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Abstract 

Data processing techniques are very important part of the multisensor systems. 

Complex analytical tasks like e.g. resolving the mixtures of two components with very 

similar chemical properties require special attention. We report on application of non-

linear (artificial neural networks, ANN) and linear (projections on latent structures, PLS) 

regression techniques to the data obtained from the flow cell with potentiometric 

multisensor detection of lanthanides neighbouring in Periodic System of the Elements 

(samarium, europium and gadolinium). Quantification of individual components in 

mixtures is possible with reasonable precision if dynamic components of the response 

are incorporated thanks to the use of an automated sequential injection analysis 

system. An average absolute error in prediction of lanthanides with PLS was around 

1•10-4mol/L, while the use of ANNs allows for lowering prediction errors down to 2•10-

5mol/L in certain cases. The suggested protocol seems to be useful for other analytical 

applications where simultaneous determination of chemically similar analytes in 

mixtures is required.  
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1 Introduction 

There are a number of analytical applications that require quantitative analysis of 

mixtures, where the constituents have very similar chemical nature. As an example, one 

can consider lanthanides determination in various technological solutions or in PUREX 

(Plutonium-Uranium Extraction) process raffinate of spent nuclear fuel reprocessing. 

Being close neighbors in Periodic System of elements lanthanides have closely similar 

chemical properties and the task of their simultaneous determination can be effectively 

handled with “heavy” instrumental methods, such as e.g. ICP-MS (inductively coupled 

plasma mass spectrometry). However, these ICP-based methods are usually hard to 

implement in on-line mode and they require significant amount of consumables, skilled 

personnel and long sample preparation. There is a need for simple and inexpensive 

methods that could allow for simultaneous quantification of several chemical substances 

of very analogous properties. One of the reasonable alternatives for existing “heavy” 

methods could be electrochemical sensors. There are a lot of reports in literature on the 

development of potentiometric sensors for selective determination of lanthanides, such 

as cerium [1, 2], samarium [3, 4], europium [5, 6], etc., but the pH working range 

reported in these papers is usually around 4-8 pH units. It is not quite clear what are the 

ions promoting sensor response at these pH level, since Me3+ are only present in 

strongly acidic media. Besides that the reported selectivity values of such sensors are 

usually rather high (logKM,RE< -2) even in the presence of neighboring lanthanides, and 

this is quite surprising taking into account very similar ionic radii and chemical properties 

of lanthanides. The authors of these papers usually do not discuss the nature of such 

outstanding performance. In most of the cases the measurements are performed in 

individual solutions of the lanthanides. There are reasonable doubts if the reported data 

can be extrapolated to the real performance of the sensors in complex mixtures. One of 

the possible ways for development of fast and inexpensive methods for lanthanides 

detection is an employment of a multisensor system approach [7]. The main idea of this 

approach (also called an electronic tongue) is to measure the samples with an array of 

chemical sensors with high cross-sensitivity towards variety of analytes and to process 

the resulted unresolved analytical signal from this array by means of multivariate 

statistics techniques [8]. As an output from this system one can have both qualitative 

and quantitative chemical information depending on the scope of the study and on the 

methods employed. This type of systems was recently successfully applied for 

simultaneous determination of rare earth metals (RE) concentrations in complex 
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mixtures simulating spent nuclear fuel reprocessing media [9]. As a further extension of 

this approach it seems reasonable to try an application of such a system in a flow cell 

conditions. Besides the obvious advantage of simple automation this type of 

measurement implementation has another important issue – a possibility of dynamic 

potentiometric measurements, i.e. one can track the evolution of the sensor response in 

time and this kinetic information can be used in data processing. The shape of the 

sensor response curve in a time domain can contain valuable chemical information 

about the sample and this information is lost when only stationary signal of sensor is 

employed for processing. It was shown that this approach is quite viable in other 

applications [10-12]. However, dynamic potentiometric data are more complex in nature 

compared to the ordinary potentiometric signals and pose a certain challenge from the 

data processing point of view. One of the possible divisions of chemometric techniques 

(however quite artificial) is to distinguish linear (e.g. principal component analysis 

(PCA), projections on latent structures (PLS)) and non-linear (e.g. artificial neural 

networks (ANN), support vector machines (SVM)) methods. Both these data processing 

groups are in use in the multisensor systems field. Furthermore, in [13] a wide literature 

survey was performed which revealed that most of the papers devoted to electronic 

tongues are mainly dealing with only three data processing techniques: PCA, PLS and 

ANN. This confirms these methods are being powerful and reliable for extracting 

valuable chemical information from multisensor system’s experimental data. When 

quantitative chemical analysis is in sight both linear and non-linear regression methods 

can be employed.  

This paper is devoted to the comparison study of the linear and non-linear regression 

techniques applied to the dynamic potentiometric data from double mixtures of 

chemically similar lanthanide ions. As linear methods three different PLS modes were 

implemented: ordinary PLS with stationary potentiometric signals as input variables, 

PLS with the whole response curves unfolded over time axis and multi-way PLS (nPLS) 

with time axis as a third dimension in data (samples X sensors X time). As non-linear 

methods, different approaches based on Artificial Neural Networks (ANNs) were 

evaluated including the use of steady state signal and the compression of the dynamic 

profile employing the windowed slicing integral (Int) method [14]. 
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2 Experimental 

2.1 Sensor preparation 

The sensor array employed in this study consisted of eight polymeric PVC-plasticized 

sensors described previously [9]. Briefly each sensor membrane contained 33% wt. of 

poly(vinylchloride) (PVC), around 65% wt. of o-nitrophenyloctyl ether (NPOE) as a 

solvent-plasticizer (both PVC and NPOE were Selectophore grade from Fluka), and 1-

2% of membrane active compounds. The latter were various neutral ligands adopted 

from liquid extraction systems plus chlorinated cobalt dicarbollide (CCD) as a cation-

exchanger. All sensor membranes contained 50 mmol/kg of a neutral ligand and 10 

mmol/kg of CCD. The following neutral ligands were employed for sensor preparation 

[9]: s1 (tetraphenylmethylendiphosphine dioxide), s3 (phenyloctyl-N,N-di-i-

butylcarbamoylmethylen phosphine oxide), s4 (1,9-Bis-(diphenylphosphynyl)-2,5,8-

trioxanonane), s7 (1,6-Bis-(benzylphenylcarbamoyl)-3-benzo-2,5-oxahexane), s8 (1,9-

Bis-(diphenylcarbamoyl)-2,5,8-trioxanonane), s9 (N,N,N’,N’-tetraoctyldiamide of 

diglycolic acid), s11 (N, N’-Diethyl-N, N’-di-p-tolyldiamide of dipicolinic acid), s14 

(5,11,17,23-tetra(diethylcarbamoylethoxymethylcarboxamido)-25,26,27,28-

tetrapropoxycalix[4]arene). Sensor membranes were prepared according to the 

standard procedure: weighted amounts of membrane components were dissolved in 

freshly distilled tetrahydrofuran (THF) and poured in a flat-bottomed teflon beaker and 

left overnight for solvent evaporation. Disks 4 mm in diameter and 0.5 mm thick were 

cut from the parent membranes and covered on one side with a suspension of fine 

graphite powder in PVC-cyclohexanone mixture. After drying for 24 hours the 

membranes covered with solid electric contact composition were mounted in the flow 

cell and fixed in the channel with clamping plastic bodies. On the top of each body there 

was a gold spot to provide electric contact. Thus the sensor design employed in this 

study was similar to the coated wire type. The resulting sensors were encoded as s1, 

s2,…, s8 in the order of appearance above. The whole construction made of the 

sensors mounted in the flow cell is shown in the Fig. 1. 

<FIGURE 1> 

The flow cell was developed in the framework of FP6 WARMER project and was 

produced by MedbrytSp. z o.o(Warsaw). This flow cell consists of 

poly(methylmethacrylate) segments (PMMA) that can be hermetically attached to each 

other to produce the flow cell with necessary number of sensors. For this study we used 
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nine segments, eight for polymeric sensors and one for Ag/AgCl reference electrode 

(MedbrytSp. z o.o). Reference electrode was mounted in the middle of the flow path to 

minimize electric resistance of the system. The inner diameter of the flow path was 1 

mm. 

2.2 Potentiometric measurements 

Potentiometric measurements were performed in a sequential injection system (SIA) 

providing the automated operation and generation of RE metal mixtures, plus the 

measuring and data acquisition stages. The SIA system was formed by two 

differentiated parts: the fluidic system and the measurement system [15, 16]. 

The first part was the fluid system which consisted of an automatic microburette (Crison 

2030 microburette, Crison, Spain) equipped with a 5mL syringe (Hamilton, Switzerland), 

a holding coil (5m×1mm i.d. PTFE tubing, Bioblock, France), a 8-way Hamilton MVP 

valve (Hamilton, Switzerland) and a 7mL Perspex mixing cell (home built) with a 

magnetic stirrer. The multiport valve is connected to the burette with holding coil placed 

in between. The burette is fed through a carrier solution reservoir. By commanded 

sequence, the common port of the valve may access any of the other ports which led to 

sample, standard stock solutions, mixing chamber or sensor array by an electrical 

rotation. All the elements were connected together using low pressure liquid 

chromatography connectors. 

The second part was the measurement system that comprised the sensor array, a 

reference electrode (miniaturized silver/silver chloride electrode with a double junction) 

and an 8-channel signal conditioning circuit connected to the data acquisition analog 

inputs (National Instruments NI6221 Multifunction DAQ, TX, USA). EMF readings were 

recorded with 0.1 sec resolution in time domain. 

The whole system was controlled by a PC using a virtual instrument developed in 

Labview [15], where the other active elements were commanded through RS-232 

communication lines. 

2.3 Samples 

We analyzed the response of the multisensor array in flow conditions in RE double 

mixtures. Three types of double mixtures were analyzed: Sm-Eu, Sm-Gd, Eu-Gd. The 

motivation for this choice was immediate vicinity of these elements in the Periodic 
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system of the elements. The concentrations of cations A (primary ion) were changed in 

the range from 2.44·10-7 to 1·10-3 M, while the content of cations B (interfering species) 

was varied in the range from 1.25·10-4 to 1.25·10-3M; example of special distribution 

along the experimental space can be seen in Fig. 2. These concentration ranges are 

generally relevant to the technological solutions of spent nuclear fuel reprocessing 

process [17]. The pH values of all solutions were fixed at 2 by nitric acid addition. 

<FIGURE 2> 

2.4 Data processing 

One of the main ideas of this research is to make use of the dynamic part of 

potentiometric sensor array response in flow measurement conditions. The shape of the 

response curve can contain useful chemical information which could help to analyze the 

content of individual lanthanides in mixtures. The Fig. 3 shows the typical view of the 

sensor responses curves in time. Traditionally in potentiometry and potentiometric 

multisensor systems only one emf value for each sensor is used for data processing – 

that from the plateau when sensor readings are already equilibrated (e.g. at the 50th 

second of measurements in the Fig.3). In this study we employed the whole response 

curve for processing, i.e. instead of the one thermodinamical equilibrium emf value we 

used the whole transient signal (as an example consider 0-50 seconds interval in the 

Fig.3). It can be seen that the slopes and the amplitudes of the signals are different for 

different sensors and this additional information can be potentially useful for data 

processing, in the sense that kinetics in the response may help in the final resolution.  

<FIGURE 3> 

Both linear (partial least squares, PLS) and non-linear (artificial neural networks, ANN) 

algorithms were applied for data processing. PLS processing was done with The 

Unscrambler 9.7 software (CAMO, Norway), while the rest of the chemometric 

processing was done by specific routines in MATLAB7.1 (MathWorks, Natick, MA) 

written by the authors, using Neural Network toolbox (v.4.0.6).  

The details on the PLS algorithm are widely available in literature, see e.g. [18]. Three 

different modes of PLS calibration were employed: 1) ordinary PLS with a single emf 

value for each of the sensors (data matrix 42 samples X 8 sensors), for this purpose 

three last points in the response curve over 100 seconds were averaged, 2) PLS with 

the emf reading unfolded along the time axis (data matrix 42 samples X 3208 variables 
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(8 sensors X 401 time values)), 3) nPLS with the three way array (42 samples X 8 

sensors X 401 time values). Initial data were mean centered in sample direction before 

the PLS processing. Regression models were validated with two different techniques: 

full cross-validation and classical test set with 11 samples randomly selected. RMSE 

(root mean square error) values were calculated for all validation protocols. 

The first step in building the ANN model is selecting the topology of the neural network 

used. Given the difficulties to predict the optimum configuration in advance, this consist 

in a trial-and-error process where several parameters (training algorithm, number of 

hidden layers, number of neurons, transfer functions, etc.) are fine-tuned in order to find 

the best configuration that optimizes the performance of the neural network model [19].  

For this proposal, a systematic study of the number of neurons in the hidden layer and 

combinations of functions in both hidden and output layers were tested. In our case, we 

varied the number of neurons in the hidden layer between 1 and 12, and evaluated the 

use of combinations of four different transfer functions (i.e. logsig, purelin, tansig and 

satlins) both in the hidden and output layers. 

For the selection of the optimal topology, ANN models were trained with 74% of the 

data, using the remaining 26% (testing subset) to characterize the accuracy of the 

quantification model and obtain unbiased estimation of model fitness. Subsequently, 

comparison graphs of predicted vs. expected concentrations for the two determined 

species were built to easily check the performance of the ANN model. After this step the 

best configuration was chosen taking into account which topology gave better slope, 

intercept and correlation coefficient values (i.e. close to ideal values of 1, 0 and 1, 

respectively). 

For the dynamic treatment, the transient response of each sensor was first compressed 

employing the windowed slicing integral (Int) method [14], and then extracted 

coefficients were used as inputs of the Artificial Neural Network (ANN) model; 

specifically, the values corresponding from 2.6s to 12.5s, compromising a total of 100 

values. The initial points were discarded since it was only carrier signal, while the 

inclusion of longer recording time does not reflect in any improvement in the model 

behavior; then, only this profile was further compressed employing Int method. 
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3 Results 

As a first approach to the problem we determined the sensitivities of the sensors in the 

individual lanthanide solutions. Sensitivity values (mV/dec) were calculated for the linear 

parts of the calibration curves in the range 10-5 – 10-3 M of lanthanide in nitric acid with 

pH 2. The results are shown in the Fig. 4. As can be seen there is a rather subtle 

difference in the sensor responses towards samarium, europium and gadolinium, which 

is obviously due to the fact that these lanthanides are closest neighbors in the Periodic 

system of the elements. However, when comparing the response patterns of e.g. sensor 

3 and sensor 7 one can see that the direction of the sensitivity change is different with 

the growth of lanthanide atomic number. These small differences together with 

multivariate data processing approach give a chance to resolve the complex mixtures 

where these metals are present simultaneously. 

<FIGURE 4> 

At the next stage of the experiment we analyzed three types of lanthanides double 

mixtures with the potentiometric sensor array in the flow cell. The data from the 

instrument were arranged into the matrices and processed with PLS and ANN 

approaches. Let us first consider the results of three different modes of PLS processing.  

3.1 Linear PLS regression 

The Table 1 shows the metrics of the regression models constructed with the 

potentiometric data in lanthanide double mixtures Sm-Eu, Sm-Gd, Eu-Gd. Only the 

validation related numbers are shown for brevity. 

<TABLE 1> 

It can be seen that three different linear PLS approaches produce very similar results. 

No substantial difference can be observed in parameters of the regression models 

constructed with stationary emf values, whole response curve and 3 way data array. In 

general linear PLS models are able to quantify the content of lanthanides in double 

mixtures with errors around 1·10-4mol/L. This means the concentrations below 10-4mol/L 

cannot be reliably measured with the developed multisensor system and PLS modeling 

and the working range of the array in this case is 10-4 – 10-3mol/L of lanthanides. From 

the chemical point of view it would be reasonable to expect that the lowest prediction 

errors will be observed for the mixtures Sm-Gd, since these elements are further away 
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from each other in Periodic system than all other combinations. However, the variation 

in RMSE values does not support this suggestion. Another interesting observation is 

that RMSE values for two different validation modes (full cross-validation and 

independent test set) do not differ significantly, although cross-validation is widely 

criticized for the tendency to produce over-optimistic results since it employs the same 

samples for modeling and validation [20, 21]. This is not the case with the data set 

under study. 

3.2ANN results 

As it was done in the case of PLS models, two types of ANNs models were built, 

employing the stationary emf values and employing the dynamic components of the 

signal. However, the modeling of the dynamic profile required a preprocessing step for 

reducing the large dimensionality of the input data prior to building the ANN model [22]. 

As stated, in this case, reduction of the large data generated for each sample was 

achieved by means of windowed slicing integral (Int) method [14], which allowed the 

reduction of signals from each sensor down to 10 coefficients without any loss of 

relevant information; attaining a compression ratio of 90%. Then, the obtained 

coefficients were used to build a model that allows the prediction of the double mixtures 

concentrations. 

Table 2 summarizes the results obtained with the different models for the testing subset. 

As can be seen, reasonably good prediction is attained for all the cases with regression 

parameters close to the ideal values. Additionally, it can be observed that better 

performance was attained when using the dynamic potentiometric profile. This fact can 

be explained by the incorporation of the whole response profile and the usage of richer 

departure information by the model. Slight difference in dynamic response profiles for 

different RE thus may contribute positively to the precision of the models. 

<TABLE 2> 

3.3 Comparison of linear and non-linear methods 

As shown in Tables 1 and 2, in both cases (linear and non-linear methods), satisfactory 

trend is obtained for the different mixtures. However, despite the low and similar RMSE 

values obtained between the different modeling methods, somewhat better results were 

obtained with the use of ANNs, and more specifically with the incorporation of the 

dynamic profile into the modeling stage. While average error in prediction with PLS was 
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around 1·10-4mol/L, the use of ANN allows for lowering this error down to 2·10-5mol/L in 

certain cases. These results are consistent with the expected ones and with the 

previous experience in similar cases [23]. Compared with PLS, ANN is more flexible 

modeling methodology, since both linear and non-linear functions can be used (or 

combined) in the processing units, thus they suit well for use with non-linear sensor 

responses (Fig. 2). This also allows for more complex relationships between a high-

dimensional descriptor space and the given retention data, and may lead to better 

predictive power of the resulting ANN model compared with other linear methods. The 

employment of the dynamic potentiometric profile does not add to the precision of PLS 

models while non-linear ANNs accept this additional information readily and prediction 

power of the ANN models increase almost for all of the studied mixtures. It must be 

pointed out however, that the results obtained in this study cannot be considered as a 

general rule. The choice of the processing protocol must be done individually for each 

particular case.  

 

Conclusion 

In certain cases a severe lack of sensor selectivity among chemically similar analytes 

can be compensated with multisensor methodology and careful choice of data treatment 

procedures. We have demonstrated here a successful application of potentiometric 

sensor array for quantitative resolution of several RE double mixtures. Particular 

challenge of this application is in almost identical chemical properties of samarium, 

europium and gadolinium ions, thus a design of sharply selective ligands for these 

metals is hardly possible. Nevertheless their individual analysis in mixtures can be 

performed by means of “cheap-and-dirty” potentiometric sensor array with sequential 

injection analysis methodology. A careful approach for data treatment allows for 

extraction of useful analytical information from unresolved signals of sensors. The 

established protocol can be of certain use in other applications requiring individual 

analysis of similar substances in mixtures (e.g. amino acids, polyphenolic compounds, 

etc.).  
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Table 1. The parameters of PLS regression models in prediction of individual 

lanthanide content in double mixtures. 

 

      
Mixture, 
element 

Slope Offset 
(mol·L

-1
) 

R
2
 RMSECV RMSEV 

test set 
(mol·L

-1
) 

 

 
PLS stationary data 

Sm-Eu      
Sm 0.892 1.4·10

-5
 0.896 1.1·10

-4
 8.5·10

-5
 

Eu 0.967 2.4·10
-5

 0.961 8.0·10
-5

 6.0·10
-5

 
Sm-Gd      

Sm 0.949 9.4·10
-6

 0.942 8.4·10
-5

 8.8·10
-5

 
Gd 0.967 2.3·10

-5
 0.954 8.7·10

-5
 5.7·10

-5
 

Eu-Gd      
Eu 0.972 5.6·10

-6
 0.961 6.9·10

-5
 7.9·10

-5
 

Gd 0.926 5.1·10
-5

 0.927 1.1·10
-4

 7.5·10
-5

 
      

 
PLS dynamic response 

Sm-Eu      
Sm 0.906 1.3·10

-5
 0.906 1.1·10

-4
 1.1·10

-4
 

Eu 0.959 2.5·10
-5

 0.966 7.5·10
-4

 8.9·10
-4

 
Sm-Gd      

Sm 0.959 6.1·10
-6

 0.954 7.5·10
-5

 9.0·10
-5

 
Gd 0.971 2.5·10

-5
 0.958 8.4·10

-5
 6.1·10

-5
 

Eu-Gd      
Eu 0.947 1.0·10

-5
 0.963 6.7·10

-5
 6.1·10

-5
 

Gd 0.963 3.1·10
-5

 0.933 1.1·10
-4

 5.9·10
-5

 
      

      
nPLS dynamic response 

Sm-Eu      
Sm 0.891 1.3·10

-5
 0.897 1.1·10

-4
 1.1·10

-4 

Eu 0.971 2.2·10
-5

 0.969 7.0·10
-5

 7.0·10
-5 

Sm-Gd      
Sm 0.941 9.4·10

-6
 0.936 8.6·10

-5
 9.1·10

-5
 

Gd 0.971 2.2·10
-5

 0.953 8.6·10
-5

 7.1·10
-5

 
Eu-Gd      

Eu 0.957 7.0·10
-6

 0.961 7.3·10
-5

 7.4·10
-5

 
Gd 0.937 4.5·10

-5
 0.927 1.0·10

-4
 6.5·10

-5
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Table 2. The parameters of ANN regression models in prediction of individual 

lanthanide content in double mixtures. 

 

 

      
Mixture, 
element 

Slope Offset 
(mol·L

-1
) 

R
2
 RMSEV,  

test set 
(mol·L

-1
) 

 

 
ANN with stationary data 

Sm-Eu     
Sm 0.861 1.12·10

-5
 0.865 3.31·10

-5
 

Eu 0.984 -2.74·10
-5

 0.994 4.91·10
-5

 
Sm-Gd     

Sm 1.061 3.94·10
-6

 0.692 6.45·10
-5

 
Gd 0.962 2.28·10

-5
 0.987 4.70·10

-5
 

Eu-Gd     
Eu 1.028 -1.27·10

-6
 0.813 4.45·10

-5
 

Gd 0.993 1.04·10
-5

 0.980 5.69·10
-5

 

     
Int-ANN dynamic model 

Sm-Eu     
Sm 0.985 4.43·10

-6
 0.898 3.02·10

-5
 

Eu 1.016 -1.36·10
-5

 0.995 2.89·10
-5

 
Sm-Gd     

Sm 0.994 6.00·10
-6

 0.954 2.04·10
-5

 
Gd 0.954 2.11·10

-5
 0.991 4.22·10

-5
 

Eu-Gd     
Eu 1.048 3.11·10

-6
 0.816 4.54·10

-5
 

Gd 0.964 4.93·10
-6

 0.989 4.56·10
-5
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FIGURES  

 

 

Figure 1.Overview of the flow cell. 
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Figure 2. 3D response surface plot corresponding to selectivity experiments of 

sensor 4 employed in the array, showing their cross-response features with 

marked slope for Eu3+, and clear interference by Gd3+. 



16 
 

0 10 20 30 40 50

0,02

0,04

0,06

0,08

0,10

0,12

0,14

 

 

sensor 1

sensor 2

sensor 3

e
m

f,
 V

t, sec

 

Figure 3. Typical view of the sensor response curves in lanthanide mixtures. 
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Figure 4. Lanthanide sensitivities of the sensors. 


