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Abstract 

In this work, two sets of voltammetric sensors prepared using different strategies 

have been combined in an electronic tongue to analyze the complete antioxidant profile 

of red wines from their direct measurement. To this aim, wine samples were analyzed 

with the whole set of sensors; afterwards, a feature selection and data compression stage 

were performed to reduce the large dimensionality of the data set while keeping the 

relevant information from the samples, using both kernels and Discrete Wavelet 

Transform feature extraction methods. Then, using the obtained coefficients, responses 

were first evaluated using Principal Component Analysis for visualization of samples 

dis(similarities), and partial-least squares regression (PLS) and artificial neural 

networks (ANNs) for building the quantitative prediction models that allowed the 

quantification of wines antioxidant capacity. 
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1. Introduction 

Wine is an essential component of the Mediterranean diet and might be one of the 

factors responsible for the low incidence of heart disease in Mediterranean populations 

[1]. In this sense, the Mediterranean diet has largely demonstrated its health benefits 

which are related to the intake of foods and beverages rich in antioxidants [2], such as 

apples and onions, or olive oil and wine. In the case of wine, those effects are mainly 

related to their content in phenolic compounds [3], which also affect their quality and 

organoleptic features. 

The methods to assess the antioxidant activity are usually based on evaluating the 

capabilities of an oxidising agent to induce an oxidative damage to a substrate; these, in 

presence of an antioxidant compound, are inhibited or reduced. The main characteristics 

of any test for the evaluation of the antioxidant capacity are an appropriate substrate to 

monitor the inhibition of the oxidation, an initiator of the oxidation (free radical) and an 

appropriate measure of the endpoint of the oxidation [4]. 

When approaching the study of the antioxidant activity of wines, it has been 

recommended to use more than one method. The reason is that each method gives 

different information: certain antioxidants do not react with certain oxidising species, 

but they do react with others. As a consequence different reactants provide different 

results, being able to obtain in this way disparate values among the different methods 

[5].  

On the one hand, the antioxidant activity can be evaluated among other methods by 

means of the measure of the absorbance capacity of the radical oxygen (ORAC) or the 

trolox equivalent antioxidant capacity (TEAC) [6]. On the other hand, the measure of 

phenolic compounds is usually achieved through the Folin-Ciocalteu method [7] or the 

I280 index [8]; the first measures a sample reducing capacity, while the other provides a 

measure of the sample absorbance at 280nm. Although those indexes are related to total 

phenolic content, they are also an accepted measure of the antioxidant activity of foods, 

given the role of phenolic compounds as antioxidants [9]. 

Moreover, taking into account that the antioxidant activity of wines is mainly related 

to the phenolic content, Folin index is even preferred by some authors, as it also 

evaluates the reducing power of wines. However, in some recent works related to the 

determination of their antioxidant capacity [10], it is stated that a complete antioxidant 

profile of red wines could be established by coupling (1) evaluation using ABTS (2,2’-
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azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) to obtain a measure 

of total antioxidant capacity, (2) estimation of scavengers activities which give a 

complimentary information, and (3) use of some type of biomarker methods to provide 

a measure of the oxidative stress. 

Nevertheless, all these techniques have been developed for the analysis of samples 

at the laboratory level; therefore, it would be desirable to provide methods for on-line 

analysis because the former also require complex and time-consuming sample pre-

treatment procedures.  

In this direction, the use of Electronic Tongues (ETs) is growing as a promising 

approach to analyze liquid samples [11, 12], and can represent a suitable alternative to 

tackle the determination of antioxidant capacity of wines. Such analytical systems are 

formed by an array of sensors where several sensing units, which exhibit different 

responses to various compounds, are coupled with advanced signal processing methods 

based on pattern recognition or multivariate response models, which allow for the 

qualitative or quantitative analysis of different sample parameters. To this aim, sensors 

that might be used are mainly of electrochemical nature, specially of the potentiometric, 

voltammetric, even of the impedimetric type [12, 13]. 

The aim of the present work is to examine the potential of an optimized 

voltammetric electronic tongue to provide a complete antioxidant profile of wine 

samples at once. To such purposes, two sets of voltammetric sensors prepared using 

different strategies were evaluated. After samples measurement, a feature selection and 

data compression stage was performed to reduce the large dimensionality of the data set, 

while keeping the relevant information from the measurements, employing the Discrete 

Wavelet Transform (DWT) and kernel feature extraction. Finally, obtained responses 

were analyzed by means of Principal Component Analysis for visualization of samples 

dis(similarities), and PLS and ANNs to achieve the quantification of wine antioxidant 

capacity. 

 

2. Experimental 

2.1 Reagents and solutions 

All reagents used were analytical grade and all solutions were prepared using 

deionised water from a Milli-Q system (Millipore, Billerica, MA, USA). Copper and 

platinum nanoparticles (<50nm), polyaniline and polypyrrole, cobalt phthalocyanine 
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(CoPc), tyrosinase from mushroom (EC 1.14.18.1, 5370U·mg-1), gallic acid, 2,2’-

azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), potassium 

persulfate (di-potassium peroxidisulfate) and 6-hydroxy-2,5,7,8-tetramethychroman-

carboxylic acid (Trolox) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

KCl was purchased from Merck KGaA (Darmstadt, Germany). Folin-Ciocalteu’s 

reagent and sodium carbonate were purchased from Panreac Química (Barcelona, 

Spain). HPLC grade ethanol from Scharlau (Barcelona, Spain).  

The lutetium (III) bisphthalocyaninate (LuPc2) was synthesized and purified in 

neutral radical state following earlier published procedures [14, 15]. 

 

2.2 Wine samples under study 

A total of 9 red wine samples with different oxidation level were provided by the 

Matarromera group (D.O. Ribera del Duero, Spain). Wine oxidation was established 

according to the results provided by a panel of experts following the established 

regulations [16, 17]; moreover, antioxidant capacity of wine samples was assessed by 

different standard methods (section 2.3). Table 1 summarizes detailed information about 

the wines used. 

 

<TABLE 1> 

 

2.3 Spectrophotometric measurements 

For comparison purposes, antioxidant capacity and polyphenolic content of wines 

were also assessed spectrophotometrycally with three different methods: Trolox 

Equivalent Antioxidant Capacity (TEAC), Folin-Ciocalteu index (FC) and UV 

Polyphenol index (I280).  

Spectrophotometric measurements were taken using a Schimadzu-UV-1601 

spectrophotometer (Kyoto, Japan) and a 1 cm path quartz cell. In all cases, 

determinations were carried out in triplicate and using as the blank solution an 

hydro-alcoholic solution (12%, v/v ethanol) of tartaric acid (3g·L-1). 

 

2.3.1 TEAC 

TEAC measures the antioxidant capacity of a given substance, as compared to the 

standard, Trolox. This assay is based on the scavenging of long-lived radical ions (such 

as ABTS•+). Firstly, radicals, which can easily be detected spectrophotometrically at 
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734nm, are generated. Then, antioxidants are added and its scavenging capacity is 

measured, providing its TEAC value by comparing the previous value to that of Trolox, 

a water-soluble vitamin E analogue. 

The ABTS assay was performed according to previously reported procedure [18]. 

First, a ABTS stock solution in water (7 mM) was prepared; followed by the generation 

of ABTS radical cation (ABTS•+) by reacting the stock solution with a potassium 

persulfate solution (final concentration 2.45mM), which resulting solution was kept in 

dark at room temperature for 12 hours prior to its use. Lastly, prior to its usage, ABTS•+ 

solution was diluted with ethanol to an absorbance of 0.70(±0.02) at 734 nm.  

For the assay, 4mL of ABTS•+ solution were added to a 1cm spectrophotometer 

cuvette followed by the addition of 10μl, 20μl, 30μl and 40μl of previously diluted 

wine, respectively. The absorbance reading was taken exactly 1 min after initial mixing 

and up to 10 minutes. The inhibition percentage for the absorbance at 734nm was 

calculated as the ratio between the decrease of absorbance due to sample addition (AC-

AS) and the control absorbance (AC) multiplied by 100, and afterwards, plotted as a 

function of the added volume: 

 100 · 
A

AA
%I

C

SC   (1) 

Prior to wine samples measurement, those were diluted such that, after introduction 

of 10-40 µL aliquot of the diluted wine into the assay, they produced between 20%-80% 

inhibition of the blank absorbance. In our case, the dilution necessary to achieve these 

inhibition percentages was 1:15 (wine:blank solution). 

Analogously, same procedure was followed using Trolox standard (2.5mM prepared 

in ethanol absolute) instead of diluted wine samples; with a concentration range for the 

assay in the range from 2.5µM to 15µM (including also the 0). As before, building the 

absorbance inhibition percentage vs. concentration plot, and calculating its slope. 

In this manner, antioxidant capacity, expressed in terms of TEAC, was calculated 

from the ratio between the slope of the previous plot in the case of wine and the one for 

Trolox standards. 

 

2.3.2 Folin-Ciocalteu index 

FC index is a colorimetric assay measuring the amount of phenol needed to inhibit 

the oxidation of the Folin-Ciocalteu reagent (a mixture of phosphomolybdate and 

phosphortungstate, which are reduced to the respective oxides). As a drawback, this 



 6 

reagent does not measure total phenols uniquely and will react with any reducing 

substance present. Therefore, it measures the total reducing capacity of a sample, not 

just the level of phenolic compounds. 

The Folin-Ciocalteu test was carried out according to the established procedure for 

wine analysis [16]. First, 200µl of sample (wines were previously diluted 1:50), 1300µL 

of deionized water, 100µL of Folin-Ciocalteu reagent and 400µL of a 20% sodium 

carbonate solution were mixed into an Eppendorf tube. Afterwards, the resulting 

solution was allowed to react for 30min in darkness at room temperature (25ºC), and 

finally its absorbance was read directly at 760nm. The total phenolic content (FC 

Index), expressed in mg·L-1 equivalents of gallic acid, was evaluated from the 

absorbance value by interpolation into the calibration plot obtained with gallic acid 

standard solutions, multiplying the resulting value by the proper dilution rate. 

 

2.3.3 I280 index 

I280 index is a direct measurement of the UV absorbance at 280nm. The relation 

between I280 index and phenolic concentration is due to the fact that all phenolic 

compounds absorb UV light, and even more, all of them have some absorbance at 

280nm. One problem with this method is that each class of phenolic substances has a 

different absorptivity (extinction coefficient, ε) at 280nm [8]. Thus, the results cannot 

be related to any specific standard and are reported directly in absorbance units or 

arbitrary units (arb. unit). Despite this method is less sensitive and more unspecific, its 

usage has grown in the last years given its simplicity and low cost. 

Polyphenol index (I280) was determined as previously reported [16]. For this, wine 

was first diluted with deionized water (1:50) and then absorbance was measured directly 

at 280nm using a quartz cuvette. The value of I280 for each sample was given as the 

absorbance multiplied by the proper dilution rate. 

 

2.4 Preparation of the sensor array 

2.4.1 Modified Carbon Paste Electrodes (CPE) sensors 

Based on previous experience in our laboratories, an array of 6 modified CPE 

voltammetric electrodes were prepared following the conventional carbon-paste 

methodology [19]. The carbon paste electrodes were prepared by mixing the 

corresponding phthalocyanine (15% w/w) with carbon powder (Ultracarbon, Ultra F 

purity) in an agate mortar. Then the Nujol oil (which has the role of binder) was added 
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and the blend was mixed until a homogenous paste with the appropriate consistence was 

obtained. Once prepared, 0.1g of the mixture was introduced in a plastic syringe (1mL), 

and compressed. A copper wire was used as the contact. The CPEs were finally 

smoothed manually with a clean filter paper. 

In this manner, three electrochemical sensors were first fabricated: one unmodified 

carbon paste electrode (CPE, A1), a CPE based on cobalt phthalocyanine (CoPc, A2) 

and a CPE based on lutetium bisphthalocyanine (LuPc2, A3).  

The other three devices were carbon-paste tyrosinase biosensors. For biosensors 

preparation, previously described procedure was followed by an immobilization step of 

the enzyme: tyrosinase in this case. To this aim, a 5 mg·mL-1 solution of tyrosinase in 

phosphate buffer (0.01 M, pH 7.0) was prepared. Then, the immobilization of tyrosinase 

was accomplished by addition of a 5μL aliquot of tyrosinase solution onto the electrode 

surface (i.e. 134 tyrosinase U/electrode). After drying, the biosensor was immersed in a 

glutaraldehyde solution (2%) for 20 minutes and next dried in air at room temperature. 

Lastly, the enzyme-immobilized biosensors were washed with phosphate buffer solution 

thrice to remove any unbound enzyme. The biosensor was additionally dried at 10ºC 

and stored at 4ºC. 

In this way, previously prepared sensors were also modified by the immobilization 

of tyrosinase enzyme, thus resulting in the obtaining of three new biosensors: one only 

with carbon (A4), and the others with CoPc (A5) and LuPc2 (A6). Thus obtaining a 6 

CPE (bio)sensors array. Additionally one platinum electrode (Pt, A7) was also included 

in the array. 

 

2.4.2 Graphite-Epoxy Composite electrodes 

Based on previous experience in our laboratories, an array of 6 voltammetric 

electrodes were prepared following the conventional graphite-epoxy composite 

methodology [20]. Resin EpoTek H77 (Epoxy Technology, Billerica, MA, USA) and its 

corresponding hardener compound were mixed in the ratio 20:3 (w/w); afterwards a 

15% of graphite (w/w) and a 2% of the modifier (w/w) were added to the previous 

mixture before hardening, obtaining the composite. Then, it was manually homogenized 

for 60 min, and afterwards, the paste was allowed to harden for 3 days at 80 ºC. Finally, 

the electrode surface was polished with different sandpapers of decreasing grain size, 

with a final electrode area of 28 mm2. 
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In this manner, an array of 6 different graphite-epoxy voltammetric sensors were 

prepared using bare graphite C (B1) and adding different modifiers such as cobalt 

phtalocyanine (CoPc, B2), conducting polymers such as polypyrrole (Ppy, B3) and 

polyaniline (PANI, B4), and nanoparticles of copper (Cu, B5) and platinum (Pt, B6) to 

the bulk mixture – one component per electrode, plus one unmodified electrode. 

 

2.5 Voltammetric measurements 

2.5.1 Carbon Paste Electrodes (CPE) sensors 

The voltammetric measurements were taken using an EG&G PARC 263A 

potentiostat/galvanostat (Echem M270 Software) with a conventional three-electrode 

cell. The reference electrode was an Ag|AgCl/KCl3M and the counter electrode was a 

platinum wire; while Pt, CPEs and chemically modified CPEs (bio)sensors were used as 

the working electrodes. 

For the recording of cyclic voltammetric measurements, potential was cycled 

between -1.0V and +1.0V vs Ag/AgCl (-0.6V and +0.6V for CPE biosensors), with a 

scan rate of 100mV·s-1 and a step potential of 4mV (2.4mV for CPE biosensors), and 

starting at 0V. After each sample measurement, (bio)sensors were cleaned and 

immersed in a KCl 0.1M solution, running some cyclic voltammograms until the 

original signal was recovered. 

 

2.5.2 Graphite-Epoxy Composite electrodes 

The voltammetric measurement cell was formed by the 6-sensor voltammetric array 

and a reference double junction Ag/AgCl electrode (Thermo Orion 900200, Beverly, 

MA, USA) plus a commercial platinum counter electrode (Model 52–67, Crison 

Instruments, Barcelona, Spain). Cyclic Voltammetry measurements were taken using a 

6-channel AUTOLAB PGSTAT20 (Ecochemie, Netherlands), in a multichannel 

configuration, using GPES Multichannel 4.7 software package. 

Potential was cycled between -1.0V and +1.3V vs Ag/AgCl, with a scan rate of 

100mV·s-1 and a step potential of 9mV. Apart, all experiments were carried out without 

performing any physical surface regeneration of the working electrodes. In order to 

prevent the accumulative effect of impurities on the working electrode surfaces, an 

electrochemical cleaning stage was done between each measurement applying a 

conditioning potential of +1.5 V for a duration of 40s after each experiment, in a cell 

containing 25mL of distilled water [21]. 
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2.6 Data processing 

Chemometric processing was done by specific routines in MATLAB (MathWorks, 

Natick, MA) written by the authors, using Neural Network and Wavelet Toolboxes. 

Partial Least Squares (PLS) regression was done employing The Unscrambler (CAMO 

Software AS, Oslo, Norway) informatics package. Sigmaplot (Systat Software Inc, 

California, USA) was used for graphic representations of data and results. 

For each sample, one voltammogram was recorded for each sensor from the ET 

array. In order to reduce the high dimensionality of the recorded signals (samples x 

sensors x potentials), a preprocessing stage to compress the information from the 

original signals and extract meaningful data from the readings was required [22]. For 

this, two different feature extraction tools were used: “bell-shaped-windowing” curves 

called “kernels” [23] and Discrete Wavelet Transform [24]. 

Then, the obtained coefficients fed the PLS and ANN models which were used for 

the quantification of wines antioxidant capacity. Similarly, recognition of samples 

patterns and dis(similarities) was attempted by means of PCA analysis. 

 

3. Results and Discussion 

3.1 Voltammetric responses 

Different voltammetric responses are observed for each kind of sensor, as shown in 

Figure 1. Differentiated signals are obtained for each type of sensor used, i.e. showing 

its distinctive profile; at the same time, it can be seen how currents increase in 

concordance to antioxidant capacity of wines and with different behaviour for each 

sensor. Thus, generating very rich data that is very useful as the departure point, where 

these signals presumably contribute in different manners for model quantification. 

 

<FIGURE 1> 

 

For developing an ET, the first necessary condition is to have analytical signals 

responding to the phenomena to which the objective is aimed, with variability among 

them and the different sensors forming the sensor array. However, the high 

dimensionality and the extreme complexity of the generated signals (the set of 
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voltammograms) hinders the processing step; thus requiring of a feature extraction 

stage. 

 

3.2 Feature extraction 

The main objective of this step was to reduce the complexity of the input signal 

while preserving the relevant information; this approach also permits to gain advantages 

in modelling time, to avoid redundancy in input data and to obtain a model with better 

generalization ability [25]; i.e. to improve model performance. 

In our case, feature extraction process was divided into two steps. First, reduction of 

the number of sensors that will be used in the modelling stage was attempted by 

checking autocorrelation between sensor’s responses and discarding the ones that 

presented more similarity or colinearity; afterwards, voltammetric responses of the 

selected ones were compressed to reduce its large dimensionality. 

In order to quantify response similarities, the correlation coefficient (r) and a 

comparison factor named fc that considers the area under both signals when 

superimposed were used [24]. Both factors range from 0 to 1 depending on signals 

similarity; it values 0 when two signals have nothing in common and increases its value 

as similarity does. In this sense, fc computes similarity in a way related to a correlation 

coefficient “r”, but being more sensitive to small differences. 

Therefore, the evaluation of sensors autocorrelation will provide a unique numeric 

value for each sensor, measuring how similar its signal is to another one. Since for both 

parameters signals comparison is done point by point, response similarities were 

evaluated separately for the two types of sensors used: CPEs and composites; thus 

allowing to discard the modified sensors which do not bring new information to the 

system, i.e. discarding redundant sensors. 

In this manner, voltammetric signals were unfolded and normalized between -1 and 

+1, calculating then proposed parameters, which are summarized in Table 2. As can be 

seen, “r” values are higher than fc, presenting little differences in most cases. As 

expected, the diagonal of the table is “1” in both cases since it corresponds to the 

correlations of each sensor with itself, and it is also symmetric since it is equivalent to 

calculate the correlation of “a” and “b” or “b” and “a”. As stated, the higher the 

correlation value is, means higher colinearity in their responses; thus, the ones with 

lower values will be the ones selected. Specifically, the ones selected were A2 (CoPc), 
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A5 (CPETyr) and A6 (CoPcTyr) in the case of CPE (bio)sensors, and the composite 

electrodes modified with B3 (Ppy), B5 (Cu) and B6 (Pt). 

 

<TABLE 2> 

 

After optimizing of the number of sensors that will be considered in the modelling 

stage, the next step was the compression of their voltammetric signals. In our case this 

compression stage was achieved by the use of kernels and DWT. Hence, each 

voltammogram was substituted by a number of coefficients (selected from the minimum 

allowing a good reconstruction of the original data), accomplishing in this way the data 

reduction, without any loss of relevant information. 

In the case of kernels functions, only the anodic part of the voltammetric curve was 

considered, multiplying it by a number of 10 smooth, bell-shaped-windowing functions, 

and integrated with respect to the potential [23]. Using this method, ten parameters per 

voltammogram were obtained, meaning a compression ratio up to 98.0% for CPE 

(bio)sensors (997 original data points) and 96.1% for composite electrodes (514 original 

data points). 

Similarly, in the case of DWT, entire voltammetric curve was compressed using 

Daubechies wavelet, and two different decomposition levels [24]: seventh for CPE 

(bio)sensors and sixth for composite sensors; obtaining 14 coefficients per 

voltammogram; i.e. compression ratios of 98.6% and 97.3%, respectively. 

Therefore, recapitulating, from the initial set of 13 sensors was optimized into the 6 

most significant ones; from those, the corresponding voltammograms were compressed, 

and the obtained coefficients were the ones that were fed into the chemometric models. 

 

3.2 Qualitative analysis – detection of wine defects 

After feature extraction process, which allowed a significant reduction in the 

dimensionality of recorded signals, the corresponding compressed voltammograms were 

analyzed by means of PCA. This method allowed to summarize almost all variance 

contained in the departure information onto a fewer number of directions (the PCs) with 

new coordinates called scores, obtained after data transformation. Despite PCA cannot 

be considered as a properly pattern recognition method, as it only provides a visual 

representation of the relationships between samples and variables, it is a very useful tool 

because it provides insights into how measured variables cause some samples to be 
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similar to, or how they differ from each other. Thus, a preliminary recognition was 

attained which allowed the visually identification of samples dis(similarities) and 

clustering.  

 

<FIGURE 2> 

 

Figure 2 only outlines the score plot obtained in the case of kernel preprocessing 

method, as similar information was obtained from DWT. Firstly, it should be noticed 

that with only the first two PCs, the accumulated explained variance was ca. 98.9%; a 

large value which means that nearly all the variance contained in the original 

information is now represented by only these two new coordinates. Secondly, as can be 

seen by simply visually analyzing the plot, some clusters are obtained after this 

transformation, thus indicating some similarities between those samples. 

In this sense, and taking into account results provided by the panel of experts, 

patterns in the plot were analyzed. Firstly, it could be seen how S1 samples appear far 

away from the rest at the left part of the plot (negative scores of PC1); this could be 

explained as those samples correspond to a very oxidized wine (as can also be deducted 

from its low TEAC value). Opposed to those, S4 samples, which correspond to a 

reduced wine, appear on the other side of the plot (positive scores for PC1); while S3 

which corresponds to a slightly oxidised wine, hence appearing in between both.  

S8 corresponds to a “Brett wine”, a wine infected by a yeast inducing very 

unpleasant mouthfeel. Close to this, it appears S6, a wine with a huge reduction of 

mercaptans, inducing a unpleasant smell of rotten eggs to wine. In this sense, the 

position of S5 wine samples between those two and S3 (the slightly oxidised wine), can 

explain why this wine was discarded by the sensory panel. 

Lastly, S7 correspond to a correct wine used as control; thus, expecting that samples 

close to it correspond also to wines without any (or with small) defects. A hypothesis in 

accordance to the position of S2 and S9 samples. Therefore, the optimized ET array has 

proved to be able to assess wines quality and distinguish the ones having specific 

defects. 

 

3.1 Quantitative analysis 

From the optimized 6-sensor array, the corresponding voltammograms were 

compressed, and the obtained coefficients were fed into multivariate calibration models 
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in order to predict the antioxidant capacity of wines. In this sense, two different 

methods were evaluated: an ANN as a non-linear data modelling tool and PLS-2 as a 

linear one. Those were combined with the two different signal compression strategies 

evaluated, resulting in a total of four different models. 

After a systematic evaluation of topologies, the final ANNs models had 60 or 84 

input neurons (corresponding to the 10 kernel or the 14 wavelet approximation 

coefficients obtained from the analysis of each of the 6 sensor signals), 4 neurons and 

purelin transfer function in the hidden layer and 3 output neurons and purelin transfer 

function in the output layer corresponding to TEAC, FC and I280 indexes.  

For the optimization of PLS models only one consideration was taken into account: 

the number of latent variables used to build the model. Despite PLS does not need a 

preprocessing stage, it was found that better models were obtained when this was 

performed [26]. Thus, the final models were a kernel-PLS2 with 3 latent variables, 

which has a total explained variance ca. XX.X%; and a DWT-PLS2 with 1 latent 

variable, which has a total explained variance ca. XX.X%. 

To evaluate models’ performance, and due to the reduced data set, leave-one-out 

cross validation method was used. In this manner, each sample is classified by means of 

the analysis function derived from the other samples (all cases except the case itself). 

This process was repeated k times (as many as samples) leaving out one different 

sample each time, the one to be classified, which acts as model validation sample. Thus, 

with this approach all samples are used once as validation. 

Comparison graphs for each compound and model were built grouping the replicas 

for each individual sample, differentiating when it was intervening in the training 

process and when used as external test. The predicted indexes were then plotted against 

the expected ones and fitted with linear least-squares regression. As an example, the 

obtained results for the DWT-ANN model can be seen on Figure 3, where it may be 

seen that a satisfactory trend is obtained, with regression lines close to the theoretical 

ones. 

 

<FIGURE 3> 

<TABLE 2> 

 

In the same way, equivalent plots were built for the other cases (kernel-ANN, 

DWT-PLS2 and kernel-PLS2) and regression lines were fitted, which regression 
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parameters are summarized in Table 2. As expected from the comparison graphs, a good 

linear trend is attained for all the cases, but as usual in multivariate calibration models, 

with better performance for the training subset. Regardless of this, the results obtained 

for both subsets are close to the ideal values, with intercepts close to 0 and slopes and 

correlation coefficients close to 1; meaning that there are no significant differences 

between the values predicted by the multivariate calibration methods and the reference 

ones. 

Among the good trend obtained in general, best results were obtained with 

DWT-ANN model, a fact that can be explained given its superior performance due to its 

architecture adaptability and the use of both linear and non-linear functions when 

building the model. 

 

4. Conclusions 

Electronic tongues have proved to be useful analytical tools able to provide 

information for either the organoleptic profile of wines or the simultaneous 

quantification of three common indexes used to assess wines antioxidant capacity and 

polyphenolic content. In this sense, good correlations have been found with TEAC, 

Folin-Ciocalteu and I280 indexes, which indicate that the array of sensors presented can 

be used as an analytical tool to predict the antioxidant capacity of red wines. In this 

sense, proposed approach represents an alternative to classical methods reducing 

considerably analysis time (e.g from ca. 30min to ca. 3min in the case of FC index), 

avoiding the sample pre-treatment (proper dilution factor, etc.) and the use of reagents 

(Trolox, ABTS, Folin-Ciocalteu reagent, etc.); moreover, providing the quantification 

of the three indexes (TEAC, FC and I280) from only a single measurement. 

Combination of different technologies for constructing voltammetric sensors 

permitted obtaining an optimized sensor array that yielded best results in both the 

qualitative and quantitative applications. 

Both, kernels and DWT methods proved to be very efficient in the compression of 

voltammetric data, providing similar information as can result from the multivariate 

data analysis. By using these methods, instead of the entire voltammetric curve, the 

significant information is reduced to a few coefficients with compression ratio up to 

XX.X% - XX.X%; with the huge advantage that is the significant reduction of the 

computational time and the influence of redundant data in the multivariate data analysis 
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stage. Finally, best results were obtained with the use of ANNs models due to its 

superior performance. 
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Table 1. Detailed information of the wine samples under study. 

Sample Wine description Vintage 
TEAC 

(mM) 

Folin index 

(mg·L-1) 

I280 

(arb. unit) 

S1 Oxidized wine 1999 4.90 2530 57.7 

S2 Correct wine, with some evolution  2006 5.93 2979 61.7 

S3 Oxidized wine   2006 5.64 2864 62.5 

S4 Red wine, reduced state 2010 5.70 2941 63.1 

S5 Wine not accepted by sensory panel 2009 6.20 3166 69.5 

S6 Wine with certain reduction degree 2010 5.72 2923 69.2 

S7 Correct wine (control specimen) 2010 6.90 3705 69.5 

S8 Wine with Brett character  2009 6.47 3672 75.2 

S9 Highly elaborated wine, with oak 2010 6.46 3390 75.9 

 

Table 2. Selection and removal of redundant sensors; autocorrelation between its 

signals. 

 

Composite Paste Electrodes 

fc A1 A2 A3 A4 A5 A6 7  r A1 A2 A3 A4 A5 A6 7 

A1 1 0.697 0.809 0.577 0.086 0.718 0.825   A1 1 0.595 0.758 0.738 0.782 0.815 0.811 

A2 0.697 1 0.564 0.827 0.060 0.501 0.845   A2 0.595 1 0.778 0.600 0.746 0.907 0.734 

A3 0.809 0.564 1 0.467 0.106 0.887 0.667   A3 0.758 0.778 1 0.783 0.800 0.867 0.941 

A4 0.577 0.827 0.467 1 0.050 0.414 0.699   A4 0.738 0.600 0.783 1 0.490 0.664 0.779 

A5 0.086 0.060 0.106 0.050 1 0.120 0.071   A5 0.782 0.746 0.800 0.490 1 0.887 0.841 

A6 0.718 0.501 0.887 0.414 0.120 1 0.592   A6 0.815 0.907 0.867 0.664 0.887 1 0.825 

7 0.825 0.845 0.667 0.699 0.071 0.592 1   7 0.811 0.734 0.941 0.779 0.841 0.825 1 

Graphite-Epoxy Composites 

fc B1 B2 B3 B4 B5 B6    r B1 B2 B3 B4 B5 B6  

B1 1 0.825 0.831 0.865 0.381 0.558    B1 1 0.993 0.993 0.878 0.91 0.919  

B2 0.825 1 0.992 0.713 0.462 0.677    B2 0.993 1 0.996 0.916 0.929 0.925  

B3 0.831 0.992 1 0.719 0.458 0.672    B3 0.993 0.996 1 0.901 0.909 0.909  

B4 0.865 0.713 0.719 1 0.329 0.483    B4 0.878 0.916 0.901 1 0.894 0.82  

B5 0.381 0.462 0.458 0.329 1 0.682    B5 0.91 0.929 0.909 0.894 1 0.909  

B6 0.558 0.677 0.672 0.483 0.682 1    B6 0.919 0.925 0.909 0.82 0.909 1  
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Table 3. Results of the fitted regression lines for the comparison between obtained vs. expected values, both for the training and testing subsets 

of samples and the three considered indexes. 

 Training subset 

 DWT-ANN  DWT-PLS2 

 Correlation Slope Intercept RMSE Total NRMSE  Correlation Slope Intercept RMSE Total NRMSE 

TEAC (mM) 0.951 0.861 0.825 0.174 

0.070 

 0.775 0.601 2.39 0.375 

0.171 Folin index (mg·L-1) 0.985 0.922 242 66.5  0.754 0.568 1352 242 

I280 index (arb. unit) 0.981 0.940 4.03 1.15  0.951 0.904 6.47 1.83 

 Testing subset 

 DWT-ANN  DWT-PLS2 

 Correlation Slope Intercept RMSE Total NRMSE  Correlation Slope Intercept RMSE Total NRMSE 
TEAC (mM) 0.774 0.747 1.57 0.372 

0.147 

 0.368 0.295 4.25 0.500 

0.230 Folin index (mg·L-1) 0.920 0.868 429 146  0.401 0.311 2171 321 

I280 index (arb. unit) 0.926 0.890 7.12 2.25  0.836 0.658 23.0 2.69 

RMSE: Root Mean Square Error; NRMSE: Normalized Root Mean Square Error 

 

 Training subset 

 kernel-ANN  kernel-PLS2 

 Correlation Slope Intercept RMSE Total NRMSE  Correlation Slope Intercept RMSE Total NRMSE 

TEAC (mM) 0.935 0.756 1.45 0.210 

0.103 

 0.944 0.972 0.333 0.132 

0.049 Folin index (mg·L-1) 0.951 0.773 708 125  0.991 0.990 60.5 51.3 

I280 index (arb. unit) 0.960 0.821 12.0 1.77  0.989 0.995 0.722 0.613 

 Testing subset 

 kernel-ANN  kernel-PLS2 

 Correlation Slope Intercept RMSE Total NRMSE  Correlation Slope Intercept RMSE Total NRMSE 

TEAC (mM) 0.775 0.761 1.51 0.380 

0.165 

 0.667 0.470 3.16 0.417 

0.202 Folin index (mg·L-1) 0.910 0.871 437 158  0.861 0.591 1238 203 

I280 index (arb. unit) 0.860 0.760 15.8 3.03  0.667 0.490 32.6 4.08 

RMSE: Root Mean Square Error; NRMSE: Normalized Root Mean Square Error 
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FIGURE CAPTIONS 
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Figure 1. Example of the different voltammograms obtained with the different selected 

sensors forming the ET array and for certain arbitrary wine samples. Signals provided 

correspond to: (A) CoPC modified CPE, (B) GEC composite, (C) CPE-Tyr biosensor 

and (D) polypyrrol modified composite. 
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Figure 2. Score plot of the first two components obtained after kernel-PCA analysis of 

the considered wine samples. 
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Figure 3. Example of the modelling ability of the optimized DWT-ANN showing the 

set adjustments of obtained vs. expected indexes for (A) TEAC, (B) Folin-Ciocalteu and 

(C) I280. Dashed line corresponds to theoretical diagonal line, while plotted data 

correspond to testing subsets (●, solid line). 


