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ALGEBRAIC INVARIANT CURVES AND
ALGEBRAIC FIRST INTEGRALS FOR

RICCATI POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We characterize the algebraic invariant curves for the Riccati polyno-
mial differential systems of the form x′ = 1, y′ = a(x)y2 + b(x)y + c(x), where a(x),
b(x) and c(x) are arbitrary polynomials. We also characterize their algebraic first
integrals.

1. Introduction and statement of the main results

One of the more classical problems in the qualitative theory of planar differential
equations depending on parameters is to characterize the existence or not of first
integrals in function of these parameters.

Let x and y be complex variables. We consider the system

(1) x′ = 1, y′ = a(x)y2 + b(x)y + c(x),

where a(x), b(x) and c(x) are C1 functions on x and the prime denotes derivative
with respect to the time t that can be either real or complex. In fact, if a(x)c(x) ̸≡ 0
these systems are called Riccati differential systems, if a(x) ̸≡ 0 and c(x) ≡ 0 they
are a particular case of Bernouilli differential systems, and if a(x) ≡ 0 then they are
linear differential systems.

Differential systems (1) are named after Count Jacobo Francesco Riccati (1676–
1754). These equations have been intensively studied, and hundreds of applications
have been found. Thus looking at MathSciNet there are more than 4000 papers having
in their title the words “Riccati equations”. These equations have been studied in
many books, see for instance [5, 6, 7, 11, 13, 17]. They are important since they can be
used to solve second-order ordinary differential equations. An important application
of the Riccati differential systems is to the 3rd order Schwarzian differential equation
which appears in the theory of conformal mapping and univalent functions, see [12]
for more details and references.

Our interest is on the Riccati polynomial differential systems, i.e. when the func-
tions a(x), b(x) and c(x) are polynomials. More precisely, we want to study the
invariant algebraic curves of the Riccati polynomial differential systems and its al-
gebraic integrability. But this problem has a long history. Thus when the functions
a(x), b(x) and c(x) are rational the irreducible invariant algebraic curves f(x, y) = 0

2010 Mathematics Subject Classification. Primary 34C05, 34A34, 34C14.
Key words and phrases. Algebraic first integrals, algebraic invariant curves, Riccati polynomial

differential equations.
1

This is a preprint of: “Algebraic invariant curves and first integrals for Riccati polynomial differ-
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(f is a polynomial) only can have as polynomial in the variable y degrees 1, 2, 4, 6 and
12, see for more details Kovacic [8] (1986), who provided a constructive algorithm
for finding invariant algebraic curves. In any case before arriving to this nice result
there were many preliminary studies. The first known algorithm for finding invariant
algebraic curves was due to Liouville [9] (1833). Later on Fuchs [3] (1878), and Pépin
[14] (1881) provided also algorithms for finding invariant algebraic curves, see Ulmer
and Weil [16] (1996). Singer in [15] (1979) states that all algorithms of these authors
did not provide a complete description procedure, and the first complete algorithm
was due to Baldassarri and Dwork [1] (1979).

The vector field associated to system (1) is

X =
∂

∂x
+ (a(x)y2 + b(x)y + c(x))

∂

∂y
.

The two main objectives of this paper are to characterize: (i) the algebraic first
integrals, and (ii) the invariant algebraic curves of the Ricatti polynomial differential
systems.

Partial results in this direction were obtained by Żo la̧dek in [18] where the author
characterized the possible algebraic solutions for the Riccati polynomial differential
systems (1) with a(x) = 1 and b(x) = 0.

Let U ⊂ C2 be an open set. We say that the non-constant function H : C2 → C is
a first integral of the polynomial vector field X on U if H(x(t), y(t)) is constant for
all values of t for which the solution (x(t), y(t)) of X is defined on U . Clearly H is a
first integral of X on U if and only if XH = 0 on U .

An algebraic first integral is a first integral which is an algebraic function. An
algebraic function f(x) = C is a solution of

q0(x) + q1(x)C + q2(x)C2 + · · · + qs−1(x)Cs−1 + Cs = 0,

where qj(x) are rational functions of x and s is the smallest positive integer for which
such a relation holds. Of course, all rational functions are algebraic functions.

Theorem 1. The Riccati polynomial differential system (1) has an algebraic first
integral H = H(x, y) if and only if c(x) = κ2a(x), b(x) = 2κa(x) for some κ ∈ C,
and in this case the algebraic first integrals are algebraic functions in the variable
H =

∫
a(x) dx + 1/(y + κ).

For proving Theorem 1 we need to characterize the Darboux polynomials of the
Ricatti polynomial differential systems. Let h = h(x, y) ∈ C[x, y]\C. As usual C[x, y]
denotes the ring of all complex polynomials in the variables x and y. We say that
h = 0 is an invariant algebraic curve of the vector field X associated to the Riccati
polynomial differential system (1) if it satisfies

∂h

∂x
+ (a(x)y2 + b(x)y + c(x))

∂h

∂y
= Kh,

the polynomial K = K(x, y) ∈ C[x, y] is called the cofactor of h = 0 and has degree
at most

max{2 + deg a(x), 1 + deg b(x), deg c(x)} − 1.
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When h = 0 is an invariant algebraic curve we also say that h is a Darboux polynomial
of the Riccati polynomial differential system. Note that a polynomial first integral is
a Darboux polynomial with zero cofactor.

Theorem 2. The following statements hold for the Riccati polynomial differential
systems.

(a) They have no polynomial first integrals.
(b) They have an irreducible Darboux polynomial f with nonzero cofactor K if

and only if c(x) = κ(b(x) − κa(x)) for some κ ∈ C. In this case f = y + κ
and K = b(x) + a(x)(y − κ). If additionally, b(x) = κ1a(x) for some κ1 ∈ C
then:

(b.1) f = y+κ1−κ is another irreducible Darboux polynomial with the nonzero
cofactor K = a(x)(y + κ), if κ1 ̸= κ.

(b.2) f = 1 + (y + κ)
∫

a(x) dx is another irreducible Darboux polynomial with
the nonzero cofactor K = a(x)(y + κ), if κ1 = κ.

The proof of Theorems 1 and 2 are given in Section 2.

Let R[x, y] and C[x, y] be the ring of all real and complex polynomials in the vari-
ables x and y respectively. We note, from Theorem 2, that all complex irreducible
Darboux polynomials in C[x, y] for the complex Riccati polynomial differential sys-
tems have degree 1 in the variable y. While also from Theorem 2 it follows that
all real irreducible Darboux polynomials in R[x, y] for the real Riccati polynomial
differential systems (i.e. when the polynomials a(x), b(x) and c(x) are real) can have
degree 1 or 2 in the variable y. So, there is a big difference between the Riccati
rational differential systems and the Riccati polynomial differential systems, because
as we have mentioned for the rational ones their invariant algebraic curves can have
degrees 1, 2, 4, 6 and 12 in the variable y.

2. Proof of Theorems 1 and 2

We separate the proof of Theorem 2 in several steps.

Lemma 3. Riccati polynomial differential systems (1) have no polynomial first inte-
grals.

Proof. We proceed by contradiction. Let H be a polynomial first integral of system
(1), that is

(2)
∂H

∂x
+ (a(x)y2 + b(x)y + c(x))

∂H

∂y
= 0.

We write H as a polynomial in the variable y, i.e.

H(x, y) =
m∑

j=0

hj(x)yj, where hj(x) is a polynomial in the variable x.

Without loss of generality we can assume that hm(x) ̸= 0.

Computing the coefficient of degree m + 1 in the variable y in (2) we get that

ma(x)hm(x) = 0.
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Since a(x)hm(x) ̸= 0, we must have m = 0. Then H = h0(x). In view of (2) we get
that H satisfies

H ′(x) = 0, that is H(x) ∈ C,

a contradiction with the fact that H is a polynomial first integral. �
The proof of the following proposition is well-known and can be found in [2].

Proposition 4. We suppose that h ∈ C[x, y] and let h = hn1
1 · · · hnr

r be its factoriza-
tion in irreducible factors over C[x, y]. Then for a polynomial system (1) h = 0 is an
invariant algebraic curve with cofactor Kh if and only if hi = 0 is an invariant alge-
braic curve for each i = 1, . . . , r with cofactor Khi

. Moreover K = n1Kh1+· · ·+nrKhr .

In view of Proposition 4 to study the Darboux polynomials with non-zero cofactor
it is enough to study the irreducible ones.

Lemma 5. Let h = h(x, y) be an irreducible Darboux polynomial of the Riccati
polynomial differential system (1) with cofactor K ̸= 0. Then K = K0(x) + ma(x)y
with m a non-negative integer.

Proof. We define the degree n of the Riccati polynomial differential system (1) as

n = max{2 + deg a(x), 1 + deg b(x), deg c(x)}.

We note that n ≥ 2. Then the cofactor K has degree at most n − 1. We write it as
K(x, y) =

∑n−1
j=0 Kj(x)yj, where Kj = Kj(x) is a polynomial in the variable x and

has at most degree n − 1 − j. Since h is a Darboux polynomial of system (1) with
cofactor K it satisfies

(3)
∂h

∂x
+ (a(x)y2 + b(x)y + c(x))

∂h

∂y
=

( n−1∑

j=0

Kj(x)yj

)
h.

We write h as a polynomial in the variable y, i.e. h(x, y) =
∑m

j=0 hj(x)yj, where each

hj(x) is a polynomial in the variable x. Without loss of generality we can assume
that hm(x) ̸= 0.

Assume n ≥ 3. Computing the coefficient of yn+m−1 in (3) we get

0 = Kn−1(x)hm(x) that is Kn−1(x) = 0.

Now proceeding inductively, we can show that for ℓ = n − 1, n − 2, . . . , 3 we have
Kℓ(x) = 0. Therefore, K = K0(x) + yK1(x). So, for n ≥ 2 we have that always the
cofactor of an irreducible Darboux polynomial is of the form K = K0(x) + yK1(x).

Now computing the coefficient of ym+1 in (3) we get

ma(x)hm(x) = hm(x)K1(x),

that is (ma(x) − K1(x))hm(x) = 0. Using that hm(x) ̸= 0 we must have K1(x) =
ma(x) with m a non-negative integer. This completes the proof. �
Proposition 6. The Riccati polynomial differential systems (1) have an irreducible
Darboux polynomial f with nonzero cofactor K if and only if c(x) = κ(b(x) − κa(x))
for some κ ∈ C. In this case f = y + κ and K = b(x) + a(x)(y − κ). If additionally,
b(x) = κ1a(x) for some κ1 ∈ C then:
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(b.1) f = y + κ1 − κ is another irreducible Darboux polynomial with the nonzero
cofactor K = a(x)(y + κ), if κ1 ̸= κ.

(b.2) f = 1 + (y + κ)
∫

a(x) dx is another irreducible Darboux polynomial with the
nonzero cofactor K = a(x)(y + κ), if κ1 = κ.

Proof. We write the Riccati polynomial differential system (1) as the differential
equation

(4)
dy

dx
= a(x)y2 + b(x)y + c(x), y = y(x).

Then, using Lemma 5 the Darboux polynomial h = h(x, y) = h(x, y(x)) satisfies

(5)
dh

dx
=

∂h

∂x
+

∂h

∂y
(a(x)y2 + b(x)y + c(x)) = (K0(x) + ma(x)y)h, m ∈ N

or equivalently

log h = K +

∫
(K0(x) + ma(x)y) dx, where K ∈ C.

Hence

(6) h = h(x, y(x)) = C exp

( ∫
(K0(x) + ma(x)y) dx

)
, C ∈ C \ {0}.

Now we write

(7) a(x)y2 + b(x)y +c(x) = (y +Γ1(x))(a(x)y +Γ2(x)) = (a(x)y +Γ̃1(x))(y +Γ̃2(x)),

where

(8) Γ1(x) =
b(x)

2a(x)
−

√
b(x)2 − 4a(x)c(x)

2a(x)
, Γ2(x) =

b(x)

2
+

√
b(x)2 − 4a(x)c(x)

2
,

and Γ̃1(x) = a(x)Γ1(x), Γ̃2(x) = Γ2(x)/a(x). We consider different cases.

Case 1: Γ1(x) = κ ∈ C. In this case, from (8) we have that

b(x)

2a(x)
−

√
b(x)2 − 4a(x)c(x)

2a(x)
= κ, i.e. b(x) −

√
b(x)2 − 4a(x)c(x) = 2κa(x),

which yields

(9) c(x) = κ(b(x) − κa(x)).

Then, again from (8) we get

Γ2(x) = b(x) − κa(x).

Hence, it follows from (4) and (7) that

dy

dx
= (y + κ)(a(x)y + Γ2(x)), that is a(x)y + Γ2(x) =

dy/dx

y + κ
=

d log(y + κ)

dx
,
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which implies that (6) becomes

h = C exp

(∫
(K0(x) − mΓ2(x) + m(a(x)y + Γ2(x))) dx

)

= C exp

(∫ (
K0(x) − mΓ2(x) + m

d log(y + κ)

dx

)
dx

)

= C(y + κ)m exp

(∫
(K0(x) − mb(x) + ma(x)κ) dx

)

with C ∈ C \ {0}. Since h must be a polynomial and K0(x) is a polynomial, we must
have K0(x) = mb(x)−ma(x)κ and h(x) = C(y+κ)m. Now using that h is irreducible
we get that m = 1 and then f = y+κ and K = K0(x)+ma(x)y = b(x)+a(x)(y−κ).

Now we consider two subcases.

Subcase 1.1: Γ̃2(x) = Γ2(x)/a(x) ̸∈ C. Now using that Γ1(x) = κ (and thus Γ̃1(x) =
a(x)κ), it follows from (4) and the second equation in (7) that

a(x)(y + κ) =
dy/dx

y + Γ̃2(x)
=

d log(y + Γ̃2)

dx
− dΓ̃2/dx

y + Γ̃2(x)
.

Therefore

h = C(y + Γ̃2(x))m exp

(∫
(K0(x) − ma(x)κ) dx

)
exp

(
− m

∫
dΓ̃2/dx

y + Γ̃2(x)
dx

)
,

which is never a polynomial in the variables x and y. Hence in this case there is no
more irreducible Darboux polynomials with non zero cofactor.

Subcase 1.2: Γ̃2(x) = Γ2(x)/a(x) = κ1 ∈ C. In this case Γ2(x) = κ1a(x) ∈ C, that
is, b(x) − κa(x) = κ1a(x), i.e. b(x) = (κ + κ1)a(x), and from (9), we have that
c(x) = κ(b(x) − κa(x)) = κκ1a(x). Therefore since Γ1(x) = κ (and thus Γ̃1(x) =
a(x)κ), it follows from (4) and the second equation in (7) that the Riccati polynomial
differential system is in this case

(10) ẋ = 1, ẏ = a(x)(y + κ)(y + κ1).

We consider two different subcases.

Subcase 1.2.1: κ1 ̸= κ. In this case we have that f = y + κ1 is an irreducible
Darboux polynomial of the Riccati polynomial differential system (see (10)) with
cofactor K = a(x)(y + κ). No we shall prove that it is the only one. We proceed
by contradiction. Assume h = h(x, y) is another irreducible Darboux polynomial of
system (10). Then if we denote by h̄ = h̄(x) the restriction of h to y = −κ, we get
from (5) that h̄ satisfies

dh̄

dx
= (K0 − ma(x)κ)h̄.

Solving this linear differential equation we obtain

(11) h̄ = Ce
∫
(K0−ma(x)κ) dx, C ∈ C.

It is clear that h̄ ̸= 0 otherwise h would be reducible. Hence, since h̄ must be a
polynomial we get K0 = ma(x)κ.
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Furthermore, if we denote by h̃ = h̃(x) the restriction of h to y = −κ1 and recalling

that K0 = ma(x)κ, we get from (5) that h̃ satisfies

dh̃

dx
= ma(x)(κ − κ1)h̃.

Solving this linear differential equation we obtain

h̃ = Ce
∫

ma(x)(κ−κ1) dx, C ∈ C.

It is clear that h̃ ̸= 0 otherwise h would be reducible. Hence, since h̃ must be a
polynomial we get ma(x)(κ − κ1) = 0, which is a contradiction. Hence, the proof of
this case is completed.

Subcase 1.2.2: κ1 = κ. In this case we have that

f = 1 + (y + κ)

∫
a(x) dx

is an irreducible Darboux polynomial of the Riccati polynomial differential system
(see (10)) with cofactor K = a(x)(y + κ). No we shall prove that it is the only one.
We proceed by contradiction. Assume h = h(x, y) is another irreducible Darboux
polynomial of system (10). Then if we denote by h̄ = h̄(x) the restriction of h to
y = −κ, we get from (5) that h̄ satisfies (11). Proceeding as in Subcase 1.2.1 we get
that K0 = ma(x)κ.

Furthermore, if we denote by h̃ = h̃(x) the restriction of h to y = −κ−1/
∫

a(x) dx

and recalling that K0 = ma(x)κ, we get from (5) that h̃ satisfies

dh̃

dx
= − ma(x)∫

a(x) dx
h̃.

Solving this linear differential equation we obtain

h̃ = Ce
∫

− ma(x)∫
a(u) du

dx
, C ∈ C.

It is clear that h̃ ̸= 0 otherwise h would be reducible. Hence, since h̃ must be a

polynomial we get ma(x)∫
a(x) dx

= 0, which is a contradiction. Hence, the proof of this

case is completed.

Case 2: Γ1(x) ̸∈ C and Γ̃2 = Γ2(x)/a(x) = κ ∈ C. In this case, from (8) we have
that

b(x)

2a(x)
+

√
b(x)2 − 4a(x)c(x)

2a(x)
= κ, i.e. b(x) +

√
b(x)2 − 4a(x)c(x) = 2κa(x),

which yields
c(x) = κ(b(x) − κa(x)) and b(x) = 2κa(x),

which is not possible because then we have Γ1(x) = κ ∈ C.

Case 3: Γ1(x) ̸∈ C and Γ̃2 = Γ2(x)/a(x) ̸∈ C. In this case, from (8) we can write

(a(x)y + Γ2(x)) =
dy/dx

y + Γ1(x)
=

d log(y + Γ1)

dx
− dΓ1/dx

y + Γ1(x)
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and analogously,

(a(x)y + Γ̃1(x)) =
dy/dx

y + Γ̃2(x)
=

d log(y + Γ̃2)

dx
− dΓ̃2/dx

y + Γ̃2(x)
.

In the first case, from (6), we have that

h = C(y + Γ1(x))m exp

( ∫
(K1(x) − mΓ2(x)) dx

)
exp

(
− m

∫
dΓ1/dx

y + Γ1(x)
dx

)
,

which is never a polynomial in the variables x and y. In the second case we have

h = C(y + Γ̃2(x))m exp

( ∫
(K1(x) − mΓ̃1(x)) dx

)
exp

(
− m

∫
dΓ̃2/dx

y + Γ̃2(x)
dx

)
,

which again is never a polynomial in the variables x and y. Hence this case is never
possible. This completes the proof of the proposition. �
Proof of Theorem 2. The proof of Theorem 2 is an immediate consequence of Lemma
3 and Proposition 6. �

To prove Theorem 1 we need the following two auxiliary results. For a proof of the
first result see [10] and for a proof of the second one, see [4].

Proposition 7. The existence of a rational first integral for a polynomial differential
system (1) implies either the existence of a polynomial first integral, or the existence
of two Darboux polynomials having the same non–zero cofactor.

Proposition 8. If a polynomial differential system has an algebraic first integral,
then it has a rational first integral.

Proof of Theorem 1. From Proposition 8 to study the algebraic first integrals of the
Riccati polynomial differential system (1) it is enough to study the rational ones.
From Theorem 2 and Proposition 7, system (1) has a rational first integral if and
only if it has two Darboux polynomials with the same non-zero cofactor. In view of
Theorem 2 this is only possible if and only if c(x) = κ(b(x)−κa(x)) and b(x) = κ1a(x),
i.e. b(x) = κ1a(x) and c(x) = κ(κ1 − κ)a(x). We consider two different cases.

Case 1: κ1 ̸= 2κ. In this case the Darboux polynomials are of the form (y + κ)l(y +
κ1 − κ)m, with non-negative integers l and m. By Proposition 4, the cofactor is
a(x)[l(κ1 −κ + y) + m(y + κ)]. Then, using that a(x) ̸= 0, in order to have a rational
first integral we must have

(12) l1(κ1 − κ + y) + m1(y + κ) = l2(κ1 − κ + y) + m2(y + κ),

with l1, l2,m1,m2 non-negative integers, (l21+m2
1)(l

2
2+m2

2) ̸= 0 and (l1,m1) ̸= (l2,m2).

Computing the coefficient of y in (12) we get that

l1 + m1 − l2 − m2 = 0, that is l1 = l2 + m2 − m1.

Introducing it in (12) and after simplifying by a(x), we get

m2(κ1 − 2κ) = m1(κ1 − 2κ),
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which is impossible because by assumptions κ1 ̸= 2κ, and m2 ̸= m1 otherwise
(l1, m1) = (l2,m2) which is not possible. Hence in this case there are no algebraic
first integrals.

Case 1: κ1 = 2κ. In this case b(x) = 2κa(x) and c(x) = κ2a(x), and thus system (1)
becomes

x′ = 1, y′ = a(x)(y2 + 2κy + κ2) = a(x)(y + κ)2,

whose rational first integral H is

H =

∫
a(x) dx +

1

y + κ
=

1 + (y + κ)
∫

a(x) dx

y + κ
.

This completes the proof of the theorem. �

Acknowledgements

The first author is partially supported by the MICINN/FEDER grant MTM2008–
03437, AGAUR grant 2009SGR-410 and ICREA Academia. The second author has
been partially supported by FCT through CAMGDS, Lisbon.

References

[1] F. Baldassarri and B. Dwork, On second order linear differential equations with algebraic
solutions, Amer. J. Math. 101 (1979), 42–76.

[2] C. Christopher and J. Llibre, Integrability via invariant algebraic curves for planar poly-
nomial differential sysetms, Ann. Diff. Equations 16 (2000), 5–19.
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