was 242 

observed due to the high number of available images providing already a robust solution (section 3.7). 243 
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This last averaging step corresponds to a regularization process used to counterbalance the generally 244 

ill posed inverse problem (Combal et al. 2002).  245 

2.7 Study area and ground validation measurements  246 

Six study areas: Auzeville (AUZE; 43.53º N, 1.50º E), Poitou 1 (DURA; 46.16ºN, 0.53ºE), Poitou 2 247 

(PIAR; 46.17º N, 0.53º E), Poitou 3 (RIBE; 46.12º N, 0.56º E), Dijon 1 (RAPS; 47.24º N, 5.11º E) 248 

and Dijon 2 (MESS; 47.41º N, 5.03º E) hosting wheat and rapeseed crops were considered (Figure 249 

6). A total of 50 ESUs of 5 m x 5 m (2 m x 5 m in AUZE) were sampled at different phenological 250 

stages of wheat and rapeseed (Table 2, Figure 6). In situ 𝐺𝐴𝐼 was estimated from green fractions 251 

measured at 57.5º zenith angle in a compass direction perpendicular to the rows using downward 252 

looking digital photos as proposed by (Baret  et al. 2010). The segmentation of the photos was 253 

achieved using the SATVA (Semi-Automated Thresholding for Vegetation Analysis, WWW3) 254 

software based on semi-automatic thresholding of the image in the RGB color space (Baret  et al. 255 

2010). Between 3 to 6 photos per ESU were acquired to estimate 𝐺𝐴𝐼 , each one corresponding 256 

roughly to 1 m² sampled area. Statistics of ground based measurements are summarized in Table 2. 257 

[Figure 6] 258 

[Table 2] 259 

3 Results and discussion 260 

3.1 Geometric accuracy 261 

A dedicated study was carried out to evaluate the absolute accuracy of the geolocation of each pixel. 262 

A 13 ha, bare soil agricultural plot in the Versailles region (48°51’N, 1°51’E) was scanned by the 263 

UAS (Figure 7a). Twenty three ground control points (GCP) were setup in the field (Figure 7a). The 264 

location of each of these 23 GCPs was measured using a Trimble Pathfinder Power differential Global 265 

Positioning System (GPS). The antenna was fixed on a 2 meters height telescopic rod and a circular 266 

level vial that ensures good vertical alignment. At each GCP, GPS positions were averaged during 1 267 
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minute. To improve the accuracy of the GPS coordinates collected in the field, postprocessed 268 

differential correction was made with the GPS Pathfinder Office software (WWW4) by comparing 269 

GPS data with base data collected at reference stations (Global Navigation Satellite System (GNSS) 270 

permanent network). The final mean accuracy was 1.8 cm on X and Y coordinates. The mean and the 271 

standard deviation of the absolute geometric error, using only onboard GPS data, were 2.06 m and 272 

0.98 m, respectively. To improve the absolute geolocation accuracy, the orthomosaic was adjusted on 273 

12 GCPs of the 23 GCPs. The accuracy was evaluated over the 11 remaining GCPs. The pixels in the 274 

orthomosaic were offset on the average by 2 cm in the north direction and 0.6 cm in the west direction 275 

with a standard deviation of about 4 cm in each direction (Figure 7b) which appears to be a very good 276 

accuracy regarding the 15 cm spatial resolution (section 2.2). GCPs were therefore used when the 277 

geolocation accuracy required was better than 2.0 m which was the case of Auzeville flights (Table 278 

3). 279 

[Figure 7] 280 

3.2 Repeatability of 𝐺𝐴𝐼 estimates  281 

Since 𝐺𝐴𝐼  is supposed to change only marginally within one day, the stability of the estimates 282 

obtained the same day under two different flights needs first to be checked. This was achieved in 283 

Auzeville over wheat crops at two different development stages: tillering (12/02/01) and beginning 284 

of stem elongation (12/03/23) (Table 3). Note that during all the flights, the illumination conditions 285 

were corresponding mostly to clear sky thus relatively stable. 286 

[Table 3] 287 

The two flights were in good agreement for both the absolute (Figure 8a) and relative (Figure 8b) cost 288 

functions. However, the use of the relative cost function, 𝐽𝑟𝑒𝑙  degraded slightly the consistency 289 

between the flights mostly for the highest 𝐺𝐴𝐼 values. 290 

[Figure 8] 291 
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3.3 Comparison with ground measurements  292 

The 𝐺𝐴𝐼 estimates from the UAS were in very good agreement with the ground 𝐺𝐴𝐼 measurements 293 

(Figure 9; Table 4). The PROSAIL model worked equally well on both wheat and rapeseed crops. 294 

The use of the relative cost function (Figure 9b) improved slightly the estimates as compared to the 295 

absolute cost function (Figure 9a). The root mean square error (RMSE) computed from the several 296 

repetitions of ground 𝐺𝐴𝐼  measurements (horizontal bars in Figure 9) was relatively small for 297 

rapeseed, but much larger for wheat crops because of the larger heterogeneity of the wheat crops 298 

sampled. For the low 𝐺𝐴𝐼 values (𝐺𝐴𝐼 < 2), the precision of UAS estimates approximated by the 299 

RMSE over the ensemble of solutions for  the available images covering the ESU (vertical bars in 300 

Figure 9) were on the same order of magnitude as the one computed from ground 𝐺𝐴𝐼 measurements. 301 

For 𝐺𝐴𝐼 larger than 2, the RMSE associated to both UAS estimates and from ground measurements 302 

generally increased with the 𝐺𝐴𝐼 value, with however a larger variability between ESUs. As a matter 303 

of fact, the estimation of 𝐺𝐴𝐼 is known to be more difficult for the largest 𝐺𝐴𝐼 values because of 304 

saturation effects (Kandasamy et al. 2010; Shabanov et al. 2005; Verger et al. 2011). The RMSE 305 

associated to 𝐺𝐴𝐼 estimates using the relative cost function were generally smaller than that using the 306 

absolute cost function (Figure 9, vertical lines). 307 

[Figure 9] 308 

3.4 Sensitivity to illumination conditions 309 

Deriving BRF values from radiance measurements when the illumination conditions are changing is 310 

challenging. The incoming radiation should be measured concurrently with the image acquisition, but 311 

also obviously at the location of the image itself which would require deploying a large number of 312 

light sensors on the ground. Two other methods are generally used. The first one is based on incoming 313 

light measurements onboard the UAS. However, in this case the stability of the UAS platform would 314 

impact largely the results. Further, because of the altitude difference and the fact that the sun is rarely 315 

vertical, the measurements at the UAS level are not strictly representative of those on the ground 316 
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under the track of the UAS. The second method that we selected in this study is based on ground 317 

measurement of the incoming light achieved in the vicinity of the field to be sampled. It allows getting 318 

a very stable platform for accurate incoming radiation measurements. In a recent study (Honkavaara 319 

et al. 2013) where the two methods of incoming radiation measurements were compared, the ground 320 

level incoming radiation measurements were found more accurate to compute BRF. However, in case 321 

of variable illumination conditions due to the movements of clouds, the local incoming radiation 322 

measurement may not be representative of the illumination actually received under the track of the 323 

UAS. The normalization of the BRF proposed through the relative cost function would allow 324 

minimizing these variations in illumination. The results presented earlier demonstrate that the loss of 325 

information when normalizing by the average BRF values over the 4 bands is marginal. The stability 326 

of estimates between morning and afternoon flights was slightly degraded (Figure 8) for high 𝐺𝐴𝐼 327 

estimates. However the retrieval performances of the relative approach marginally improved as 328 

compared to the absolute approach (Figure 9, Table 4). Although most flights used in this study were 329 

completed under relatively stable illumination conditions, the normalization proposed in the cost 330 

function allowed to reduce possible variation of incoming radiation due for example to thin high 331 

altitude clouds as illustrated in Figure 10. As a matter of facts, the coefficient of variability of LAI 332 

estimates (RMSE normalized by the mean LAI value) of the relative approach was lower than the 333 

absolute one, indicating higher stability in the estimates, particularly for the cases with higher 334 

variability in the incoming PAR. Nevertheless, changes in illumination conditions are also associated 335 

to a change in the directionality as well as in the spectral distribution of the incoming radiation. 336 

Although these effects are probably second order, they should be quantified by further investigations. 337 

Finally, the present study was limited to low to medium 𝐺𝐴𝐼 values. Additional experiments should 338 

be conducted to evaluate the validity of our conclusions in the case of higher 𝐺𝐴𝐼 values generally 339 

more difficult to estimate accurately because of a reduction of sensitivity of BRFs to 𝐺𝐴𝐼 (Shabanov 340 

et al. 2005). 341 
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[Figure 10] 342 

3.5 Regularization of the solution 343 

Radiative transfer model inversion is generally an ill posed problem because (i) it is often 344 

underdetermined (more unknowns than available input measurements) (ii) the measurements are 345 

contaminated by uncertainties and (iii) the model does not represent realistically canopy 346 

characteristics (Baret and Buis 2007; Combal et al. 2002). As a consequence, the solution may be 347 

strongly sensitive to small variations in the input measurements. In this study, no prior information 348 

was explicitly introduced in the cost function such as a Bayesian term that forces the solution to be 349 

relatively consistent with the known distributions of canopy characteristics (Table 1) (Laurent et al. 350 

2013). For each individual image, no regularization was applied: the solution corresponds to the 351 

simulated case the closest to the measurement in the space of reflectances. This allows minimizing 352 

possible biases (better accuracy), but results in an increased scattering of the estimates (poorer 353 

precision) as demonstrated by Kandasamy et al. (2010). Figure 11 shows that the cost function 354 

increases rapidly between the best case in the LUT and the next 20 to 30 cases. This justifies partly 355 

the selection of the best case as compared to the average or the median computed over the first best 356 

cases. After these 20 to 30 best cases, the cost function increases continuously with the rank of the 357 

cases in the LUT. This corresponds to a region where compensations between the input variables limit 358 

the increase of the cost function. For the last ranked cases, the cost function increases steeply. This 359 

happens when one or several variables have reached their lower or upper bound and the 360 

compensations between variables are therefore limited. 361 

[Figure 11] 362 

A regularization of the solution was achieved at the ESU level by averaging the estimates from the 363 

individual images containing the ESU. Around 10 to 15 images were available when a single survey 364 

was used and more than 40 when combining multiple surveys (Figure 3b). Figure 12 shows that the 365 

scatter of the best solutions corresponding to the individual images increases with the 𝐺𝐴𝐼 value. A 366 
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closer inspection of the distribution of the other PROSAIL input variables for the low 𝐺𝐴𝐼 case 367 

(diagonal of top-left plot in Figure 12) shows high variability except for the brown pigment content 368 

(𝐶𝑏𝑝). Note that the variability of the soil brightness (𝐵𝑠) values is also large, although this was not 369 

expected since the reflectance might be very sensitive to soil reflectance for low 𝐺𝐴𝐼 values. This 370 

may be partly explained by directional effects when a target is observed from several individual 371 

images as displayed in Figure 3b. For the medium (top-right plot in Figure 12) to high (bottom plot 372 

in Figure 12) 𝐺𝐴𝐼  values, the variability of the variables is restricted, particularly for the leaf 373 

characteristics including the chlorophyll (𝐶𝑎𝑏) and dry matter contents (𝐶𝑑𝑚). For each ESU, the 374 

distribution between the variables corresponding to the best solution in the LUT appears independent 375 

(off-diagonal scatter plots in Figure 12): no compensations between pairs of variables are observed 376 

except for 𝐺𝐴𝐼. 377 

[Figure 12] 378 

3.6 Precision of the estimates 379 

Three ESUs having a large number (around 60) of overlapping images and presenting a wide range 380 

of 𝐺𝐴𝐼 values were considered. For each of these ESUs, a sub-sample of 𝑛 images (1 < 𝑛 < 60) was 381 

randomly selected to compute the average solution of the ensemble of estimates corresponding to the 382 

individual images. The associated RMSE was also computed. The process was repeated 500 times 383 

for each value of 𝑛. Results show that the RMSE decreases rapidly with 𝑛 when 𝑛 is smaller than 6 384 

images (Figure 13a). This may be explained by the 1/√𝑛 law that would apply if each individual 385 

solution is considered to belong to the same population of 𝐺𝐴𝐼 individual solutions for the ESU. 386 

However, when more than 5 images are used to compute the estimate, the first derivative of RMSE 387 

as a function of 𝑛 is close to zero (Figure 13b) and the RMSE value converges towards a value that 388 

depends on the ESU (Figure 13a). In the case presented in Figure 13a, the RMSE increases with the 389 

𝐺𝐴𝐼 value, in good agreement with what was observed previously (Figure 12). The coefficient of 390 

variation (𝑅𝑀𝑆𝐸/𝐺𝐴𝐼) is about stable across the 𝐺𝐴𝐼 values observed with 𝑅𝑀𝑆𝐸/𝐺𝐴𝐼 ≈ 15% . 391 
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The RMSE across the individual solutions is proposed as a proxy of the precision of the estimates. At 392 

least 6 images are required to get a good confidence in the estimates. Using multiple acquisitions 393 

counterbalances the generally ill posed inverse problem and the different sources of uncertainties 394 

associated to the estimates but also to the observations (e.g. signal-to-noise ratio of the camera, 395 

variation in illumination conditions, geometric correction).  This confirms previous studies where the 396 

use of multi-angle observations improved the accuracy of GAI estimates (Duan et al. 2014; Vuolo et 397 

al. 2008). 398 

[Figure 13] 399 

3.7 Possible rejection of images partially covering the ESU and outliers 400 

Images not covering completely an ESU may be discarded to get more consistent spatial 401 

representativeness between the 𝑛 images corresponding to an ESU. About 60% of images with pixels 402 

included in an ESU did not cover completely the ESU while 72% cover more than 50% of the ESU 403 

(Table 4). Discarding these images changed only marginally the agreement with the ground 404 

measurements (Table 4). It is then proposed to use all the images with pixels included in a ESU to 405 

estimate its 𝐺𝐴𝐼 independently of their coverage and number of pixels being used in each case. The 406 

average across all solutions provides a robust estimation due to the high number of available images 407 

for each ESU (from 5 to 47 images over the 50 ESUs used for the comparison with ground 408 

measurements, with an average of 21 images per ESU).  409 

The distribution of the solutions for the individual images showed some outliers. These outliers may 410 

be filtered to reduce their impact on the estimate at the ESU level. The solutions outside a given 411 

percentile domain were tentatively discarded. No improvement in the retrieval accuracy was observed 412 

as compared to the average of the solutions computed over all available images covering (even 413 

partially) the ESU (Table 4). It is therefore proposed to keep all the individual solutions to compute 414 

the average value corresponding to the estimate at the ESU level. 415 

[Table 4] 416 
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3.8 Interest of the red-edge band 417 

The red-edge band has been recognized as useful for 𝐺𝐴𝐼 retrieval because it increases the sensitivity 418 

to 𝐺𝐴𝐼 for medium to high 𝐺𝐴𝐼 values (Canisius and Fernandes, 2012). Further, it may be also useful 419 

for chlorophyll content estimation although this was not the focus of this study. However, the red-420 

edge band is relatively narrow (Figure 2), with a lower signal-to noise ratio and possible larger 421 

impacts of uncertainties in its spectral response. The approach described previously and exploiting 422 

the four spectral bands of the sensor was adapted to use only the green, red and NIR bands, i.e. not 423 

using the red-edge band. Results showed that the performances degraded significantly (Table 4, last 424 

line), particularly for the larger 𝐺𝐴𝐼 values where an underestimation was observed (Figure 14). This 425 

confirms the interest of the red-edge band that provides additional sensitivity to 𝐺𝐴𝐼 for the larger 426 

𝐺𝐴𝐼 values. However, more observations over larger 𝐺𝐴𝐼 values are required to confirm these results. 427 

[Figure 14] 428 

4 Summary and conclusions 429 

This study demonstrated that the recent technological advancement in the unmanned airborne systems 430 

(UAS) and miniaturization of on-board sensors provide operational systems for precision agriculture. 431 

The UAS plane platform used here was equipped with four cameras in green (550 nm), red (660 nm), 432 

red-edge (735 nm) and near infrared (790 nm). It provided multiple views by overlapping images 433 

along the track and between tracks with a spatial resolution around 0.15 m. This allowed an automatic 434 

mosaicking process with an accuracy better than one pixel when ground control points were used to 435 

calibrate the geometry. 436 

Focus was put on the estimation of green area index (𝐺𝐴𝐼) from the reflectance measured by the UAS 437 

system. A look up table (LUT) approach was developed to invert the PROSAIL radiative transfer 438 

model. The LUT was applied to each individual image for which the reflectance values at the pixel 439 

level were averaged over elementary sampling area of few square meters. The search in the LUT 440 

accounted explicitly for the view and sun geometry of the considered image. A cost function was used 441 
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to evaluate the distance between the reflectance simulated in the LUT and the measured ones. The 442 

case corresponding to the minimum of the cost function was considered as the solution. Two cost 443 

functions were compared: one based on the absolute value of reflectances and one based on relative 444 

values for which reflectances in each band are normalized by the mean reflectance in the four bands. 445 

Results demonstrated that using the relative reflectances in the cost function improves the retrieval 446 

performances and the stability of estimates to incoming radiation. The solutions corresponding to the 447 

individual images were averaged over each ESU to provide a regularized estimate. The root mean 448 

square error (RMSE) value computed over the available images provides a proxy of the uncertainties 449 

associated to the estimates. Around 6 images were required over each ESU to get a stable value of 450 

the RMSE and a more robust estimate of 𝐺𝐴𝐼. This is achieved in most of the cases with the current 451 

flight scheme. Additional investigations showed that averaging over all the images containing pixels 452 

of the considered ESU is generally beneficial as compared to the modalities that exclude images with 453 

partial coverage of the ESU or providing solutions outside a given percentile domain. Further, the use 454 

of the red-edge band appears to improve the retrieval performances particularly for the higher 𝐺𝐴𝐼 455 

values. 456 

Comparison between flights achieved the same day at different hours showed a high repeatability of 457 

the estimates. Comparison with available ground measurements over 50 elementary sampling units 458 

of wheat and rapeseed crops at a range of phenological stages showed that the performance of UAS 459 

𝐺𝐴𝐼 estimates was 0.17 in terms of RMSE with a correlation R2 of 0.97.  460 

Additional experiments should be conducted to evaluate the validity of our conclusions in the case of 461 

higher 𝐺𝐴𝐼 values and changing illumination conditions. Constraints for each species based on the 462 

prior knowledge on the leaf dry matter content and leaf inclination variables could be introduced to 463 

help regularizing the ill-posed inverse problem. This may allow getting more accurate prediction of 464 

chlorophyll content. Further, although the PROSAIL model was performing well in our conditions, 465 

more detailed radiative transfer models based on a realistic 3D description of the canopy structure 466 



20 

 

may improve the estimation of 𝐺𝐴𝐼 and other canopy variables for the wheat and rapeseed crops 467 

investigated as well as for additional species. 468 
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[List of Figure Captions] 623 

Figure 1. (a) UAS plane and (b) the four CMOS onboard cameras. 624 

Figure 2. Spectral sensitivity of the four bands of UAS onboard cameras. (For the color figure, the 625 

reader is referred to the web version of this article.) 626 

Figure 3. (a) NIR orthophotography with the five elementary sampling units (ESUs) in Auzeville 627 

study area (Table 2). (b) Polar plot showing the UAS image acquisition geometry for the flight of 628 

2012/03/23 at 14:11 PM (Table 3). The radial distance from the center represents the zenith angle in 629 

radians. The compass direction of each image corresponds to the azimuth of the points. Crosses 630 

indicate the view geometry for different image acquisitions with color corresponding to that of the 631 

five ESUs on the top panel (a). (c) Histogram of reflectance values in the four spectral bands over the 632 

5 ESUs identified in panel (a). (For the color figure, the reader is referred to the web version of this 633 

article.) 634 
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Figure 4. Statistical assessment of the lens transmission ratio (vignetting effect). (For the color figure, 635 

the reader is referred to the web version of this article.) 636 

Figure 5. On the left, polar plot of the BRF of the gray carpet for nadir viewing. Points are 637 

measurements and lines the Legendre polynomial fit. Blue, green, red and magenta colors correspond 638 

respectively to 550 nm, 660 nm, 735 nm and 790 nm. On the right, the BRF spectra for nadir viewing 639 

and 45° zenith incidence angle. (For the color figure, the reader is referred to the web version of this 640 

article.) 641 

Figure 6. Location of the six study areas and digital photography illustrating several phenological 642 

stages on wheat (left) and rapeseed (right) considered (dates are indicated in yy/mm/dd format). (For 643 

the color figure, the reader is referred to the web version of this article.) 644 

Figure 7. (a) NIR ortho-image with 23 ground control points (GCPs) corresponding to the blue points. 645 

(b) Scatter plot of deviations between the location (northing, easting) on the ortho-image calibrated 646 

using 12 GCPs and tested on the remaining 11 GCPs. The plus sign represents the average northing-647 

easting deviations. (For the color figure, the reader is referred to the web version of this article.) 648 

Figure 8. Comparison of 𝐺𝐴𝐼 estimates from the UAS between AM and PM flights for two dates 649 

corresponding to different development stages over wheat crops (flights are described in Table 3). On 650 

the left (a) the absolute cost function is used. On the right (b) the relative cost functions is used. The 651 

statistics are number of samples (n), root mean square error (RMSE), correlation coefficient (R), slope 652 

and offset of the rectangular linear regression. (For the color figure, the reader is referred to the web 653 

version of this article.) 654 

Figure 9. Comparison of UAS estimates with ground measurements for the (a) absolute and (b) 655 

relative LUT approaches. Different symbols refer to wheat and rapeseed crops. The horizontal and 656 
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vertical bars indicate the RMSE of the ground measurements and UAS estimates, respectively. (For 657 

the color figure, the reader is referred to the web version of this article.) 658 

Figure 10. Boxplot of the incoming PAR for the 11 site*date samples identified in Table 2. The right 659 

vertical axis corresponds to the coefficient of variability of LAI estimates for the absolute (○) and 660 

relative (∆) LUT approaches.  661 

Figure 11. Value of the cost function (𝐽𝑟𝑒𝑙) as a function of the rank of the cases in the LUT. The 662 

20736 cases of the LUT were sorted from the smallest to the largest 𝐽𝑟𝑒𝑙 values. A zoom on the 500 663 

best ranked cases is displayed. Data correspond to Auzeville flight on 2012/03/23 at 14:11 PM. The 664 

color lines refer to cost function for three particular images and ESUs having low 𝐺𝐴𝐼 value (green 665 

line), medium 𝐺𝐴𝐼 (blue line) and high 𝐺𝐴𝐼 (red line). (For the color figure, the reader is referred to 666 

the web version of this article.) 667 

Figure 12. Co-distribution of PROSAIL input variables (Table 1) corresponding to the best solution 668 

for each individual image containing the considered ESU. Same data as in Figure 11 with three ESUs 669 

corresponding to low, medium and high 𝐺𝐴𝐼 values. The relative leaf water content is not represented 670 

here since the reflectance in the 4 bands is marginally sensitive to leaf water content. 671 

Figure 13. (a) RMSE of estimates as a function of the number of available images, 𝑛. (b) First 672 

derivative of the RMSE as a function of 𝑛. The same data as in Figure 11 are used with three ESUs 673 

corresponding to low (dashed line), medium (dotted line) and high (continuous line) 𝐺𝐴𝐼 values. 674 

Figure 14. Comparison of UAS estimates with ground measurements for the (a) absolute and (b) 675 

relative LUT approaches when not using the red-edge band (only green, red and NIR bands are used). 676 

Different symbols refer to wheat and rapeseed crops. The horizontal and vertical bars indicate the 677 

RMSE of the ground measurements and UAS estimates, respectively. (For the color figure, the reader 678 

is referred to the web version of this article.) 679 
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Table 1. Distribution of the radiative transfer model input variables used to generate the LUTs. 680 

 Variable Nb. Class Min. Max. Mean Std. Dev.  

Canopy 𝐺𝐴𝐼  6 0.0 6.0 2.0 1.5  

𝐴𝐿𝐴 (°)  4 30 80 50 20  

ℎ𝑜𝑡  1 0.1 0.5 0.3 0.2  

Leaf 𝑁  4 1.0 2.5 1.5 1.0  

𝐶𝑎𝑏 (µg·cm-2) 6 20 75 40 20  

𝐶𝑑𝑚 (g·cm-2) 3 0.003 0.020 0.007 0.005  

𝐶𝑤_𝑟𝑒𝑙  3 0.50 0.95 0.75 0.08  

𝐶𝑏𝑝  2 0.00 1.50 0.00 0.20  

Soil 𝐵𝑠  2 0.50 3.50 1.20 2.00  
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Table 2. Summary of validation measurements used in the analysis. The timing of the flights is also 718 

indicated.  719 

 720 

i Site Crop Date Time Nb. 

ESUS 

Min. Max. Mean Std. 

Dev. 

1 AUZE Wheat 12/02/01 13:18 7 0.38 1.49 0.86 0.47 

2  Wheat 12/03/23 14:11 5 1.70 2.71 2.21 0.48 

3 DURA Rapeseed 12/01/24 15:20 2 0.86 1.20 1.03 0.24 

4 Rapeseed 12/03/07 10:25 3 0.42 0.55 0.47 0.07 

5 Rapeseed 12/03/21 14:28 3 0.69 1.45 1.17 0.42 

6 Rapeseed 12/04/07 12:56 3 1.76 3.21 2.30 0.80 

7 Rapeseed 12/05/01 15:16 3 0.85 1.17 1.04 0.17 

8 PIAR Rapeseed 12/12/04 14:52 5 0.11 0.42 0.28 0.13 

9 RIBE Rapeseed 12/12/07 14:12 3 0.11 0.38 0.25 0.14 

10 RAPS Rapeseed 13/04/02 11:47 6 0.50 1.17 0.88 0.25 

11 MESS Rapeseed 13/04/02 13:48 10 0.44 0.98 0.68 0.22 
 721 
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Table 3. Characteristics of the flights used to evaluate the stability of the 𝑮𝑨𝑰 estimates as a 754 

function of the timing of the flight. 755 

Date Time of solar 

noon 

Time of flight Sun 

zenith (°) 

Sun 

azimuth 

(°) 

12/02/01 13:07:32 11:06 (AM) 62.1 163.3 

 13:18 (PM) 62.6 199.0 

12/03/23 13:00:26 10:57 (AM) 44.9 157.1 

 14:11 (PM) 51.5 223.5 
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 789 

Table 4. Performances of the several modalities investigated for the cost function (relative vs. 790 

absolute) and the selection of images used to compute the estimate at the ESU level (average of 791 

solutions corresponding to all images (ALL), considering only images with a pixel coverage (C) of 792 

50% - 75% - 90% - 100% of the ESU or after removing the outliers considered as outside the [5% 793 

95%] - [10% 90%] - [15% 85%] - [20% 80%] percentile domains). The performance of estimates 794 

using only the green, red and NIR bands, i.e. not using the red-edge band, was also tested. Evaluation 795 

over the 50 ESUs described in Table 2. Statistics are the number of images (𝑛), root mean square 796 

error between estimates and ground measurements (RMSE*), and associated correlation coefficient 797 

(R2), slope and offset of the linear regression. 798 

 799 
  Absolute cost function (Jabs)  Relative cost function (Jrel) 

Modality  
n RMSE* R2 Slope Offset  n RMSE* R2 Slope Offset 

ALL  1071 0.26 0.95 1.04 -0.18  1071 0.17 0.97 0.98 -0.03 

C≥50%  774 0.27 0.95 1.06 -0.19  774 0.16 0.97 0.98 -0.03 

C≥75%  747 0.26 0.95 1.05 -0.18  747 0.16 0.97 0.98 -0.02 

C≥90%  713 0.27 0.95 1.06 -0.19  713 0.16 0.97 1.00 -0.04 

C=100%  639 0.26 0.95 1.07 -0.21  639 0.16 0.97 1.01 -0.06 

P 5-95%  817 0.27 0.95 1.04 -0.19  820 0.17 0.97 0.98 -0.03 

P 10-90%  740 0.28 0.95 1.06 -0.2  735 0.17 0.97 0.98 -0.03 

P 15-85%  650 0.28 0.94 1.06 -0.2  664 0.18 0.97 0.99 -0.03 

P 20-80%  578 0.27 0.95 1.05 -0.19  598 0.18 0.97 0.98 -0.03 

No red-edge  1071 0.29 0.95 0.86 0.04  1071 0.23 0.97 0.87 0.004 
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