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LIMIT CYCLES BIFURCATING FROM A NON-ISOLATED
ZERO-HOPF EQUILIBRIUM OF THREE-DIMENSIONAL
DIFFERENTIAL SYSTEMS

JAUME LLIBRE AND DONGMEI XIAO

ABSTRACT. In this paper we study the limit cycles bifurcating from a non-
isolated zero-Hopf equilibrium of a differential system in R3. The unfolding
of the vector fields with a non-isolated zero-Hopf equilibrium is a family with
at least three parameters. By using the averaging theory of the second order,
explicit conditions are given for the existence of one or two limit cycles bifur-
cating from such a zero-Hopf equilibrium. To our knowledge, this is the first
result on bifurcations from a non-isolated zero-Hopf equilibrium. This result
is applied to study three-dimensional generalized Lotka-Volterra systems in
[3]. The necessary and sufficient conditions for the existence of a non-isolated
zero-Hopf equilibrium of this system are given, and it is shown that two limit
cycles can be bifurcated from the non-isolated zero-Hopf equilibrium under
a general small perturbation of three-dimensional generalized Lotka-Volterra
systems.

1. INTRODUCTION

Zero-Hopf equilibrium is an equilibrium point of three-dimensional autonomous
differential systems, which has a zero eigenvalue and a pair of purely imaginary
eigenvalues. Usually the zero-Hopf bifurcation is a two-parameter unfolding (or
family) of three-dimensional autonomous differential systems with a zero-Hopf equi-
librium. The unfolding has an isolated equilibrium with a zero eigenvalue and a
pair of purely imaginary eigenvalues if the two parameters take zero values, and
the unfolding has different topological type of dynamics in the small neighborhood
of this isolated equilibrium as the two parameters vary in a small neighborhood of
the origin. This zero-Hopf bifurcation has been studied by Guckenheimer, Holmes,
Scheurle, Marsden, Han and Kuznetsov in [8, 9, 24, 10, 15], and it has been shown
that some complicated invariant sets of the unfolding could be bifurcated from the
isolated zero-Hopf equilibrium under some conditions. Hence, zero-Hopf bifurcation
could imply a local birth of “chaos” (cf. [5, 24]). Recently there are some theo-
retical analysis and numerical simulations which showed that three-dimensional or
four-dimensional generalized Lotka-Volterra systems allow complicated dynamics
such as chaotic behavior (cf. [1, 6, 26, 28] and references therein ). The question
naturally asked if a generalized Lotka-Volterra system can undergo the zero-Hopf
bifurcation. However, we shall see such differential systems can not have an isolated
zero-Hopf equilibrium in the set of all equilibria, but they may have non-isolated
zero-Hopf equilibrium points. In other words, if generalized Lotka-Volterra systems
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have a zero-Hopf equilibrium then it is not isolated in the set of equilibria points
of the generalized Lotka-Volterra system. Under a general small perturbation of a
generalized Lotka-Volterra system with non-isolated zero-Hopf equilibrium, what
dynamics it will happen is a challenge problem since the unfolding of the vector
fields with a non-isolated zero-Hopf equilibrium is at least three parameters family.
In 1973, Arnold in [2] proposed to investigate bifurcations of a three-parameter
family with a zero eigenvalue and a pair of purely imaginary eigenvalues. As far as
we know there are no works on the topic.

In this paper we first consider a three-dimensional polynomial differential sys-
tem of degree two with a non-isolated zero-Hopf equilibrium at the origin. Then we
study bifurcations of the non-isolated zero-Hopf equilibrium under a small perturba-
tion of the polynomial differential system of degree two which keeps the equilibrium
at origin. In the neighborhood of the origin, we reduce this perturbation system to
a 2m-periodic differential system in a kind of cylindrical coordinates and re-scales
variables. Applying the averaging theory of second order to this periodic differen-
tial system, we obtain the explicit conditions for the existence of one or two limit
cycles bifurcating from the non-isolated zero-Hopf equilibrium. To our knowledge,
this is the first result on bifurcations from a non-isolated zero-Hopf equilibrium.

As an application of the main theorem, we consider generalized Lotka- Volterra
systems. It is well-known that n-dimensional generalized Lotka- Volterra systems
are widely used as the first approximation for a community of n interacting species,
each of which would exhibit logistic growth in the absence of other species in pop-
ulation dynamics. And this system is of wide interest in different branches of
science, such as physics, chemistry, biology, evolutionary game theory, economics
and etc.. We refer the reader to the book of Hofbauer and Sigmand [13] for its
applications. The existence of limit cycles (isolated periodic orbits) for these mod-
els is interesting and significant both in mathematics and applications since the
existence of stable limit cycle provided a satisfactory explanation for those species
communities in which populations are observed to oscillate in a rather reproducible
periodic manner (cf. [16, 17, 25] and references therein). To study the bifurcation
of non-isolated zero-Hopf equilibrium in the Lotka-Volterra class, we consider three-
dimensional generalized Lotka-Volterra systems, which describes the interaction of
three species in a constant and homogeneous environment.

3
(1) dzi(t) =z;(t)(b; + Zaz‘jxj(t))’ 1=1,2,3,

dt

where z;(t) is the number of individuals in the i-th population at time ¢ and x;(t) >
0, b; is the intrinsic growth rate of the i-th population, and the a;; are interaction
coefficients measuring the extent to which the j-th species affects the growth rate
of the i-th, b; and a;; are parameters and the values of these parameters are not
very small usually.

Over the last several decades, many researchers have devoted their effort to study
the existence and number of isolated periodic solutions for system (1). There have
been a series of achievements and unprecedented challenges on the theme even if
system (1) is competitive system (cf. [7, 11, 12, 14, 21, 29, 30, 31]). In [3], Bobienski
and Zoladek gave four components of center variety in the three-dimensional Lotka-
Volterra class and studied the existence and number of isolated periodic solutions
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by certain Poincaré-Melnikov integrals of a new type. As far as we know there is no
any results on periodic orbits bifurcating from a non-isolated zero-Hopf equilibrium
of three-dimensional Lotka-Volterra systems. Here we make an analysis on the
whole twelve dimensional parameters space of system (1), and give the necessary
and sufficient conditions for the existence of a non-isolated zero-Hopf equilibrium of
system (1). Hence, the three-dimensional generalized Lotka-Volterra systems with a
non-isolated zero-Hopf equilibrium forms a subspace. We perturbs the subspace in
the space of three-dimensional Lotka-Volterra systems with a positive equilibrium
point, and look for the system arising isolated periodic solutions (i.e. limit cycles).
Because the zero-Hopf equilibrium is not isolated and these parameters are not very
small for such systems, the approach to deal with zero-Hopf bifurcation with two
parameters does not work for system (1). By using our main theorem, we obtain
two limit cycles bifurcating from a three-parameters family of three-dimensional
Lotka-Volterra systems with a non-isolated zero-Hopf equilibrium .

This paper is organized as follows. In section 2 we study bifurcations of poly-
nomial differential systems of degree two in R3 with a small positive parameter ¢.
When ¢ = 0, this system has a continuum of equilibria which fill a segment, or
half-straight line, in which there exists a unique non-isolated zero-Hopf equilibrium
of this system at the origin. When ¢ # 0, this system has a unique equilibrium
at the origin. In a small neighborhood of the origin, we reduce this system to
a 2m-periodic differential system in a kind of cylindrical coordinates and re-scales
variables. Applying the averaging theory of second order to this periodic differential
system, we obtain the explicit conditions for the existence of one or two limit cycles
bifurcating from the non-isolated zero-Hopf equilibrium, see Theorem 4. In section
3 we do a preliminary analysis on the conditions for the existence of a positive
zero-Hopf equilibrium for the Lotka-Volterra system (1) which will be non-isolated
in the set of all equilibria, and we further reduce a normal form for a such non-
isolated zero-Hopf equilibrium under a general perturbation in the Lotka-Volterra
class. A three-parameters example inside the class of the Lotka-Volterra systems is
provided to illustrate these results in the last section.

2. LIMIT CYCLES BIFURCATING FROM A NON-ISOLATED ZERO-HOPF
EQUILIBRIUM

In the section we study polynomial differential systems of degree two in R? with
a small positive parameter € and other bounded parameters. When ¢ = 0, this
system has a continuum of equilibria which fill a segment, or half-straight line, in
which there exists a unique non-isolated zero-Hopf equilibrium at the origin. When
e # 0, this system has a unique equilibrium at the origin and some bifurcations
occur. Limit cycles can be bifurcated from the non-isolated zero-Hopf equilibrium
for this polynomial differential systems of degree two in R?, here a limit cycle means
an isolated non-constant periodic orbit (or closed orbit) in phase space having the
property that its neighboring trajectories are not periodic orbits and they spiral into
it either as time approaches infinity or as time approaches negative infinity. To our
knowledge there is no a general theory for studying the existence and the number of
limit cycles which born from this zero-Hopf equilibrium under a small perturbation.
We will use the second order averaging method to study this problem. It is well
known that the averaging method has been widely used to look for periodic orbits
of differential systems (see [4], [9], [18],[19] and references therein). For reader’s
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convenience, we recall some basic results on the second order averaging method.
The reader is referred to Theorem 3.1 in [4] for details about the following theorem
1.

Consider the differential system
(2) i(t) = eFy(t,z) + 2 Fy(t,x) + 3Q(t, 2, €),

where Fy, Fo: Rx D — R" and Q : Rx D x (—¢g,e9) — R™ are continuous vector
functions and T -periodic in the first variable ¢, here D is an open subset of R™ and
0<eg K 1.

We further assume that Fy(t,-) € CY(D) for all t € R, Fy(t,z), Q(t,z,¢) and
D, F(t,z) are locally Lipschitz with respect to x, and Q(t, z,¢) is differentiable
with respect to e. We define

1 T
Fio(2) :T/ Fi(s, z)ds,
0

(3)

T
Fy(z) :%/0 (D, F1(s,2)y1(s, 2) + Fa(s, 2))ds,

where D, Fi (s, z) is the Jacobian matrix of the derivatives of the components of F}

S
with respect to the components of z, and yi (s, z) = / Fy(t,z)dt. Then
0

(4) 2(t) = eFio(2) + €2 Fao(2),

is called the averaging differential system of second order of (2). The following
lemma shows the relation between the existence of non-degenerated equilibrium
of the averaging differential system (4) and the existence of T-periodic solution of
system (2).

Theorem 1. Suppose that for Dy C D an open and bounded set and for each
e € (—ep,e0) \ {0}, there exists a. € Dy such that

Fio(ae) +eFa(as) =0,

and the Brouwer degree of the function Fyg+eFbsg: Dy — R™ at the fixed point a.
is not zero. Then for sufficiently smalle, 0 < |e| < g9 < 1, there exists a T-periodic
solution ¢(t,e) of system (2) such that ¢(0,¢e) = a.

In Theorem 1, the non-zero Brouwer degree of the function Fjy + €Fbg at the
fixed point a. can usually be verified by a sufficient condition, the Jacobian of the
function Fyg + €F5y at a. is not zero, which implies that a. is a non-degenerated
equilibrium of system (4). Moreover, if Fjg is not identically zero in Dy, then the
zeros of Fyg + eF5y are mainly determined by the zeros of Fjy for e sufficiently
small. In this case Theorem 1 provides the averaging theory of first order. if Fyg is
identically zero and Fyq is not identically zero in Dy, then the zeros of Fig + eFbq
are determined by the zeros of Fyy. In this case Theorem 1 provides the averaging
theory of second order.
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We now consider the following differential system of degree two in R® with an
equilibrium at the origin

daUu
E =uelU — vV + QQQQ(E)U2 + a110(5)UV + a101(6)UW + a020(6)V2
+ a011(€)VW + a002(5)W2,
dV
(5) T =ovU +ueV + bgoo(E)UQ + b110(e)UV + b101(5)UW + bozo(E)VQ
+ 0011 () VW + booz (€)W,
dW

W =W + 6200(5)[]2 + 0110(€)UV + 6101(€)UW + 6020(€)V2
+ 0011(€)VW + 6002(€)W2,

where a;j(€), bijr(e) and c¢;ji(e) for 4,75,k = 0,1,2 are smooth functions with
respect to € at € = 0, u and v > 0 are bounded parameters. Without loss of
generality, we assume that € > 0. By linear algebra we obtain the following result.

Proposition 2. Suppose that e = 0. Then system (5) has a continuum of equilibria
which fill a segment, or half-straight line passing through the origin if and only if

a002(0) = boo2(0) = coo2(0) = 0.
For the sake of convenience we write
aiji(€) =aijro + aijrie + O(g?),
biji(€) =bijro + bijrie + O(e7),
cijk(€) =cijro + cijrie + O(2),
where O(g?) denotes some continuous function with order at least two in €. Assume
that
(Ho) :  aoo20 = boo20 = coo20 = 0.

Then, by proposition 2, we have:

Lemma 3. Assume that € =0 and (Hy) holds. Then system (5) has a continuum
of equilibria which fill a segment, or half-straight line passing through the origin, in
which the origin is a unique non-isolated zero-Hopf equilibrium of system (5).

To study the periodic orbits of system (5) when 0 < e < 1, we introduce a class
of cylindrical coordinates in a small neighborhood of the origin for system (5). Let

(6) U=Rcosf, V=Rsinf, W=RZ, R>0.
This is a topological change of variables in a neighborhood of origin except at the
origin.

Doing the transformation (6), system (5) becomes

% =ueR + R? (agoo(c‘?) cos® 0 + (a110(€) + bago (E)) sin 6 cos? 0

+(a020(€) + br10(€)) sin? @ cos @ + boao (€) sin® 0
+(a101(€) cos? 0 + (a011(€) + b101(€)) sin 6 cos 6 + b011(5) sin? O)Z

+(ago2(g) cos @ + booz () sin 0) Z?) 2 R(0,R, 2),
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do .
— =0+ R (baoo(€) cos® § + (b11o(g) — azoo(e)) sin 6 cos® 6

dt
—|—(b020 (E) — CL110(€)) sin? 6 cos 6 — a020(€) sin® 0
+(b1o1(€) cos? 0 + (bo11(g) — ar01(€)) sin @ cos 6 — ag11 () sin® 0) Z
+(booz(€) cos 0 — agoz(e) sin 6) Z?) 2 O, R, 7),
(7) % =(1 —u)eZ + R (ca00(€) cos® 6 + c110(g) sin 6 cos § + coao(€) sin® @

+(C()11( ) sin 0 + c101 (E) cos ) — bogo (6) sin3 0 — a200 (6) COS3 0
—(a110(€) + bago(e)) sin @ cos?  — (agao(€) + bi1o(e)) sin? O cos 0) Z
(6002 (6) a101( ) COS2 0 — (aou(e) + b101 (E)) sin 8 cos 0

—bo11(e) sin® 0) Z* — (apoz2(€) cos 0 + booz(¢) sin 0) Z?) 2 Z(0,R,Z).
Note that v > 0, which implies that there exists a small neighborhood of (R, Z) =
(0,0) such that ©(0, R, Z) # 0 for all § in this neighborhood. Therefore, we consider
an equivalent system of (7) in this neighborhood of (R, Z) = (0,0) taking 6 as the
new independent variable. Thus we get the system

dR _R(0,R,Z) a

@®) d9  ©(9,R,Z) = RO, & 2),
dZ 7(0,R,7) a
E 7(“)(9,R,Z) - Z(G,R, Z)a

where R(0, R, Z) and Z(0, R, Z) are smooth 2m-periodic functions in the variable
# in a neighborhood of (R, Z) = (0,0).

In order to use the averaging method, we re-scale the variables (R, Z) of system

(8) as follows
=\er, Z=+cz

Then system (8) can be written as in power series of /¢, i.e.

% =VE Ri(0,7,2) + & Ry(0,r,2) + O(e%/?),
9) % :% (c2000 c0s? 0 + ¢1100 cos 0 sin 0 + coago Sin? 0) + Ve Z1(0,r, 2)

+¢e Zy(0,7,2) + O(e%?),
where R;(0,r,z) and Z;(0,r,z) are polynomials in the variables (r,z) with coeffi-
cients 27-periodic functions in the variable 6 for ¢ = 1, 2.
To apply the averaging method for studying system (9), we do the assumption

(H1) : 2000 = €1100 = Co200 = 0.

Under the assumption (Hp), we can obtain the existence of limit cycles from a
non-isolated zero-Hopf equilibrium as follows.

Theorem 4. Assume that (Hy) holds. Then system (5) has a non-isolated zero-
Hopf equilibrium at the origin when € = 0. Moreover, if assumption (Hy) is satis-
fied, then there exists €*, 0 < €* <K 1 such that for any € and 0 < € < €*, system
(5) has e-families of limit cycles bifurcating from the origin. More precisely:
(i) System (5) has one family of limit cycles bifurcating from the origin if one
of the following conditions holds.
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(al) U(B% + BlBQ) < 0,
(b1) w=0 and B3(B? + B1B3) > 0;
( 1) Co201 + c2001 = 0, uB1 < 0 and BQT% + 8’1)(1 — u) 7£ 0;
(dl) a1010 +bo110 = 0, €201 + 2001 # 0, uB1 < 0 and BQT8+8U(1 —u) #0.
(ii) System (5) has two families of limit cycles bifurcating from the origin if
one of the following conditions holds.
(a2) co201 + c2001 = 0, a1010 + bo11o # 0, uBy < 0, By + By < 0, Bord +
8v(l —u) #0 and —By + (B1 + B2)u # 0;
(b2) B3 —256uv?(B}+B1Bs) > 0, u(B?+B1Bs) > 0 and Bs(B?+B1Bs) >
0.

Here rg = /—8uv/B1, and

B1 =ap200a1100 + @1100@2000 + 20020000200 — bo200b1100 — 2a200002000 — b1100b2000,
By =b1100b2000 — @0200a1100 — @1100@2000 — 2@0200b0200 + bo200b1100 + 2a2000b2000

+ 4ag200¢0110 + 4a2000c0110 — 4bo200¢1010 — 4b2000C10105
Bs =16v?(a10100201 + bo110C0201 + @1010¢2001 + bo110C2001) — 8v(B1 + Biu + Bau).
Proof. From Lemma 3 we know that the origin is a non-isolated zero-Hopf equilib-
rium of system (5) when ¢ = 0.

If 0 < e < 1, then we consider system (9) under assumptions (Hp) and (Hy),
which becomes

% =veri(0,r,z) +era(0,r,2) + O(E%)7
(10)

% =ve z1(0,7r,2) + & 22(0,7r,2) + O(sg)7
where

2
T . .
Tl(e, T, Z) 2? (agooo cos® 6 + (Clnoo + bzooo) cos? fsin b + (aozoo + buoo) cos A sin’ 0

+boz0o sin” 6) ,

ro(0,7, 2) :1% (uv + vrz(aioo cos? 0 + ag110 cos Osin @ + big1g cos O sin 6 + boy 10 sin? §)
—12(bapoo cos® 0 — (as000 — bi10o) cos? @sin @ — (a1100 — bozoo) cos O sin? O
—ag200 sin® 0) (a2000 cos® 6 + (a1100 + b2ooo) cos® #sin 6 + (agaoo + b1100)
cos 0 sin” @ + boago sin® 0)) ,

21(0,7,2) = — % (a2000 cos®  — c1010 cos B — co1105in 6 + (a1100 + baooo) cos” O sin 0

—|—(a0200 —+ bllOO) COS 9 SiIl2 9 =+ bozoo sin3 9) s

20(0,1,2) = — viQ ((—v + uw)z — r2%(bapoo €os> 6 — azgoo cos? @ sin @
+b1100 cosZ 0sin @ — aq100 cos 0 sin? 0 + byago cos 0 sin? @ — agago sin® 0)
(761010 cos 6 + a2000 COS3 0 — C0110 sin 6 + a1100 COS2 fsind
+bagoo cosZ sin 0 + agago cos O sin? 6 + by100 cos 0 sin? 6 + byago sin® )
—vr(c2001 cos? 0 + 1101 cos 0 sin 6 + coagq sin? 6 — 22(a1010 cos? 0

+ag110 cos 0sin 6 + byo1o cos O sin 6 + byy1o sin® 9))) .
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Hence system (10) is changed into the normal form with respect to the parameter /¢
for applying the averaging theory. We first consider the averaging differential system
of first order for system (10). According to Theorem 1, by direct computation we
have

27
Fiio(r, z) = / r1(0,7,2)df =0,
0

27
Fiao(r, 2) = / 21(0,7,2)df = 0.
0

It is clear that the first order averaging theory does not provide any information
about system (10). Therefore, we further consider the averaging differential system
of second order for system (10). From formula (3), we obtain that

0
y11(0, 71, 2) =/ ri(s,r, z)ds
0

T2

T 12
+4(a0200 + b1 100) SiIl3 0+ (12000(9 sin 6 + sin 39)) 5

)
y12(0,7, 2) :/ z1(s,r, z)ds
0

(—4(@1100 + bgoo) (=1 + cos® ) + boago (8 — 9 cos @ + cos 36)

rz
=0 (12co110(~1 + cos 6) — 4(a1100 + baooo)(—1 + cos® )

+b0200(8 — 9cos 8 + cos 30) — 12¢1910 sin 0
+4(aoz200 + b1100) sin® 0 + a2000(9 sin 6 + sin 39)) .

And
Faalr:) = [ 07,928 a0, PO 2
:# (B1r? + 8uw + 4v(a1010 + bo110)72)
Fooo(r, 2) = /OQW(yH(H,T, Z)W + y12(0, 7, Z)W + 22(0,7,2))do

1
~ 802 (Bar?z + 8v(1 — u)z + 4vr(co201 + c2001 — (@1010 + bo110)2%)) -

Thus the averaged system of second order of system (10) is

dr r
0 52 (B1r2 + 8uv + 4v(aip10 + bouo)?"Z) )
dz
(11) Fr il (Bor?z + 8v(1 — u)z + 4vr(cozo1 + c2001)

—4vr(ai010 + boi10)z?) -
We divide the study of the zeros of system (11) into three cases.
Case I: cgop1 + c2001 = 0. It can be checked that the following conclusions are true.
(1) System (11) has a non-degenerated equilibrium (rg, z9) = (v/—8uv/Bi,0)
if uB; < 0 and Bar3 + 8v(1 — u) # 0.
(2) System (11) has two non-degenerated equilibria: (rg, z0) = (1/—8uv/Bi,0)

and (’I”l, Zl) = (\/ 78’0/(31 + BQ), 7(BlT'% + 8’11/[})/(4’07‘1 (CLlOlO + b()llg))) if
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a1010 + bo110 75 0, uB; < 0, By + By < 0, BQT% + 81](1 — u) 75 0 and
7B1 —+ (Bl + Bg)’u 7é 0.
Case IT: coop1+c2001 7 0 and a1010+bo110 = 0. Then we obtain that system (11) has
a non-degenerated equilibrium (rg, o) = (v/—8uv/B1, —(4rv(co201 +c2001)/(Bard +
8v(1 —u))), if uB; < 0 and Bar3 + 8v(1 — u) # 0.
Case I1I: ajo10 + bo11o0 # 0 and co201 + 2001 # 0. Then, from Foip(r,z) = 0 and
r > 0, we obtain that Z = —(Byr? + 8uv)/(4(a1010 + bo110)7v). And if the following
equation (B12 + B1B2)r* — Bzr? + 64uv? = 0 has a positive root 7, then system
(11) has an equilibrium (7, Z). Hence we obtain the following conclusions.
System (11) has two non-degenerated equilibria: (71, 21) and (79, Z2) if B3 —
256uv?(B? + B1Ba) > 0, u(Bf + B1Bs) > 0 and B3(B? + By Bs) > 0. Where
1
+ _ ( Bs— VB3 — 256uv?(Bf + B1Bs) o B17? + 8uv
' 2(B} + B1B>) 7 4(a010 + bor10)710’

X Bs + /B2 — 256uv®(B2 + B1By) |~ . B173 + 8uw
To = 22 = — :
2 2(B? + B, By) 7 4(a1010 + bo110)72v

And system (11) has a non-degenerated equilibria (72, Z2) if one of the following
conditions holds:

(a) U(B% + BlBg) <0,

(b) u =0 and B3(B} + B1Bs) > 0.
Applying Theorem 1 to the three cases, the proof of theorem 4 is completed. [

Remark: From the proof of Theorem 4, we can see that the averaging method
of second order is valid if the origin is an isolated zero-Hopf equilibrium of system
(5) as € = 0. That is, under only the assumption (Hz), we can prove that system (5)
bifurcates at most two limit cycles from the zero-Hopf equilibrium doing a similar
proof to the proof of Theorem 4.

3. THE EXISTENCE OF A NON-ISOLATED ZERO-HOPF EQUILIBRIUM FOR
LOTKA-VOLTERRA SYSTEM (1)

In this section we discuss the existence of zero-Hopf equilibrium for the Lotka-
Volterra system (1). It is clear that system (1) always has an equilibrium at (0, 0,0)
which is not zero-Hopf equilibrium for all 12 real parameters b; and a;;. Because of
the biological meaning of z;(t), we consider system (1) in the first octant R?, where
Ry = {z € R: z > 0}. For the sake of convenience, we give the classification of
equilibria for system (1). An equilibrium is called azial if only one of its coordinates
is positive, and planar if precisely two of its coordinates are positive, and positive
if all of its coordinates are positive. An axial equilibrium of system (1) cannot
become the zero-Hopf equilibrium for all real parameters, because it leaves on an
invariant straight-line contained in the intersection of two invariant planes. Here
invariant means it is invariant by the flow of system (1).

We now look for the conditions for the existence of positive equilibria of system
(1), which is equivalent to find the positive solutions of the following system

3
(12) bi+ > ajz;=0, i=1,23
j=1
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Note that equations (12) have finitely many solutions if and only if the determinant
of the matrix A = (a;;)3x3 is not zero (i.e. |A| # 0). Hence system (1) has at most
one positive isolated equilibrium for all parameters if |A| # 0. The following lemma
follows easily using linear algebra.

Lemma 5. Assume that |A| # 0. System (1) has a unique positive equilibrium
(210, 20, T30) if and only if the determinant of matriz B; is not zero (i.e. |B;| # 0)

and |A||B;| < 0 for i = 1,2,3, where x19 = —|B1|/|A|, 20 = —|Ba|/|A]|, x30 =
—|Bs|/|A| and
bi a2 ais ain b1 ais a1 a2 b
B, = by azx ass ,Ba = az1 by ags , B3 = a1 azz by
b3 azz ass azr by ass as1 azz b3

Suppose that the determinant of the matrix A = (a;;)3x3 is zero (i.e. [A| =0).
Then equations (12) has infinitely many positive solutions if there exists a positive
solution of (12). It is not difficult to check that the following lemma is true.

Lemma 6. Assume that |A| =0 and let

air a2 a3 b
Ay = a1 azx agz b
az1 asx asz b3

Then system (1) has infinitely many positive equilibria (210, x20,x30) and these
equilibria are not isolated if and only if one of the following conditions holds.

(i) The rank of both matrices A and Ay is two, and system (1) has at least
a planar equilibrium. In this case there exists a unique either segment, or
half-line, which is filled with positive equilibria of system (1).

(ii) The rank of both matrices A and Ay is one, and system (1) has at least an
axial equilibrium. In this case there exists a unique either a simplicial 2-
complez, or a quarter-plane, which is filled with positive equilibria of system

(1).

In the following we only consider the case that system (1) has at least one
positive equilibrium. Without loss of generality we move the positive equilibrium
(210, 20, 230) to the point (1,1, 1) doing the change of variables

yi= 2L i=1,2,3.
Ti0
3
Note that b; = — Zaijxjo for i = 1,2,3. Then system (1) can be written as
j=1

3
dy; ,
Vi Yi Zflijl“jo(yj -1), i=1,2,3.

(13) 7

j=1
In order to study the dynamics of system (13) in a small neighborhood of the
positive equilibrium (1,1, 1), we compute its Jacobian matrix

11710 a12720 G13T30
M= | a21w10 a0 a23T30
a3110 a32x20 A33T30
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The characteristic equation of system (13) at the equilibrium point (1,1,1) is

(14) N —tr(M)N? +mA — |[M| =0,

where

tr(M) =a11210 + a22220 + a33x30,
m =(a11a22 — a12a21)T10720 + (a11a33 — a13a31)T30710
(15) + (ag2a33 — az3as2)r20730,
|M| =(a12a23a31 — Q13022031 + Q13021032 — 011023032
— 12021033 + A11022033)T10T20730 = |A[T10220230-

Hence equation (14) does not have a zero root if the positive equilibrium of system
(13) is isolated (i.e. |A| # 0). And equation (14) has at least one zero root
if system (13) has a continuum of positive equilibria containing the equilibrium
(1,1,1). We now consider the case that equation (14) has a zero root and a pair of
pure imaginary roots, i.e. when system (13) has a positive zero-Hopf equilibrium.
Some computations allow to obtain the next result.

Lemma 7. System (1) has a positive zero-Hopf equilibrium (10, %20, Z30) if and
only if (210, T20, T30) 18 a non-isolated positive equilibrium of system (1), and tr(M) =
0 and m > 0, where the expressions of tr(M) and m are given in (15).

When tr(M) = 0 and m > 0, if system (1) has a positive zero-Hopf equilibrium,
it has a continuum of positive equilibria. This continuum of positive equilibria fills
a segment or a half-line. Moreover, after some easy computations we obtain the
following result.

Theorem 8. System (1) has a unique positive zero-Hopf equilibrium if and only if
there exist real numbers ki and ko, and at least a pair (i,7), i € {1,2}, j € {1,2,3}
and © # j such that system (1) can be written into the form

d

@ =1y (b21(y1 — 1) + b22(y2 — 1) + b23(y3 - 1))
(16) dt ’

d

% =y3 ((k1b11 + k2b21)(y1 — 1) + (k1b12 + k2ba2)

(y2 — 1) + (k1b13 + kabas)(ys — 1)),
where
biibjj — bijbji # 0,
bi1 + baz + bigks + bagks = 0,
biaba1 — b11baz + k1(b12bas — bi3baz) + k2(b13ba1 — b11b2z) < 0.
Now we shall investigate the normal form of the zero-Hopf equilibrium under a
small perturbation of Lotka-Volterra type.

For doing this study we shall force that the point (1,1,1) is also an equilibrium
of the perturbed system (16) having eigenvalues ¢, eu+vi and eu— vi, where v > 0,
le|] < 1 and w are real parameters. Hence, when € = 0, these eigenvalues are 0, vi
and —wi, which implies that the perturbed system is a small perturbation of the
zero-Hopf equilibrium (1,1,1). Let

A é blS(b21bl3 - b11b23) + b23(b13b22 - b12b23)~
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If A # 0, we consider a perturbed system (16) of the form

d
% =y1 (b11(y1 — 1) + bia(ya — 1) + biz(ys — 1)),
d

(17) % =y (ba1(y1 — 1) + boa(y2 — 1) + baz(yz — 1)),
s 1) +b 1) +b 1
s =y3 (b31(y1 — 1) + bsa(y2 — 1) + bsz(ys — 1)),

where

1
@1=—K(mﬁmwm+wmmwm2+mwwmwm+wm@wm2

—b11°bag — 2b11b12b21b23 — braba1baobog + bizbaiv®
—b11bogv® — bi1bisbaie — bisbaibase + bi1’base
+b12b21baze — 2b11b13ba1ue — 2b13ba1baoue + 2b11 bogue
+2b12b91 bague + bagv?e 4 2b13bogus® — 2b11boguc?
+bi3boru’e® — byybagu®e® + bogu’e®)

3

A 2
= g + 1€ + e’ + a3e”,

1
X (b11b12b13bay + 2b12b13ba1bas + bigbao® — bi1 biobos

bsz =
—b12°ba1b23 — b11b12basbag — biabas”bas + bigbasv?
*17121723112 — b12b13bo1e — b13b222€ + b11b12b23e
+b12b22b235 - 2b12b13b21ue — 2b13b222’u€ + 2b11b12b23’u€
+2b12baobozuc — b13U2€ + 2b13b22u52 — 2b12b23u52
+b13b22’u262 — b12b23’u2€2 — b13U2€3)
A -
2 Bo + Bie + Ba” + B3e?,

b33 = —bi1 — bas + € + 2ue

A
=Y + 7€

It can be checked that the characteristic equation of system (17) at the equilib-
rium point (1, 1,1) has eigenvalues ¢, eu + vi and eu — vi with v > 0.

We move the equilibrium (1,1,1) to the origin, i.e. let z; =y, — 1, 1 = 1,2,3,
then system (17) becomes

dz
7; :(2;1 + 1) (b1121 + biozg + b13Z3) )
dz

18) g = 1) (bazr 4 ooz + baszs),

3 3 1
% =(z3+1) ((Z Ozigi)zl + (Z Bifi)22 + (Z ,yigi)23> -

i=0 =0 =0
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The Jacobian matrix M of system (18) at (0,0,0) has eigenvalues €, eu + vi and
eu — vi with v > 0, where

bi1 bia bis
M = 3621 3b22 1523
dlimou€' YigBie YioviE'
Doing a convenient linear change of variables, the Jacobian matrix M of system
(18) can be written in its real Jordan normal form

ue —v 0
J = v ue 0
0 0 ¢

Indeed, assume that biobosz — b1gbos # 0. Then we consider the change of variables
(21,22, 23) = (U, V,W) given by

U P11 P12 P13 Z1
(19) Vil=|lpa 1 0 Z2 |,

w P31 p32 1 z3
where

1

2
B - 1
p11 v(b12bag — b13(bay — €)) (bzsue + (b1gba1 — by1bo3)(1 +w)e

—b11b13b21 — b13b21 b2 + b112b23 + b12b21b23) )

1
- bi3(bas — ) (bag —
e v(b12ba3 — b13(b22 — €)) (b13(b22 — €)(ba2 — ue)
+b12(b13ba1 — (b1 + baz)bag + bag(1 + w)e)),
1
s :v(b12623 — bi3(byy — €)) (brsbas(biy — baa) + biobos? — 51321,21) 7
1
- brsboy — byybos + b
- v(b12b23 — b13(baz +€)) (brsba1 — bribas + base)

1
P31 =— ¢ (br3ba1 (boa — 2ue) — b11%ba3 + by1 (b13ba1 + 2bozue)
7b23(b12b21 + ’U2 + u252)) ,
1
P32 =y (b12(br3bar — basg (b1 + bog — 2ug)) + b3 (v + (boy — ue)?)) .

When byobag — bigbaz # 0 and |e] < 1, the linear transformation (19) is nonsin-
gular. Thus, in the new variables (U, V, W) system (18) becomes

dU

E =ueU — vV + a200U2 + a110UV + a101UW + a020V2
+ a1 VW + agoa W2,

av 2 2

(20) % =vU + ueV + bQOOU + blloUV + blOlUW + bogov

+ b1 VIV + boga W2,

aw 2 2

a =eW 4 c200U~” 4 110UV + c101UW + co20V

+ o1l VW + cooaW?,
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where the coefficients a;jr, bijr and ¢ for 4,5,k = 0,1,2 are functions of the
parameters b;;, «;, f; and 7, of system (18), and these functions are smooth at
€ = 0, their explicit expressions are too long and we omit them.

From the foregoing we obtain the following result.

Theorem 9. If system (1) has a non-isolated positive zero-Hopf equilibrium (x10, 20, Z30)-
Then system (1) is topologically equivalent to system (16). Furthermore, if A # 0

and byisbay — biobos # 0, then there exists a small perturbation of system (16)

such that the perturbed system has a non-isolated positive zero-Hopf equilibrium at
(1,1,1), which has the normal form (20) with 0 < |e| < 1.

Therefore, we can apply the main result in the previous section to system
(20) and obtain the conclusions on non-isolated zero-Hopf bifurcation for three-
dimensional Lotka-Volterra systems (1). In the next section, we will provide an
example of three-dimensional Lotka-Volterra system to illustrate the conclusions.

4. AN EXAMPLE OF NON-ISOLATED ZERO-HOPF BIFURCATION FOR
THREE-DIMENSIONAL LOTKA-VOLTERRA SYSTEMS

In this section we construct a concrete example of three-dimensional Lotka-
Volterra systems according to Theorem 8 and Theorem 9. It is shown that this
system undergoes non-isolated zero-Hopf bifurcation, and two limit cycles can be
bifurcated from a non-isolated zero-Hopf equilibrium under some conditions.

We consider the following three-parameters Lotka-Volterra system in the first
octant R3 .

d
d—i =z (2v — 2vz — vy + v2),
d
d—i =y (—3v 4+ vz + vy + vz),
21 d
(1) 5 :5% (100° + 10uve® 4 5uve® — 2(100° + 5v’e

+8uv?e + 6uve? + 3utve? + u?e?) + y(—5v° — 2uv’e
—duve® — 2uve® + u’e?) + z(5v® + 5v’e + 10uv’e)) ,

where 0 < e < 1, v > 0 and u are bounded parameters.

When e = 0, there exists a segment [ with endpoints (0,5/2,1/2) and (5/3,0,4/3)
such that each point in [ is a positive equilibrium of system (21), where

3 1 2
l—{(x,y,Z).x—l—&—&y—l 28,2—1+28, 1<s<3}.
It can be checked that there is a unique point (1,1,1) on the segment [, which
is a zero-Hopf equilibrium of system (21). Hence, system (21) has a non-isolated
zero-Hopf equilibrium at (1,1,1) when e = 0. We are interested in studying the
number of limit cycles bifurcating from this non-isolated zero-Hopf equilibrium
when 0 < e < 1.

Doing the change of variables

X=x-1,Y=y—-1, Z=2-1,
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we move the equilibrium (1, 1,1) to the origin and we obtain the system

%:—0(1+X)(2X+Y—Z),
dY
22 Az 1+7
(22) e 5—22 (Z(50® + 5v%e + 10uv’e) — X (10v° + 5v’e

+8uv?e + 6uve? + 3uve? + u?e?) + Y (—50° — 2uv’e

—4uve® — 2uve® + u’e?)) .

The Jacobian matrix of system (22) at (0,0, 0) has eigenvalues €, eu+wvi and eu—vi
with v > 0. To obtain the real Jordan normal form of system (22) at the origin, we
do the linear transformation

Ui P11 D12 D13 X
Wi =1 pa 1 0 Y |,
Wy P31 p32 1 Z

where

ue  10(1 + w)v ue 5v 5v
=3 45Ut — b P =2 — e Py =
pn Fout =+ ovre 0 P12 +72v+€»P13 vt
_ 5v (v +ue)(5v 4 ue) _ ue(—4v + ue)
P21 = ot P31 = 502 ; P32 = T 52

Then in the new variables (Uy, Vi, W1) system (22) becomes

dU-
7151 =uelU; — V] + agoo(E)UIQ + (111()(8)U1‘/1
+ a101 () U1 W1 + aoeo(e) V2 + ao11(e) ViWi + agoa(e) W1,
dVy
(23) W :’UUl + U€V1 + bgoo(&‘)le2 + 5110(€)U1V1
+ 0101 () Ur Wi + bogo () Vi + bo11(€) VAW + booz (€)W,
dW-
Wl =W + c200(e) U + c110(e) Ui Vi + c101 () UL W1

+ co20(8)VE + co11(6)ViW7 + cooa(e) W3,
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where a;;x(¢), z]k(s) and c¢;;,(¢) have the following expressions

)== ;( 3+ 8u) + O(£2), arole) = % += (17+ 18u) + O(e2),

(6) = (6 — 2u)e + O(£?), agao(e) = —10e + O(e? ),

ao11(€) = —3v + (=7 — 6u)e + O(£?), appz(e) = —10e + O(?),
(€)

12 7
baoo(€) = ?6 + 0(g?), biio(e) = —2v+ g +0(?),

2
bio1(e) = —12e 4+ O(e?), boao(e) = 5(—6 + Tu)e + O(£?),
bo11(e) = 6v — & + O(£?), booa(e) = 15 + O(£?),

16ue 56ue
6200(8) = 25 +O(€2), 0110(6) = 25 +O(52),
2 1 16ue
cro1() = 3“ + 2 (7= 4w)s + O(), com(e) = — 215‘ +0(),
4ov 6 22u
6011(6) = *g + (g — T)é’ + 0(82), 0002(8) = -3¢+ 0(82).

It can be checked that system (23) satisfies hypothesis (H;) and (Hz). Hence, by
Theorem 4, we have the following conclusion.

Theorem 10. Suppose that u < 0 and uw # —1/8. Then there exists a small
positive number €* such that for any e, 0 < ¢ < &%, system (23) has two limit

cycles, that when t = 0 are near the points (54/—2ue/vcos,5/—2ue/vsinb,0)
and (5+/e/(4v) cos 0,51/ /(4v) sin 0, — (1 4 8u)+/c/(24v)).
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