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Abstract 

A BioElectronic Tongue (BioET) based on a sensor array comprising 4 voltammetric 

sensors plus pattern recognition and multivariate calibration data processing tools was 

applied towards the analysis of cava rosé wines. A total of 20 different samples were 

analyzed using cyclic voltammetry without any sample pretreatment. Obtained 

responses were preprocessed employing windowed slicing integral method in order to 

compress and extract significant features from the recorded data. Extracted coefficients 

were then evaluated by means of Principal Component Analysis to visualize some 

initial patterns, while quantification of different polyphenols indexes was achieved by 

an Artificial Neural Network (ANN) model. In this manner, three different classical 

indexes related to total polyphenol content (i.e. I280, I320 and Folin-Ciocalteu index) plus 

two indexes related to more specific families of those (i.e. total tannins and 

anthocyanins content) were correlated with sensors responses. 
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1. Introduction 

Phenolic compounds in wine include a large group of chemical compounds that 

affect its taste, colour and mouthfeel [1]. These compounds include phenolic acids, 

stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) 

and flavanol polymers (proanthocyanidins); which can be broadly separated into two 

main categories: flavonoids and non-flavonoids. Flavonoids include the anthocyanins 

and tannins which contribute to the colour and mouthfeel of the wine [2]; while 

non-flavonoids include the stilbenoids such as resveratrol, and phenolic acids such as 

benzoic, caffeic and cinnamic acids. 

Beyond its contribution to the wine sensorial features (e.g. to its colour, body and 

astringency), most of these compounds are powerful antioxidants with great health 

benefits derived from their action as free radical scavengers and inhibitors of lipoprotein 

oxidation [3]. In this sense, there are evidences that wine antioxidant properties are due 

to phenolic components, which total content is directly correlated with their antioxidant 

capacity [4], and that wine without these components loses these properties. 

A part from total polyphenol content, tannins and anthocyanins are two classes of 

flavonoids with huge importance, especially in the case of rosé and red wines, as they 

have a clear influence in its colour and mouthfeel, particularly in its astringency [5]. On 

the one hand, tannins can affect the colour, ageing ability and texture of the wine. While 

tannins cannot be smelled or tasted, they can be perceived during wine tasting by the 

tactile drying sensation and sense of bitterness that they can leave in the mouth [5]. On 

the other hand, anthocyanins are odourless and nearly flavourless compounds, 

contributing to wine taste as a moderately astringent sensation; besides concentration of 

those dictates the colour of the wine [5]. 

As a results, given its importance, several methods to quantify phenolic compounds 

(either total content or individual identification) are reported in the literature [6]; over 

those, most common ones include chromathography or specthrophotometry. However, 

these procedures usually require additional preparative steps, the use of heavy, 

dedicated laboratory instruments and are not suitable for on-site analysis. 

On that account, biosensors are arising as an alternative to traditional laboratory 

techniques given their low cost and their ease of use to carry out on field analyses. In 

the case of phenolic compounds, previous attempts are based on the development of 

amperometric biosensors based on the immobilization of basically three different 
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enzymes: laccase, tyrosinase and/or peroxidise [7]. Although the applicability of 

biosensors to the analysis of antioxidant compounds is promising and represents an 

attractive alternative for their detection, further work is required to avoid and/or take 

into account the interference problem [8]. 

To overcome such difficulties, chemometric tools such as Principal Component 

Analysis or Artificial Neural Networks (ANNs) can be used [9, 10]. This coupling 

consists in the integration of an array of sensors (with marked mix-response towards the 

desired species) and a chemometric processing tool (able to interpret and extract 

meaningful data from the complex readings); an approach known as BioElectronic 

Tongue [11]. 

The present work reports the application of a voltammetric BioET towards the 

analysis of phenolic compounds in cava rosé wines, for the prediction of both global 

phenolic content and total classes content. As such, it combines the responses from an 

array of voltammetric biosensors, plus an advanced response model employing a 

specifically trained Artificial Neural Network, with pretreatment of data employing 

windowed slicing integral. 

 

2. Experimental 

2.1 Reagents and solutions 

All reagents used were analytical grade and all solutions were prepared using 

deionised water from a Milli-Q system (Millipore, Billerica, MA, USA). Tyrosinase 

from mushroom (EC 1.14.18.1, 4276 U mg-1), laccase from Trametes versicolor (EC 

1.10.3.2, 21 U mg-1), copper nanoparticles (< 50 nm) were purchased from Sigma-

Aldrich (St. Louis, MO, USA). Folin-Ciocalteu’s reagent and sodium carbonate were 

purchased from Panreac Química (Barcelona, Spain). 

 

2.2 Samples under study 

A total set of 20 rosé cava wine samples were analyzed. Those samples were 

selected so as to obtain a set of samples with sufficiently differentiated total polyphenol 

content and grape varieties (e.g. Pinot noir; Grenache; Mourvèdre, also known as 

Monastrell; Trepat or Xarel·lo). Moreover, although all the samples considered were 

from Catalonia region, different wine regions inside this were also considered; i.e. 

different denomination of origin (D.O.). In this context, Table 1 summarizes detailed 
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information about the brand of samples under study as well as analytical information of 

those samples. 

 

<TABLE 1> 

 

2.3 Standard Methods 

For comparison purposes, different polyphenols indexes (related to different classes 

of them) were analyzed by classical methods for both subsets to extract additional 

quantitative analytical information that may complement ET qualitative response if their 

level could be modelled properly. On the one hand, three indexes related to total 

polyphenol content were evaluated, i.e. Folin-Ciocalteu, I280 and I320 [12]; while in the 

other hand, total tannins and anthocyanins (two classes of phenolic compounds) were 

also quantified by standard procedures. 

 

2.3.1 Folin-Ciocalteu index 

Firstly, the Folin-Ciocalteau (FC or Folin) index of the cava wines was determined 

spectrophotometrically [13]. Fc method is a colorimetric assay measuring the amount of 

phenol needed to inhibit the oxidation of the Folin-Ciocalteu reagent (a mixture of 

phosphomolybdate and phosphortungstate, which are reduced to the respective oxides).  

The FC test was carried out according to the following procedure: 1 mL of sample 

(cava wines were previously diluted 1:100 or 1:50), 6 mL of deionized water, 0.5 mL of 

Folin-Ciocalteu reagent and 2 mL of a 20% sodium carbonate solution were added in 

this order to a 10 mL beaker and diluted to volume with deionized water. The resulting 

solution was stirred and allowed to react for half an hour at room temperature in 

darkness. The absorbance was then read at 760 nm using a spectrophotometer 

PerkinElmer Lambda 20 UV/VIS (MA, USA). Total phenolic content, expressed in 

gallic acid equivalents, was evaluated from the absorbance value by interpolation into 

the calibration plot obtained with gallic acid standard solutions, multiplying the 

resulting value by 10 and by the proper dilution factor. Different dilution factors were 

applied given when carrying out specthrophotometric measurements absorbance value 

should be around 0.3 [13]. 

 

2.3.2 I280 and I320 indexes 
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Additionally, for the determination of the total content of polyphenolic compounds 

in cava wines the polyphenol indexes I280 and I320 were also considered. While FC is the 

recommended reference method, the use of those two indexes has arisen as an 

alternative to the first given its shorter time of analysis and simplicity. Although 

between them, the most common one is the I280 index, I320 index is also considered to be 

important as sometimes there could be a shift on the maximum of absorbance, 

especially in white wines [14]. Additionally, the latter is related to hydroxycinnamate 

compounds, a group of phenolic compounds [12]. 

For its determination, cava wine was diluted with water (1:100 or 1:50) and the 

absorbance was measured directly at 280 nm and 320 nm. The values of I280 and I320 for 

each sample were given as the absorbance multiplied by the proper dilution rate. 

 

2.3.2 Tannins and anthocyanins 

Lastly, tannins and anthocyans, which are two main classes of phenolic compouds 

belonging to flavonoids group, were also analyzed given its clear influence in the colour 

and mouthfeel of the wine [5].  

For the detection of tannins, the analytical method applied was the acid butanol 

assay [14]. This method is based on the acid-catalysed oxidative cleavage of the C-C 

interflavanic bondo of proanthocyanindins in butanol-HCL. On the other hand, total 

anthocyanins were determined by the colour variation in function of pH [15].  

 

2.4 Electrochemical measurements 

2.4.1 Voltammetric sensor array 

The voltammetric array was formed by four graphite-epoxy voltammetric sensors 

prepared using bare graphite C and adding different modifiers such as tyrosinase, 

laccase and copper nanoparticles to the bulk mixture – one component per electrode 

plus a blank electrode without any modifier.  

Electrodes were prepared following the conventional methodology previously 

described [16]. Electrode fabrication begins with the preparation of the composite paste. 

For this, resin EpoTek H77 (Epoxy Technology, Billerica, MA, USA) and its 

corresponding hardener compound were mixed in the ratio 20:3 (w/w); afterwards a 

15% (w/w) of graphite (50 μm BDH Laboratory Supplies) and a 2% (w/w) of the 

modifier (either the enzyme or the catalyst) were added to the previous mixture before 

hardening. Then, it was manually homogenized for 60 min, and afterwards, the paste 
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was allowed to harden for seven days at 40 ºC. Finally, electrode surface was polished 

with different sandpapers of decreasing grain size, with a final electrode area of 28 

mm2. 

 

2.4.2 Measuring procedure 

The amperometric measurement cell was formed by the 4-sensor voltammetric array 

and a reference double junction Ag/AgCl electrode (Thermo Orion 900200, Beverly, 

MA, USA) plus a commercial platinum counter electrode (Model 52–67, Crison 

Instruments, Barcelona, Spain). Cyclic Voltammetry measurements were taken using a 

6-channel AUTOLAB PGSTAT20 (Ecochemie, Netherlands), in a multichannel 

configuration, using GPES Multichannel 4.7 software package. For this, potential was 

cycled between -0.4 V and +0.8 V vs. Ag/AgCl, with a scan rate of 100 mV·s-1 and a 

step potential of 9 mV. 

Electroanalytical experiments were carried out at room temperature (25 ºC) under 

quiescent conditions, and without any pretreatment or dilution of the sample. Prior to 

perform cava samples measurements, electrodes were first cycled in saline solution in 

order to get stable voltammetric responses, ensuring reproducible responses from the 

BioET array. Apart, all experiments were carried out without performing any physical 

surface regeneration of the working electrodes. In order to prevent the accumulative 

effect of impurities on the working electrode surfaces, an electrochemical cleaning stage 

was done between each measurement applying a conditioning potential of +1.0 V for a 

duration of 40 s after each experiment, in a cell containing 25 ml of distilled water [17]. 

 

2.5 Data processing 

Chemometric processing of the data was done in MATLAB 7.1 (MathWorks, 

Natick, MA) using specific routines written by the authors, and also Neural Network 

Toolboxes (v.4.0.6). Sigmaplot 2000 (Systat Software Inc, California, USA) was used 

for graphic representations of data and results. 

The whole cyclic voltammograms obtained from each sensor from the proposed 

sensor array were included in the data processing stage. In order to reduce the 

multidimensional data matrix generated in each measurement, a preprocessing stage 

employing the windowed slicing integral method was used [18]. In this way, the 

corresponding compressed voltammograms were processed employing either Principal 

Component Analysis (PCA) or Artificial Neural Networks (ANNs) models. The first 
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allowed to visualize some initial patterns, while the second one allowed the 

quantification of different analytical parameters related to polyphenolic content of cava 

samples. 

Principal Component Analysis (PCA) allows the projection of the information 

carried by the original variables onto a smaller number of underlying (“latent”) 

variables called principal components (PCs) with new coordinates called scores, 

obtained after data transformation. Then by plotting the PCs, one can view 

interrelationships between different variables, and detect and interpret sample patterns, 

groupings, similarities or differences [19]. Moreover, PCA is a useful method to reduce 

the dimensionality of large data sets, such as those from voltammetric sensor arrays. 

Artificial Neural Networks (ANNs) consist of a number of simple processing units 

(or neurons) linked by weighted modifiable interconnections [20], originally designed to 

mimic the function of the human brain and applied to quantitative and qualitative 

analysis during the last decades [11]. Imitating the biological learning, they require a 

training process where the weights of those connections are adjusted, and build a model 

that will allow to carry out the prediction of the desired parameters (either qualitative or 

quantitative). Then, once the corresponding model is generated, it can be further applied 

to the prediction of the outputs for new samples by simply introducing the readings of 

the sensors of those to the model, hence obtaining a powerful analytical tool for rapid 

analysis of cava wine samples. 

In order to find the appropriate ANN model, significant effort is needed to optimize 

the configuration details that determine its operation. Normally, this is a trial-and-error 

process, where several parameters (training algorithms, number of hidden layers, 

number of neurons in the different layers, transfer functions, etc.) are fine-tuned in order 

to find the best configuration to optimize the performance of the model [21]. 

 

3. Results and Discussion 

3.1 Voltammetric responses 

Under the conditions described in Section 2.4, a total of 20 samples were analyzed, 

registering a complete voltammogram for each of the samples. As can be seen in Figure 

1, where examples of the different responses obtained for each kind of sensor are 

shown, currents monotonously increase as FC index (and other polyphenol indexes) 

increases, with some differentiated behaviour for each sensor. As a general trend, 
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oxidation of phenolic compounds onto electrode surface could be seen in all the cases, 

while also some reductive currents close to the region of 0 V are obtained for both 

biosensors and copper modified sensors due to its catalytic effect. 

 

<FIGURE 1> 

 

For developing an ET, the first necessary condition is to have analytical signals 

responding to the phenomena to which the objective is aimed, with variability among 

them and the different sensors forming the sensor array. Thus, proposed BioET seems to 

be a very useful departure point, generating very rich data. However, the extreme 

complexity of the generated signals (the set of voltammograms) hinders the processing 

step; especially if ANNs are to be used. As already commented, all these data is 

pretreated using a compression step, required to gain advantages in training time, to 

avoid redundancy in input data and to obtain a model with better generalization ability. 

In our case this was accomplished by the use of the windowed slicing integral [18]. 

 

3.2 Qualitative approach 

As deducted from the voltammograms in Figure 1, it could be stated that BioET 

array seems to clearly respond to polyphenolic content of samples. Nevertheless, to 

detect any other similarities or capabilities to distinguish some extra features of cava 

samples, the corresponding compressed signals were processed employing PCA 

analysis (Figure 2). Despite PCA cannot be considered as a properly pattern recognition 

method, as it only provides a visual representation of the relationships between samples 

and variables, it is a very useful tool due to it provides insights into how measured 

variables cause some samples to be similar to, or how they differ from each other. 

 

<FIGURE 2> 

 

Firstly, it should be noticed that with only the first two PCs, the accumulated 

explained variance was ca. 98.4%; a large value which means that nearly all the 

variance contained in the original information is now represented by only these two new 

coordinates. Secondly, as can be seen by simply analyzing the plot visually, some 

clusters are obtained after this transformation, thus indicating some similarities between 

those samples. 
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Again, an as could be expected from the voltammograms, it could be seen how 

samples seem to group depending on their phenolic content; e.g. cluster II seems to 

group samples with very low phenolic content, while cluster V seems to involve 

samples with the highest content. Moreover, S18 correspond to a cava from Brut Nature 

class, while almost all the others belong to Brut class; thus BioET seems to be able also 

to distinguish this fact [17]. Moreover, a part from phenolic content BioET seems to be 

capable to distinguish other features such as the different ageing or region. For example, 

S20 belongs to a low aged cava, thus it might indicate that also S17 is a young one. 

Another particularity of S8 is its region, which belongs to l’Empordà while other 

samples are mainly from Penedès region. 

After constructing this preliminary visualization model which permitted recognizing 

some initial patterns and similarities between samples, while confirming that BioET 

was also responding to phenolic content of the samples, the next step is the construction 

of a quantitative model that allows the quantitative prediction of phenolic content of 

rosé cava wine samples. 

 

3.3 Prediction of phenolic compounds 

After preprocessing the recorded voltammograms with windowed slicing integral, 

the obtained coefficients fed an ANN model in order to predict the total polyphenol 

index in wines. After a systematic evaluation of topologies, the final architecture of the 

ANN model had 44 neurons (4 sensors x 11 coeffs. obtained from the preprocessing 

stage) in the input layer, 10 neurons and purelin transfer function in the hidden layer 

and 5 neurons and purelin transfer function in the output layer, providing the five 

phenol indexes considered. 

To evaluate the BioET response, leave-one-out method was used given the reduced 

data set. In this manner, each sample is quantified by means of the model derived from 

the other samples (all cases except the case itself). This process is repeated k times (as 

many as samples) leaving out one different sample each time, the one to be quantified, 

which acts as model validation sample. Thus, with this approach all samples are used 

once as validation. Finally, all data is grouped depending on if it was intervening in the 

training process or used in the external test subset, building the response model. 

 

<FIGURE 3> 
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Comparison graphs of predicted vs. expected concentration for the five indexes were 

built, both for train and test subsets, to check the prediction ability of the obtained ANN 

model. As an example of those, Figure 3 shows the obtained plot for the prediction of 

tannins content of rosé cava wine samples. It may be seen that a satisfactory trend is 

obtained, with regression lines almost indistinguishable from the theoretical ones. Also, 

as usual in ANN models, lower dispersion is obtained for the training subset. 

 

<TABLE 2> 

 

Similarly, same plots were built for the other four indexes and regression lines were 

fitted, which regression parameters are summarized in Table 2. As expected from the 

comparison graphs, a good linear trend is attained for all the cases, but with better 

correlation coefficients in the training subsets due to the lower dispersion. Despite this, 

the results obtained for both subsets are close to the ideal values, with intercepts close to 

0 and slopes and correlation coefficients close to 1. 

Therefore, the presented approach herein represents the obtaining of an alternative 

analytical tool that allowed the simultaneous determination of five different phenolic 

compounds index in a simply, rapid and inexpensive way. Furthermore, with the same 

experimental setup, the proposed approach may be alternatively applied for the 

quantification of other specific compounds. 

 

4. Conclusions 

In summary, a voltammetric BioElectronic Tongue has been applied in cava rosé 

wine analysis in order to create a tool capable of quantifying total phenolic content as 

well as concrete classes total content. Concretely, proposed BioET was formed by an 

array of four biosensors modified with enzymes such as tyrosinase and laccase on one 

side and copper nanoparticles on the other so as to obtain a set of electrodes responding 

to the phenomena to which they are aimed and with some variability and cross-response 

features among them. Additionally, the use of chemometric tools such as ANNs allowed 

the quantification of five different phenolic compounds indexes widely used in wine 

sector; viz. Folin-Ciocalteu, I280, I320, total tannins and total anthocyanins. 

In this sense, such strategy has demonstrated to be a powerful and much promising 

approach, with huge applications in wine making industry, as it allows reducing 
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considerably analysis time, avoids any sample pretreatment or the use of additional 

reagents, and what’s more, allows the simultaneous determination of several indexes at 

the same time. Moreover, its performance characteristics may satisfy food industry 

requirements of precision, rapidity, sensitivity, simplicity and low cost required to be 

considered as a useful analytical tool. 
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Table 1. Detailed information of the cava wine samples under study. 

Sample Folin index 
I280 

(arb. unit) 

I320 

(arb. unit) 

Tannins 

(mg·mL-1) 

Anthocyanins 

(mg·mL-1) 
Producer 

S1 5 8.50 5.41 100 9 Llopart 

S2 10 18.55 7.87 393 26 Colet 

S3 5.1 7.84 4.21 189 11 Berberana 

S4 4.7 8.51 5.36 80 11 Freixenet 

S5 5.7 11.12 5.08 119 14 Dibon 

S6 7 12.04 5.98 281 22 Saint Clair 

S7 7.1 10.99 6.30 216 17 Canals & Munné 

S8 6.1 11.19 5.40 244 23 Castell Peralada 

S9 4.5 8.84 4.39 85 9 Don Román 

S10 7 11.79 6.51 229 17 Mont-Ferrant 

S11 5.5 8.96 5.10 116 5 Codorniu 

S12 4 7.41 3.81 50 8 Canals Nadal 

S13 4.9 8.89 4.59 101 10 Castell de la Comanda 

S14 4.3 8.49 3.96 150 7 Oriol Rossell 

S15 6.1 10.85 6.37 123 4 Titiana 

S16 6 9.25 4.27 173 5 Vallformosa 

S17 4.5 6.90 4.23 110 0 Raventós i Blanc 

S18 7.1 11.88 6.06 173 9 Fuchs de Vidal 

S19 - 8.15 4.44 - - Cavas Hill 

S20 - - - - - INCAVI 

 

 

 

 

Table 2. Results of the fitted regression lines for the comparison between obtained vs. 

expected values, both for the training and testing subsets of samples and the five 

considered phenolic compounds indexes (intervals calculated at the 95% confidence 

level). 

 Training subset 

Phenolic indexes Correlation Slope Intercept RMSE Total NRMSE 
Folin index  1.018±0.147 -0.05±0.88 0.965 0.40 

0.077 

I280 index (arb. unit) 0.955±0.109 0.45±1.14 0.977 0.55 
I320 index (arb. unit) 0.896±0.236 0.61±1.27 0.895 0.49 

Tannins (mg·L-1) 0.987±0.060 2.14±11.02 0.993 9.50 
Anthocyanins (mg·L-1) 0.869±0.167 1.23±2.24 0.940 2.36 

 Testing subset 

Phenolic indexes Correlation Slope Intercept RMSE Total NRMSE 
Folin index 0.977±0.257 0.25±1.54 0.896 0.70 

0.151 

I280 index (arb. unit) 0.973±0.308 0.51±3.22 0.858 1.52 
I320 index (arb. unit) 0.872±0.358 0.82±1.92 0.791 0.74 

Tannins (mg·L-1) 0.942±0.261 4.82±47.71 0.886 41.38 
Anthocyanins (mg·L-1) 0.739±0.340 1.85±4.56 0.755 4.89 
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FIGURE CAPTIONS 

 

 

Figure 1. Example of the different voltammograms obtained with the different sensors 

forming the BioET array and for certain arbitrary cava wine samples are shown. Signals 

provided correspond to: (A) graphite-epoxy sensor, (B) tyrosinase biosensor, (C) 

laccase biosensor and (D) copper nanoparticle modified sensor. 
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Figure 2. Score plot of the first two components obtained after PCA analysis of the 

cava wine samples. 

 

 

Figure 3. Example of the modelling ability of the optimized ANN showing the set 

adjustments of obtained vs. expected tannins content, both for training (●, solid line) 

and testing subsets (○, dotted line). Dashed line corresponds to theoretical diagonal line. 

 


