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Abstract

In this work, two sets of voltammetric sensors prepared using different strategies
have been combined in an electronic tongue to analyze the complete antioxidant profile
of red wines from their direct measurement. To this aim, wine samples were analyzed
with the whole set of sensors; afterwards, a feature selection and data compression stage
were performed to reduce the large dimensionality of the data set while keeping the
relevant information from the samples, using both kernels and Discrete Wavelet
Transform feature extraction methods. Then, using the obtained coefficients, responses
were first evaluated using Principal Component Analysis for visualization of samples
dis(similarities), and partial-least squares regression (PLS) and artificial neural
networks (ANNSs) for building the quantitative prediction models that allowed the

quantification of wines antioxidant capacity.
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1. Introduction

Wine is an essential component of the Mediterranean diet and might be one of the
factors responsible for the low incidence of heart disease in Mediterranean populations
[1]. In this sense, the Mediterranean diet has largely demonstrated its health benefits
which are related to the intake of foods and beverages rich in antioxidants [2], such as
apples and onions, or olive oil and wine. In the case of wine, those effects are mainly
related to their content in phenolic compounds [3], which also affect their quality and
organoleptic features.

The methods to assess the antioxidant activity are usually based on evaluating the
capabilities of an oxidising agent to induce an oxidative damage to a substrate; these, in
presence of an antioxidant compound, are inhibited or reduced. The main characteristics
of any test for the evaluation of the antioxidant capacity are an appropriate substrate to
monitor the inhibition of the oxidation, an initiator of the oxidation (free radical) and an
appropriate measure of the endpoint of the oxidation [4].

When approaching the study of the antioxidant activity of wines, it has been
recommended to use more than one method. The reason is that each method gives
different information: certain antioxidants do not react with certain oxidising species,
but they do react with others. As a consequence different reactants provide different
results, being able to obtain in this way disparate values among the different methods
[5].

On the one hand, the antioxidant activity can be evaluated among other methods by
means of the measure of the absorbance capacity of the radical oxygen (ORAC) or the
trolox equivalent antioxidant capacity (TEAC) [6]. On the other hand, the measure of
phenolic compounds is usually achieved through the Folin-Ciocalteu method [7] or the
I280 index [8]; the first measures a sample reducing capacity, while the other provides a
measure of the sample absorbance at 280nm. Although those indexes are related to total
phenolic content, they are also an accepted measure of the antioxidant activity of foods,
given the role of phenolic compounds as antioxidants [9].

Moreover, taking into account that the antioxidant activity of wines is mainly related
to the phenolic content, Folin index is even preferred by some authors, as it also
evaluates the reducing power of wines. However, in some recent works related to the
determination of their antioxidant capacity [10], it is stated that a complete antioxidant

profile of red wines could be established by coupling (1) evaluation using ABTS (2,2’-



azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) to obtain a measure
of total antioxidant capacity, (2) estimation of scavengers activities which give a
complimentary information, and (3) use of some type of biomarker methods to provide
a measure of the oxidative stress.

Nevertheless, all these techniques have been developed for the analysis of samples
at the laboratory level; therefore, it would be desirable to provide methods for on-line
analysis because the former also require complex and time-consuming sample pre-
treatment procedures.

In this direction, the use of Electronic Tongues (ETs) is growing as a promising
approach to analyze liquid samples [11, 12], and can represent a suitable alternative to
tackle the determination of antioxidant capacity of wines. Such analytical systems are
formed by an array of sensors where several sensing units, which exhibit different
responses to various compounds, are coupled with advanced signal processing methods
based on pattern recognition or multivariate response models, which allow for the
qualitative or quantitative analysis of different sample parameters. To this aim, sensors
that might be used are mainly of electrochemical nature, specially of the potentiometric,
voltammetric, even of the impedimetric type [12, 13].

The aim of the present work is to examine the potential of an optimized
voltammetric electronic tongue to provide a complete antioxidant profile of wine
samples at once. To such purposes, two sets of voltammetric sensors prepared using
different strategies were evaluated. After samples measurement, a feature selection and
data compression stage was performed to reduce the large dimensionality of the data set,
while keeping the relevant information from the measurements, employing the Discrete
Wavelet Transform (DWT) and kernel feature extraction. Finally, obtained responses
were analyzed by means of Principal Component Analysis for visualization of samples
dis(similarities), and PLS and ANNSs to achieve the quantification of wine antioxidant

capacity.

2. Experimental
2.1 Reagents and solutions

All reagents used were analytical grade and all solutions were prepared using
deionised water from a Milli-Q system (Millipore, Billerica, MA, USA). Copper and

platinum nanoparticles (<50nm), polyaniline and polypyrrole, cobalt phthalocyanine



(CoPc), tyrosinase from mushroom (EC 1.14.18.1, 5370U-mg?), gallic acid, 2,2’-
azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), potassium
persulfate (di-potassium peroxidisulfate) and 6-hydroxy-2,5,7,8-tetramethychroman-
carboxylic acid (Trolox) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
KCI was purchased from Merck KGaA (Darmstadt, Germany). Folin-Ciocalteu’s
reagent and sodium carbonate were purchased from Panreac Quimica (Barcelona,
Spain). HPLC grade ethanol from Scharlau (Barcelona, Spain).

The lutetium (111) bisphthalocyaninate (LuPcz) was synthesized and purified in

neutral radical state following earlier published procedures [14, 15].

2.2 Wine samples under study

A total of 9 red wine samples with different oxidation level were provided by the
Matarromera group (D.O. Ribera del Duero, Spain). Wine oxidation was established
according to the results provided by a panel of experts following the established
regulations [16, 17]; moreover, antioxidant capacity of wine samples was assessed by
different standard methods (section 2.3). Table 1 summarizes detailed information about

the wines used.

<TABLE 1>

2.3 Spectrophotometric measurements

For comparison purposes, antioxidant capacity and polyphenolic content of wines
were also assessed spectrophotometrycally with three different methods: Trolox
Equivalent Antioxidant Capacity (TEAC), Folin-Ciocalteu index (FC) and UV
Polyphenol index (I2s0).

Spectrophotometric measurements were taken using a Schimadzu-UV-1601
spectrophotometer (Kyoto, Japan) and a 1 cm path quartz cell. In all cases,
determinations were carried out in triplicate and using as the blank solution an

hydro-alcoholic solution (12%, v/v ethanol) of tartaric acid (3g-L™).

2.3.1 TEAC
TEAC measures the antioxidant capacity of a given substance, as compared to the
standard, Trolox. This assay is based on the scavenging of long-lived radical ions (such

as ABTS™). Firstly, radicals, which can easily be detected spectrophotometrically at



734nm, are generated. Then, antioxidants are added and its scavenging capacity is
measured, providing its TEAC value by comparing the previous value to that of Trolox,
a water-soluble vitamin E analogue.

The ABTS assay was performed according to previously reported procedure [18].
First, a ABTS stock solution in water (7 mM) was prepared; followed by the generation
of ABTS radical cation (ABTS™) by reacting the stock solution with a potassium
persulfate solution (final concentration 2.45mM), which resulting solution was kept in
dark at room temperature for 12 hours prior to its use. Lastly, prior to its usage, ABTS™"
solution was diluted with ethanol to an absorbance of 0.70(x0.02) at 734 nm.

For the assay, 4mL of ABTS'" solution were added to a 1cm spectrophotometer
cuvette followed by the addition of 10ul, 20ul, 30ul and 40ul of previously diluted
wine, respectively. The absorbance reading was taken exactly 1 min after initial mixing
and up to 10 minutes. The inhibition percentage for the absorbance at 734nm was
calculated as the ratio between the decrease of absorbance due to sample addition (Ac-
As) and the control absorbance (Ac) multiplied by 100, and afterwards, plotted as a
function of the added volume:

%l = Ac—As -100 (1)
AC

Prior to wine samples measurement, those were diluted such that, after introduction
of 10-40 pL aliquot of the diluted wine into the assay, they produced between 20%-80%
inhibition of the blank absorbance. In our case, the dilution necessary to achieve these
inhibition percentages was 1:15 (wine:blank solution).

Analogously, same procedure was followed using Trolox standard (2.5mM prepared
in ethanol absolute) instead of diluted wine samples; with a concentration range for the
assay in the range from 2.5uM to 15uM (including also the 0). As before, building the
absorbance inhibition percentage vs. concentration plot, and calculating its slope.

In this manner, antioxidant capacity, expressed in terms of TEAC, was calculated
from the ratio between the slope of the previous plot in the case of wine and the one for
Trolox standards.

2.3.2 Folin-Ciocalteu index
FC index is a colorimetric assay measuring the amount of phenol needed to inhibit
the oxidation of the Folin-Ciocalteu reagent (a mixture of phosphomolybdate and

phosphortungstate, which are reduced to the respective oxides). As a drawback, this



reagent does not measure total phenols uniquely and will react with any reducing
substance present. Therefore, it measures the total reducing capacity of a sample, not
just the level of phenolic compounds.

The Folin-Ciocalteu test was carried out according to the established procedure for
wine analysis [16]. First, 200ul of sample (wines were previously diluted 1:50), 1300uL
of deionized water, 100uL of Folin-Ciocalteu reagent and 400uL of a 20% sodium
carbonate solution were mixed into an Eppendorf tube. Afterwards, the resulting
solution was allowed to react for 30min in darkness at room temperature (25°C), and
finally its absorbance was read directly at 760nm. The total phenolic content (FC
Index), expressed in mg-L? equivalents of gallic acid, was evaluated from the
absorbance value by interpolation into the calibration plot obtained with gallic acid

standard solutions, multiplying the resulting value by the proper dilution rate.

2.3.3 l2g0 index

I2s0 index is a direct measurement of the UV absorbance at 280nm. The relation
between l2s0 index and phenolic concentration is due to the fact that all phenolic
compounds absorb UV light, and even more, all of them have some absorbance at
280nm. One problem with this method is that each class of phenolic substances has a
different absorptivity (extinction coefficient, €) at 280nm [8]. Thus, the results cannot
be related to any specific standard and are reported directly in absorbance units or
arbitrary units (arb. unit). Despite this method is less sensitive and more unspecific, its
usage has grown in the last years given its simplicity and low cost.

Polyphenol index (l2s0) was determined as previously reported [16]. For this, wine
was first diluted with deionized water (1:50) and then absorbance was measured directly
at 280nm using a quartz cuvette. The value of l2s for each sample was given as the

absorbance multiplied by the proper dilution rate.

2.4 Preparation of the sensor array
2.4.1 Modified Carbon Paste Electrodes (CPE) sensors

Based on previous experience in our laboratories, an array of 6 modified CPE
voltammetric electrodes were prepared following the conventional carbon-paste
methodology [19]. The carbon paste electrodes were prepared by mixing the
corresponding phthalocyanine (15% w/w) with carbon powder (Ultracarbon, Ultra F

purity) in an agate mortar. Then the Nujol oil (which has the role of binder) was added



and the blend was mixed until a homogenous paste with the appropriate consistence was
obtained. Once prepared, 0.1g of the mixture was introduced in a plastic syringe (1mL),
and compressed. A copper wire was used as the contact. The CPEs were finally
smoothed manually with a clean filter paper.

In this manner, three electrochemical sensors were first fabricated: one unmodified
carbon paste electrode (CPE, Al), a CPE based on cobalt phthalocyanine (CoPc, A2)
and a CPE based on lutetium bisphthalocyanine (LuPcz2, A3).

The other three devices were carbon-paste tyrosinase biosensors. For biosensors
preparation, previously described procedure was followed by an immobilization step of
the enzyme: tyrosinase in this case. To this aim, a 5 mg-mL solution of tyrosinase in
phosphate buffer (0.01 M, pH 7.0) was prepared. Then, the immobilization of tyrosinase
was accomplished by addition of a SuL aliquot of tyrosinase solution onto the electrode
surface (i.e. 134 tyrosinase U/electrode). After drying, the biosensor was immersed in a
glutaraldehyde solution (2%) for 20 minutes and next dried in air at room temperature.
Lastly, the enzyme-immaobilized biosensors were washed with phosphate buffer solution
thrice to remove any unbound enzyme. The biosensor was additionally dried at 10°C
and stored at 4°C.

In this way, previously prepared sensors were also modified by the immobilization
of tyrosinase enzyme, thus resulting in the obtaining of three new biosensors: one only
with carbon (A4), and the others with CoPc (A5) and LuPc2 (A6). Thus obtaining a 6
CPE (bio)sensors array. Additionally one platinum electrode (Pt, A7) was also included

in the array.

2.4.2 Graphite-Epoxy Composite electrodes

Based on previous experience in our laboratories, an array of 6 voltammetric
electrodes were prepared following the conventional graphite-epoxy composite
methodology [20]. Resin EpoTek H77 (Epoxy Technology, Billerica, MA, USA) and its
corresponding hardener compound were mixed in the ratio 20:3 (w/w); afterwards a
15% of graphite (w/w) and a 2% of the modifier (w/w) were added to the previous
mixture before hardening, obtaining the composite. Then, it was manually homogenized
for 60 min, and afterwards, the paste was allowed to harden for 3 days at 80 °C. Finally,
the electrode surface was polished with different sandpapers of decreasing grain size,

with a final electrode area of 28 mm?.



In this manner, an array of 6 different graphite-epoxy voltammetric sensors were
prepared using bare graphite C (B1) and adding different modifiers such as cobalt
phtalocyanine (CoPc, B2), conducting polymers such as polypyrrole (Ppy, B3) and
polyaniline (PANI, B4), and nanoparticles of copper (Cu, B5) and platinum (Pt, B6) to

the bulk mixture — one component per electrode, plus one unmodified electrode.

2.5 Voltammetric measurements
2.5.1 Carbon Paste Electrodes (CPE) sensors

The voltammetric measurements were taken using an EG&G PARC 263A
potentiostat/galvanostat (Echem M270 Software) with a conventional three-electrode
cell. The reference electrode was an Ag|AgCI/KClsm and the counter electrode was a
platinum wire; while Pt, CPEs and chemically modified CPEs (bio)sensors were used as
the working electrodes.

For the recording of cyclic voltammetric measurements, potential was cycled
between -1.0V and +1.0V vs Ag/AgCl (-0.6V and +0.6V for CPE biosensors), with a
scan rate of 100mV-s? and a step potential of 4mV (2.4mV for CPE biosensors), and
starting at OV. After each sample measurement, (bio)sensors were cleaned and
immersed in a KCI 0.1M solution, running some cyclic voltammograms until the

original signal was recovered.

2.5.2 Graphite-Epoxy Composite electrodes

The voltammetric measurement cell was formed by the 6-sensor voltammetric array
and a reference double junction Ag/AgCl electrode (Thermo Orion 900200, Beverly,
MA, USA) plus a commercial platinum counter electrode (Model 52-67, Crison
Instruments, Barcelona, Spain). Cyclic Voltammetry measurements were taken using a
6-channel AUTOLAB PGSTAT20 (Ecochemie, Netherlands), in a multichannel
configuration, using GPES Multichannel 4.7 software package.

Potential was cycled between -1.0V and +1.3V vs Ag/AgCI, with a scan rate of
100mV-s* and a step potential of 9mV. Apart, all experiments were carried out without
performing any physical surface regeneration of the working electrodes. In order to
prevent the accumulative effect of impurities on the working electrode surfaces, an
electrochemical cleaning stage was done between each measurement applying a
conditioning potential of +1.5 V for a duration of 40s after each experiment, in a cell

containing 25mL of distilled water [21].



2.6 Data processing

Chemometric processing was done by specific routines in MATLAB (MathWorks,
Natick, MA) written by the authors, using Neural Network and Wavelet Toolboxes.
Partial Least Squares (PLS) regression was done employing The Unscrambler (CAMO
Software AS, Oslo, Norway) informatics package. Sigmaplot (Systat Software Inc,
California, USA) was used for graphic representations of data and results.

For each sample, one voltammogram was recorded for each sensor from the ET
array. In order to reduce the high dimensionality of the recorded signals (samples x
sensors X potentials), a preprocessing stage to compress the information from the
original signals and extract meaningful data from the readings was required [22]. For
this, two different feature extraction tools were used: “bell-shaped-windowing” curves
called “kernels” [23] and Discrete Wavelet Transform [24].

Then, the obtained coefficients fed the PLS and ANN models which were used for
the quantification of wines antioxidant capacity. Similarly, recognition of samples

patterns and dis(similarities) was attempted by means of PCA analysis.

3. Results and Discussion
3.1 Voltammetric responses

Different voltammetric responses are observed for each kind of sensor, as shown in
Figure 1. Differentiated signals are obtained for each type of sensor used, i.e. showing
its distinctive profile; at the same time, it can be seen how currents increase in
concordance to antioxidant capacity of wines and with different behaviour for each
sensor. Thus, generating very rich data that is very useful as the departure point, where

these signals presumably contribute in different manners for model quantification.

<FIGURE 1>

For developing an ET, the first necessary condition is to have analytical signals
responding to the phenomena to which the objective is aimed, with variability among
them and the different sensors forming the sensor array. However, the high

dimensionality and the extreme complexity of the generated signals (the set of



voltammograms) hinders the processing step; thus requiring of a feature extraction

stage.

3.2 Feature extraction

The main objective of this step was to reduce the complexity of the input signal
while preserving the relevant information; this approach also permits to gain advantages
in modelling time, to avoid redundancy in input data and to obtain a model with better
generalization ability [25]; i.e. to improve model performance.

In our case, feature extraction process was divided into two steps. First, reduction of
the number of sensors that will be used in the modelling stage was attempted by
checking autocorrelation between sensor’s responses and discarding the ones that
presented more similarity or colinearity; afterwards, voltammetric responses of the
selected ones were compressed to reduce its large dimensionality.

In order to quantify response similarities, the correlation coefficient (r) and a
comparison factor named fc that considers the area under both signals when
superimposed were used [24]. Both factors range from O to 1 depending on signals
similarity; it values 0 when two signals have nothing in common and increases its value
as similarity does. In this sense, fc computes similarity in a way related to a correlation
coefficient “r”, but being more sensitive to small differences.

Therefore, the evaluation of sensors autocorrelation will provide a unique numeric
value for each sensor, measuring how similar its signal is to another one. Since for both
parameters signals comparison is done point by point, response similarities were
evaluated separately for the two types of sensors used: CPEs and composites; thus
allowing to discard the modified sensors which do not bring new information to the
system, i.e. discarding redundant sensors.

In this manner, voltammetric signals were unfolded and normalized between -1 and
+1, calculating then proposed parameters, which are summarized in Table 2. As can be
seen, “r” values are higher than fc, presenting little differences in most cases. As
expected, the diagonal of the table is “1” in both cases since it corresponds to the
correlations of each sensor with itself, and it is also symmetric since it is equivalent to
calculate the correlation of “a” and “b” or “b” and “a”. As stated, the higher the
correlation value is, means higher colinearity in their responses; thus, the ones with

lower values will be the ones selected. Specifically, the ones selected were A2 (CoPc),
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A5 (CPETyr) and A6 (CoPcTyr) in the case of CPE (bio)sensors, and the composite
electrodes modified with B3 (Ppy), B5 (Cu) and B6 (Pt).

<TABLE 2>

After optimizing of the number of sensors that will be considered in the modelling
stage, the next step was the compression of their voltammetric signals. In our case this
compression stage was achieved by the use of kernels and DWT. Hence, each
voltammogram was substituted by a number of coefficients (selected from the minimum
allowing a good reconstruction of the original data), accomplishing in this way the data
reduction, without any loss of relevant information.

In the case of kernels functions, only the anodic part of the voltammetric curve was
considered, multiplying it by a number of 10 smooth, bell-shaped-windowing functions,
and integrated with respect to the potential [23]. Using this method, ten parameters per
voltammogram were obtained, meaning a compression ratio up to 98.0% for CPE
(bio)sensors (997 original data points) and 96.1% for composite electrodes (514 original
data points).

Similarly, in the case of DWT, entire voltammetric curve was compressed using
Daubechies wavelet, and two different decomposition levels [24]: seventh for CPE
(bio)sensors and sixth for composite sensors; obtaining 14 coefficients per
voltammogram; i.e. compression ratios of 98.6% and 97.3%, respectively.

Therefore, recapitulating, from the initial set of 13 sensors was optimized into the 6
most significant ones; from those, the corresponding voltammograms were compressed,

and the obtained coefficients were the ones that were fed into the chemometric models.

3.2 Qualitative analysis — detection of wine defects

After feature extraction process, which allowed a significant reduction in the
dimensionality of recorded signals, the corresponding compressed voltammograms were
analyzed by means of PCA. This method allowed to summarize almost all variance
contained in the departure information onto a fewer number of directions (the PCs) with
new coordinates called scores, obtained after data transformation. Despite PCA cannot
be considered as a properly pattern recognition method, as it only provides a visual
representation of the relationships between samples and variables, it is a very useful tool

because it provides insights into how measured variables cause some samples to be
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similar to, or how they differ from each other. Thus, a preliminary recognition was
attained which allowed the visually identification of samples dis(similarities) and

clustering.

<FIGURE 2>

Figure 2 only outlines the score plot obtained in the case of kernel preprocessing
method, as similar information was obtained from DWT. Firstly, it should be noticed
that with only the first two PCs, the accumulated explained variance was ca. 98.9%; a
large value which means that nearly all the variance contained in the original
information is now represented by only these two new coordinates. Secondly, as can be
seen by simply visually analyzing the plot, some clusters are obtained after this
transformation, thus indicating some similarities between those samples.

In this sense, and taking into account results provided by the panel of experts,
patterns in the plot were analyzed. Firstly, it could be seen how S1 samples appear far
away from the rest at the left part of the plot (negative scores of PC1); this could be
explained as those samples correspond to a very oxidized wine (as can also be deducted
from its low TEAC value). Opposed to those, S4 samples, which correspond to a
reduced wine, appear on the other side of the plot (positive scores for PC1); while S3
which corresponds to a slightly oxidised wine, hence appearing in between both.

S8 corresponds to a “Brett wine”, a wine infected by a yeast inducing very
unpleasant mouthfeel. Close to this, it appears S6, a wine with a huge reduction of
mercaptans, inducing a unpleasant smell of rotten eggs to wine. In this sense, the
position of S5 wine samples between those two and S3 (the slightly oxidised wine), can
explain why this wine was discarded by the sensory panel.

Lastly, S7 correspond to a correct wine used as control; thus, expecting that samples
close to it correspond also to wines without any (or with small) defects. A hypothesis in
accordance to the position of S2 and S9 samples. Therefore, the optimized ET array has
proved to be able to assess wines quality and distinguish the ones having specific

defects.

3.1 Quantitative analysis
From the optimized 6-sensor array, the corresponding voltammograms were

compressed, and the obtained coefficients were fed into multivariate calibration models

12



in order to predict the antioxidant capacity of wines. In this sense, two different
methods were evaluated: an ANN as a non-linear data modelling tool and PLS-2 as a
linear one. Those were combined with the two different signal compression strategies
evaluated, resulting in a total of four different models.

After a systematic evaluation of topologies, the final ANNs models had 60 or 84
input neurons (corresponding to the 10 kernel or the 14 wavelet approximation
coefficients obtained from the analysis of each of the 6 sensor signals), 4 neurons and
purelin transfer function in the hidden layer and 3 output neurons and purelin transfer
function in the output layer corresponding to TEAC, FC and l2so indexes.

For the optimization of PLS models only one consideration was taken into account:
the number of latent variables used to build the model. Despite PLS does not need a
preprocessing stage, it was found that better models were obtained when this was
performed [26]. Thus, the final models were a kernel-PLS2 with 3 latent variables,
which has a total explained variance ca. XX.X%; and a DWT-PLS2 with 1 latent
variable, which has a total explained variance ca. XX.X%.

To evaluate models’ performance, and due to the reduced data set, leave-one-out
cross validation method was used. In this manner, each sample is classified by means of
the analysis function derived from the other samples (all cases except the case itself).
This process was repeated k times (as many as samples) leaving out one different
sample each time, the one to be classified, which acts as model validation sample. Thus,
with this approach all samples are used once as validation.

Comparison graphs for each compound and model were built grouping the replicas
for each individual sample, differentiating when it was intervening in the training
process and when used as external test. The predicted indexes were then plotted against
the expected ones and fitted with linear least-squares regression. As an example, the
obtained results for the DWT-ANN model can be seen on Figure 3, where it may be
seen that a satisfactory trend is obtained, with regression lines close to the theoretical

ones.

<FIGURE 3>
<TABLE 2>

In the same way, equivalent plots were built for the other cases (kernel-ANN,

DWT-PLS2 and kernel-PLS2) and regression lines were fitted, which regression

13



parameters are summarized in Table 2. As expected from the comparison graphs, a good
linear trend is attained for all the cases, but as usual in multivariate calibration models,
with better performance for the training subset. Regardless of this, the results obtained
for both subsets are close to the ideal values, with intercepts close to 0 and slopes and
correlation coefficients close to 1; meaning that there are no significant differences
between the values predicted by the multivariate calibration methods and the reference
ones.

Among the good trend obtained in general, best results were obtained with
DWT-ANN model, a fact that can be explained given its superior performance due to its
architecture adaptability and the use of both linear and non-linear functions when

building the model.

4. Conclusions

Electronic tongues have proved to be useful analytical tools able to provide
information for either the organoleptic profile of wines or the simultaneous
quantification of three common indexes used to assess wines antioxidant capacity and
polyphenolic content. In this sense, good correlations have been found with TEAC,
Folin-Ciocalteu and l2s0 indexes, which indicate that the array of sensors presented can
be used as an analytical tool to predict the antioxidant capacity of red wines. In this
sense, proposed approach represents an alternative to classical methods reducing
considerably analysis time (e.g from ca. 30min to ca. 3min in the case of FC index),
avoiding the sample pre-treatment (proper dilution factor, etc.) and the use of reagents
(Trolox, ABTS, Folin-Ciocalteu reagent, etc.); moreover, providing the quantification
of the three indexes (TEAC, FC and l2s0) from only a single measurement.

Combination of different technologies for constructing voltammetric sensors
permitted obtaining an optimized sensor array that yielded best results in both the
qualitative and quantitative applications.

Both, kernels and DWT methods proved to be very efficient in the compression of
voltammetric data, providing similar information as can result from the multivariate
data analysis. By using these methods, instead of the entire voltammetric curve, the
significant information is reduced to a few coefficients with compression ratio up to
XX.X% - XX.X%; with the huge advantage that is the significant reduction of the

computational time and the influence of redundant data in the multivariate data analysis

14



stage. Finally, best results were obtained with the use of ANNs models due to its

superior performance.
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Table 1. Detailed information of the wine samples under study.

Sample Wine description Vintage IE':AC): F(()rlr:gll?clj)e X (artl).zgljni )
S1  Oxidized wine 1999  4.90 2530 57.7
S2  Correct wine, with some evolution 2006 593 2979 61.7
83 Oxidized wine 2006  5.64 2864 62.5
S4  Red wine, reduced state 2010  5.70 2941 63.1
S5  Wine not accepted by sensory panel 2009  6.20 3166 69.5
S6  Wine with certain reduction degree 2010  5.72 2923 69.2
§7  Correct wine (control specimen) 2010  6.90 3705 69.5
S8  Wine with Brett character 2009  6.47 3672 75.2
S9  Highly elaborated wine, with oak 2010  6.46 3390 75.9

Table 2. Selection and removal of redundant sensors; autocorrelation between its

signals.
Composite Paste Electrodes
fo| AL A2 A3 A4 A5 A6 7 r| Al A2 A3 A4 A5 A6 7
Al|l 1 0.697 0.809 0.577 0.086 0.718 0.825 Al|l 1 059 0.758 0.738 0.782 0.815 0.811
A2]10697 1 0564 0.827 0.060 0.501 0.845 A210595 1 0778 0.600 0.746 0.907 0.734
A3]10.809 0564 1 0467 0.106 0.887 0.667 A3]10.758 0.778 1 0.783 0.800 0.867 0.941
A410577 0827 0467 1  0.050 0.414 0.699 A410.738 0.600 0.783 1  0.490 0.664 0.779
A5]0.086 0.060 0.106 0.050 1 0.120 0.071 A5]0.782 0.746 0.800 0490 1 0.887 0.841
A6]0.718 0.501 0.887 0414 0120 1 0.592 A610.815 0.907 0.867 0.664 0.887 1 0.825
7 |10.825 0.845 0.667 0.699 0.071 0592 1 7 10811 0.734 0.941 0.779 0.841 0.825 1
Graphite-Epoxy Composites
fo | BL B2 B3 B4 B5 B6 r | Bl B2 B3 B4 B5 B6
Bl1|] 1 0825 0.831 0.865 0.381 0.558 Bl1| 1 0993 0.993 0878 091 0.919
B2]0825 1 0992 0.713 0.462 0.677 B2]0993 1 0.996 0916 0.929 0.925
B3]0.831 0992 1 0719 0.458 0.672 B3]0.993 0996 1 0.901 0.909 0.909
B4]0.865 0.713 0.719 1 0.329 0.483 B4]0.878 0916 0901 1 0.894 0.82
B5]0.381 0462 0458 0329 1 0.682 B5| 091 0929 0909 0894 1  0.909
B6|0.558 0.677 0.672 0483 0.682 1 B6|0.919 0925 0.909 0.82 0909 1
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of samples and the three considered indexes.

Table 3. Results of the fitted regression lines for the comparison between obtained vs. expected values, both for the training and testing subsets

Training subset

DWT-ANN DWT-PLS2
Correlation Slope Intercept RMSE Total NRMSE Correlation Slope Intercept RMSE Total NRMSE
TEAC (mM) 0.951 0.861  0.825 0.174 0.775 0.601 2.39 0.375
Folin index (mg-L™?) 0.985 0.922 242 66.5 0.070 0.754 0.568 1352 242 0.171
I2g0 index (arb. unit) 0.981 0.940 4.03 1.15 0.951 0.904 6.47 1.83
Testing subset
DWT-ANN DWT-PLS2
Correlation Slope Intercept RMSE Total NRMSE Correlation Slope Intercept RMSE Total NRMSE
TEAC (mM) 0.774 0.747 1.57 0.372 0.368 0.295 4.25 0.500
Folin index (mg-L™?) 0.920 0.868 429 146 0.147 0.401 0.311 2171 321 0.230
I2g0 index (arb. unit) 0.926 0.890 7.12 2.25 0.836 0.658 23.0 2.69
RMSE: Root Mean Square Error; NRMSE: Normalized Root Mean Square Error
Training subset
kernel-ANN kernel-PLS2
Correlation Slope Intercept RMSE Total NRMSE Correlation Slope Intercept RMSE Total NRMSE
TEAC (mM) 0.935 0.756 1.45 0.210 0.944 0972  0.333 0.132
Folin index (mg-L™) 0.951 0.773 708 125 0.103 0.991 0.990 60.5 51.3 0.049
I2g0 index (arb. unit) 0.960 0.821 12.0 1.77 0.989 0.995 0.722 0.613
Testing subset
kernel-ANN kernel-PLS2
Correlation Slope Intercept RMSE Total NRMSE Correlation Slope Intercept RMSE Total NRMSE
TEAC (mM) 0.775 0.761 151 0.380 0.667 0.470 3.16 0.417
Folin index (mg-L™) 0.910 0.871 437 158 0.165 0.861 0.591 1238 203 0.202
I2g0 index (arb. unit) 0.860 0.760 15.8 3.03 0.667 0.490 32.6 4.08

RMSE: Root Mean Square Error; NRMSE: Normalized Root Mean Square Error
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Figure 1. Example of the different voltammograms obtained with the different selected
sensors forming the ET array and for certain arbitrary wine samples. Signals provided
correspond to: (A) CoPC modified CPE, (B) GEC composite, (C) CPE-Tyr biosensor
and (D) polypyrrol modified composite.
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Figure 2. Score plot of the first two components obtained after kernel-PCA analysis of
the considered wine samples.
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Figure 3. Example of the modelling ability of the optimized DWT-ANN showing the
set adjustments of obtained vs. expected indexes for (A) TEAC, (B) Folin-Ciocalteu and
(C) l280. Dashed line corresponds to theoretical diagonal line, while plotted data
correspond to testing subsets (e, solid line).
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