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Abstract—A new method for the characterization of random 

telegraph signals (RTSs) is presented. The method, which is based 
on the time lag plot, is illustrated using Monte Carlo generated 
RTS traces and applied to identify the contribution of defects in 
multilevel RTS measured in a pMOS transistor. The results show 
that the new method provides a powerful and easily implementable 
technique to obtain the parameters of the defects responsible of 
multilevel RTS, even when the background noise is relevant. 

Index Terms—Random telegraph signals, noise, CMOS, 
parameter extraction, characterization. 

I. INTRODUCTION 

 HE increasing interest in the study of Random 
Telegraph Signals (RTS) in deeply CMOS scaled 

technologies is justified by their negative consequences on the 
devices reliability [1], [2]. Moreover, the study of RTS, since 
associated to the charge trapping/detrapping in/from defects, 
provides a highly valuable device physics information [3], [4]. 
Several methods have been proposed to analyse the defects 
involved in RTS accurately [5]–[7]. However, if the background 
noise (i.e., noise that comes from measurement equipment or 
other sources inside the device under study) is relevant when 
compared with the current/voltage steps in the RTS, the precise 
defects detection and their parameters extraction can be 
difficult. In this work, a new method for the RTS analysis, 
which extends the Time Lag Plot (TLP) procedure [6] is 
presented. This new method is easily implementable and robust 
even when the background noise is large. The method is 
explained and illustrated using as example numerically 
generated RTS caused by only one defect. After that, the new 
method is applied to identify the contribution of defects related 
to experimental multilevel RTS. 

II. THE WEIGHTED TIME LAG METHOD 

To illustrate the method, Monte Carlo simulations of two 
level RTS waveforms were performed considering two-state 
Markov processes [8]. The black line in Fig. 1(a) shows an 
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Fig. 1. (a) Monte Carlo generated RTS with and without noise; the sample rate 
considered was 1 s and the number of points in the RTS 10.000. (b) Dots 
indicate the current probability distribution obtained directly from the RTS; 
lines correspond to the diagonal of the w-TLP (Fig. 2(c) obtained for α values 
ranged between 0.3 nA and 0.9 nA. (c) TLP of the RTS; the background noise 
hides the current levels and transition regions (marked with crosses). 

example of a simulated current RTS without noise with levels 
IL = 3 nA and IH = 5 nA. Assuming that the responsible defect of 
this RTS is occupied at IL and empty at IH, its mean emission 
and capture times were chosen to be <τe> = 6.6s and <τc> = 10 s, 
respectively. Dots in Fig. 1(a) show the waveform obtained 
when a Gaussian noise with standard deviation σ = 0.9 nA (that 
reproduces the experimental background noise) is added to the 
RTS. Due to the large unfavorable ratio between the noise and 
the RTS amplitude, an accurate identification of IL and is 
unfeasible from Fig. 1(a). The RTS histogram [dots in Fig. 
1(b)], cannot help, because the two peaks associated with IL and 
IH are hidden by the background noise [5]. Another solution is 
to draw the TLP [Fig. 1(c)], which is constructed by plotting the 
i-th point of the RTS in the x-axis and the (i+1)-th point in the 
y-axis for the full RTS trace [6]. If the background noise is low, 
using the TLP, the RTS levels can be identified as populated 
regions in the diagonal, while populated regions outside the 
diagonal are related to the transitions between states [6] (these 
regions are indicated with crosses in Fig. 1(c). However, in the 
TLP constructed from the RTS trace in Fig. 1(a), these regions 
are again overlapped because of the background noise. 

The weighted time lag method presented here tries to extend 
the TLP by minimizing the effect of the noise in the RTS and 
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Fig. 2. (a) Representation of Log (ϕi), normalized to its maximum value, 
obtained for one point of the noisy RTS in Fig. 1(a). The position of this point 
in the TLP is marked with * and the levels and transitions regions with crosses. 
(b) Representation of Log () using the first 30 points of the RTS and (c) the full 
RTS trace. 

allows more accurate defect parameters extraction. We depart 
considering a point of the plotted TLP with coordinates 
(Ii, Ii+1). For this point we define the ϕi function as: 

 
(1) 

where x and y are the coordinates of the space where the TLP is 
considered. Note that ϕi is a normal bivariate distribution with 
standard deviation α and correlation coefficient 0. Then, ϕi(x,y) 

represents the probability that the point with coordinates (Ii, Ii+1) 

corresponds to a level or to a transition in the location (x,y) of 
the TLP space. Fig. 2(a) shows the plot of ϕi(x,y) in log scale for 
a single point of the TLP. After the ϕi definition, we define the 
weighted time lag function as: 

 

(2) 

being K a normalization constant chosen to get the maximum 
value of Ψ equal to 1 and N the number of points in the RTS. If 
Ψ is plotted for few points [Fig. 2(b)] two local maximums are 
roughly defined whose values are closer to IL and IH. 

To understand why these peaks are revealed, we have to note 
that the contribution of each point of the TLP, which results in 
Ψ, is weighted by the distance between the position of this point 
and (x,y). Therefore, the Ψ function takes higher values in the 
most populated regions of the TLP. This is more evident in Fig. 
2(c) where the Ψ function is plotted for all the points of the TLP. 
In the following, we will refer to the plots of the type of Fig. 
2(c) as weighted TLP (w-TLP). In the diagonal of the w-TLP of 
Fig. 2(c) two well defined local maximums can be detected (ΨL 

and ΨH) in the positions 3.05nA and 4.89nA. These values 
correspond to the two levels of the RTS, which are very close 
to the nominal IL and IH values introduced during the generation 
of this signal [Fig. 1(a)]. Then, the construction of the Ψ 
function is valid to detect levels of the RTS that cannot be 
determined from conventional methods, such as the RTS 
histogram [Fig. 1(b)] or the TLP [Fig. 1(c)], when the 
background noise is relevant. The ratio τe/τc, which, in most of 
the cases, is enough to obtain the relevant physical information 
of the defect [9], can be easily calculated from the w-TLP by 
the evaluation of the ratio of the two local maximums found in 
the w-TLP ΨH/ ΨL). In this case we obtain 

 
 

 
 

Fig. 3. Experimental multilevel RTS in the drain current of a pMOS transistor. 

 

Fig. 4. Conventional TLP (a) and w-TLP (b) obtained from the RTS of 
Fig. 3. 

Ψ H/ Ψ L = 0.63, which is close to the nominal value imposed 
during the generation of the RTS (τe/τc = 0.66). 

In the weighted time lag method, the chosen value of α (the 
standard deviation of ϕi), which is the only fitting parameter in 
the method, is a key point to correctly identify the levels of the 
RTS. Lines in Fig. 1(b) show the cross section through the 
diagonal of the w-TLP obtained when Ψ is constructed using 
different α values between 0.3 nA and 0.9 nA. For high α values, 
only one peak [as in the case of the histogram, dots in Fig. 1(b)] 
appears, and the two peaks are only revealed when α is 
decreased. However, if α is very low, this procedure fails 
because each point only contributes to Ψ in a region very close 
to it, leading in the limit, to a conventional histogram with a 
small bin size. Then, the proper selection of α is crucial to 
correctly determine and identify the defect in the RTS. 

III. APPLICATION TO MULTILEVEL RTS 

The method can be applied to multilevel signals without any 
change. To show this point we have applied the method to a 
experimental RTS obtained with a sample rate of 34.2 ms in the 
drain current of a pMOS transistor when a gate voltage of −0.6 
V and drain voltage of −200 mV are applied for 140 s. The 
obtained current trace (Fig. 3) shows a clear RTS where at least 
two discrete steps can be detected, which indicates that two or 
more defects are active in this device. However, the background 
noise makes difficult the accurate identification of the resulting 
current levels. Moreover, defects that could provoke smaller 
current steps would be hidden by the noise. 

Fig. 4(a) shows the TLP of the RTS plotted in Fig. 3. Note 
that, when using the TLP, the current levels of the signal are 
difficult to be distinguished. However, with the w-TLP 



 

 

Fig. 5. (a) Position and height of the peaks detected in the diagonal of the w-
TLP in Fig. 4(b). (b) and (c) Zooms of the experimental RTS trace in Fig. 3. 
Switchings of the three defects are indicated. D2 and D3 are evident but those 
of D1 cannot be clearly appreciated because of the background noise of the 
signal. (d) Experimental cumulative distribution function of the RTS in Fig. 3 
and the fitting obtained from the data in Fig. 5(a). 

[Fig. 4(b)] eight local maximums (L1-L8) can be detected. This 
suggests the existence of eight current levels in the RTS, and 
therefore, at least three active defects in the device. The position 
and height of the eight current levels observed in the w-TLP are 
plotted in Fig. 5(a). Attending to the position of the current 
levels, three defects with different switching amplitudes in the 
RTS have been identified (D1, D2, and D3). The current shift 
between the levels associated to D2 and D3 are large enough to 
detect the transition regions in the TLP and w-TLP (regions 
outside the diagonal in Fig. 4), and also can be detected in a 
zoom of the RTS [Fig. 5(b) and (c)]. However, the small current 
shift associated to D1 compared to the amplitude of the 
background noise impedes the correct D1 identification directly 
from the RTS or the TLP, whereas it can be clearly detected if 
the w-TLP is used. Moreover, using the w-TLP an additional 
analysis of the RTS can be done. In Fig. 5(b) and (c) can be 
appreciated that the current shift of D2 is different depending 
on the D3 state. However, the current shift of D1 does not 
depend significantly on the D2 and D3 states. This indicates that 
there is an interaction between D2 and D3 whereas is not the 
case of D1. 

Finally, continuous line in Fig. 5(d) shows the cumulative 
distribution Function (CDF) of the experimental RTS (symbols) 
which can be well reproduced using the data of Fig. 5(a). This 
fitting is done by associating a normal distribution to each 
current level detected in the w-TLP. The mean value of the 

normal distributions corresponds to the current level position; 
their height corresponds to the relative peak height obtained 
from the w-TLP. The standard deviation (σ = 0.22nA) is chosen 
to be the same for all the current level distributions since it is 
related to the experimental background noise. The good fitting 
of the experimental data allows concluding that the Weighted 
Time Lag method is an efficient procedure to identify defects in 
the device and obtain an accurate description of the resulting 
RTS. 

IV. CONCLUSION 

A new method, namely Weighted Time Lag method, is 
proposed as a procedure to analyze Random Telegraph Signals 
(RTS). The method is easily applicable to conventional RTS and 
allows an accurate extraction of defect parameters, even when 
the background noise is elevated or multilevel signals are 
considered. The new Weighted Time Lag method can improve 
the characterization and analysis of RTS coming from 
ultrascaled devices. 
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