
h
tt
p
:/
/w
w
w
.g
sd
.u
a
b
.c
a
t

INVERSE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS:

APPLICATIONS TO MECHANICS

JAUME LLIBRE1, RAFAEL RAMÍREZ2 AND NATALIA SADOVSKAIA3

Abstract. This paper is on the so called inverse problem of ordinary differential systems,
i.e. the problem of determining the differential systems satisfying a set of given properties.
More precisely, we characterize under very general assumptions the ordinary differential

systems in RN which have a given set of either M ≤ N , or M > N partial integrals,
or M < N first integrals, or M ≤ N partial and first integrals. Moreover, for such
systems we determine the necessary and sufficient conditions for the existence of N − 1
independent first integrals. For the systems with M < N partial integrals we provide

sufficient conditions for the existence of a first integral.
We give two relevant applications of the solutions of these inverse problems to con-

strained Lagrangian and constrained Hamiltonian systems. Additionally we provide a
particular solution of the inverse problem in dynamics, and give a generalized solution

of the problem of integration of the equation of motion in the classical Suslov problem
on SO(3).

1. Introduction and statement of the main results

In the theory of ordinary differential equations we can find two fundamental problems.
The direct problem which consists in a broad sense in to find the solutions of a given ordinary
differential equation, and the inverse problem. An inverse problem of ordinary differential
equations as it was defined in [17] is to find the more general differential system satisfying
a set of given properties. For instance what are the differential systems in RN having a
given set of invariant hypersurfaces, or of first integrals? The aim of the present paper is to
provide an answer to these questions.

The first inverse problem in such sense was stated by Erugin in [15]. In this article
the author stated and solved the problem of constructing a planar vector field for which
a given curve is its invariant, i.e. formed by trajectories of the vector field. Erugin ideas
were developed in particular in [17]. We observe that such kind of problem has recently
been developed in R2 or C2 mainly restricted to polynomial differential equations (see for
instance [5, 6, 7, 27, 39, 41, 42, 43]).

The aim of the present paper is to characterize under very general assumptions the
ordinary differential systems in RN which have a given set of either M ≤ N , or M > N
partial integrals, or M < N first integrals, or M ≤ N partial and first integrals.

By applying the obtained results we provide a solution of the following two inverse prob-
lems.

(i) For a given natural mechanical system withN degrees of freedom determine the most
general field of force depending only on the position of the system and satisfying
a given set of constraints, i.e. the inverse problem for the constrained Lagrangian
system.

2010 Mathematics Subject Classification. Primary 14P25, 34C05, 34A34.
Key words and phrases. Nonlinear ordinary differential equations, partial integral, first integral, inverse

problem, constrained Lagrangian systems, constrained Hamiltonian systems, nonholonomic system, Nambu
bracket, Suslov problem for the rigid body, Neumann Moser integrable Hamiltonian system, inverse Bertrand
problem, inverse Joukoski problemn, inverse Stäckel problem, nonholonomic Chaplygin system, Chaplygin

Caratheodory sleigh,

1

This is a preprint of: “Inverse Approach in Ordinary Differential Equations: Applications to La-
grangian and Hamiltonian Mechanics”, Jaume Llibre, Rafael Orlando Ramı́rez, Natalia Sadovskaia,
J. Dyn. Diff. Equat., vol. 26, 529–581, 2014.
DOI: [10.1007/s10884-014-9390-1]

10.1007/s10884-014-9390-1
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One of the main objectives in this inverse problem is to study the behavior of the
nonholonomic systems with linear constraints with respect to the velocity in a way
different to the classical approach deduced from the d’Alembert-Lagrange principle.
We shall explain this in more detail in Remark 18.

As a consequence of the solution of the inverse problem for the constrained La-
grangian system we obtain a solution for the inverse problem in dynamics (see
for more details [16]). The first inverse problem in dynamics appeared in Celestial
Mechanics, it was stated and solved by Newton (1687) [32] and concerns with the
determination of the potential field of force that ensures the planetary motion in
accordance to the observed properties, namely the Kepler’s laws.

Bertrand (1877) in [2] proved that the expression for Newton’s force of attraction
can be obtained directly from the Kepler first law. He stated also a more general
problem of determining a positional force, under which a particle describes a conic
section under any initial conditions. Bertrand’s ideas were developed in particular
by [8, 46, 22, 14, 16, 36, 43].

In the modern scientific literature the importance of the inverse problem in Ce-
lestial Mechanics was already recognized by Szebehely (see [48]).

Clearly that in view of the second Newton law, acceleration is equal to force we
obtain that the above inverse problems are equivalent to determine the second order
differential equations from the given properties on the right hand side.

We give a generalized solution of the problem of integration of the equation
of motion in the classical Suslov problem on SO(3). This solution contains as a
particular case the well known integrable cases of this problem.

(ii) For a given submanifold M of a symplectic manifold M we determine the differential
systems having M invariant by their flow, i.e. the inverse problem for constrained
Hamiltonian system.

We determine the equations of motion of a constrained Hamiltonian system in
the following cases: (1) The given properties are l first integrals with dim M/2 ≤
l < dim M. In particular we prove that these equations are Hamiltonian only if the
first integrals are in involution, (2) the given properties are M < dim M/2 partial
integrals. We deduce the differential equations which can be interpreted as a normal
form of the equations of motion of nonholonomic system with in general nonlineal
constraint with respect to the velocity.

Constrained Hamiltonian systems arise in many fields, for instance in multi-body
dynamics or in molecular dynamics. The theory of such systems was mainly devel-
oped by Dirac (see for instance [9]). See general references for constrained dynamics
in [45].

The statements of the inverse problem for constrained Hamiltonian and La-
grangian systems are new.

Now we shall provide the notations and definitions necessary for presenting our main
results.

Let D be an open subset of RN . By definition an autonomous differential system is a
system of the form

(1) ẋ = X(x), x ∈ D,

where the dependent variables x = (x1, . . . , xN ) are real, the independent variable (the time
t) is real and the C1 functions X(x) = (X1(x), ..., XN (x)) are defined in the open set D.

The C1 function g : D −→ R and the set {x ∈ D : g = g(x) = 0} are called partial integral
and invariant hypersurface of the vector field X respectively, if X(g)|g=0 = 0.

The function H = H(x) defined in an open subset D̃1 of D such that its closure coincides
with D is called a first integral if it is constant on the solutions of system (1) contained in

D̃1, i.e. X(H)|D̃1
= 0.
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Let hj = hj(x) for j = 1, 2, . . . ,M with M ≤ N be functions defined in an open subset

D̃ of D. We define the matrix

SM,N =




dh1(∂1) . . . dh1(∂N )
...

...
...

...
dhM (∂1) . . . dhM (∂N )




=




∂1h1 . . . ∂Nh1

...
...

...
...

∂1hM . . . ∂NhM



,

where ∂jh =
∂h

∂xj
and dh =

N∑

j=1

∂jh dxj .

We say that the functions hj for j = 1, . . . ,M ≤ N are independent if the rank of matrix

SM,N is M for all x ∈ D̃, except perhaps in a subset of D̃ of zero Lebesgue measure.
We shall say that the vector field X in D ∈ RN is integrable if it admits N−1 independent

first integrals.
In this paper we present four different kind of results. First we characterize under very

general assumptions the differential systems which have a given set of partial and first
integrals. Second in RN we provide some results on the integrability and on the existence
of a first integral for the differential equations having M < N partial integrals. Finally we
solve the inverse problem in Lagrangian and Hamiltonian mechanics.

For simplicity we shall assume that all the functions which appear in this paper are of
class C∞, although most of the results remain valid under weaker hypotheses.

We define the matrix S = SN,N . We note that S is the Jacobian matrix of the functions
h1, . . . , hN . The Jacobian of S, i.e. the determinant of S, is denoted by

|S| =

∣∣∣∣
∂(h1, . . . , hN )

∂(x1, . . . , xN )

∣∣∣∣ := {h1, . . . , hN}.

This bracket is known in the literature as the Nambu bracket [29, 49, 21]. We provide new
properties of the Nambu bracket in section 2. These properties will play a very important
role in the proofs of the main results.

Our first result characterizes the differential systems (1) having a given set of M partial
integrals with M ≤ N.

Theorem 1. Let gj = gj(x) for j = 1, 2, . . . ,M with M ≤ N be a given set of independent
functions defined in an open set D ⊂ RN . Then the most general differential systems in D
which admit the set of partial integrals gj for j = 1, 2, . . . ,M are

(2) ẋj =
M∑

k=1

Φk
{g1, . . . , gk−1, xj , gk+1, . . . , gN}

{g1, g2, . . . , gN} +
N∑

k=M+1

λk
{g1, . . . , gk−1, xj , gk+1, . . . , gN}

{g1, g2, . . . , gN}

where gM+j = gM+j(x) for j = 1, . . . , N − M, are arbitrary functions defined on D which
we choose in such a way that the Jacobian

(3) |S| = {g1, . . . , gN} ≠ 0,

in the set D and the functions Φj = Φj(x), for j = 1, 2, . . . ,M and λM+k = λM+k(x) for
k = 1, 2, . . . N −M are arbitrary functions such that

(4) Φj |gj=0 = 0, for j = 1, 2, . . . ,M.

Theorem 1 is proved in section 2.
An immediate consequence of Theorem 1 is the next result.

Corollary 2. Under the assumptions of Theorem 1 if M = N, then system (2) takes the
form

(5) ẋj = Φ1
{xj , g2, . . . , gN−1, gN}
{g1, g2, . . . , gN−1, gN} + . . .+ ΦN

{g1, g2, . . . , gN−1, xj}
{g1, g2, . . . , gN−1, gN} ,
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for j = 1, 2, . . . , N.

Our second result determines the differential systems (1) having a given set of M partial
integrals with M > N.

Theorem 3. Let gj = gj(x) for j = 1, 2, . . . ,M > N be a set of functions defined in the
open set D ⊂ RN such that at least N of them are independent at points of the set D, i.e.
without loss of generality we can assume that {g1, . . . , gN} ̸= 0 in D. Then the most general
differential systems in D which admit the partial integrals gj for j = 1, 2, . . . ,M are

(6) ẋj =
M+N∑

j1,...,jN−1=1

Gj1,...,jN−1
{gj1 , . . . , gjN−1

, xj},

for j = 1, 2, . . . , N, where Gj1,...,jN−1 = Gj1,...,jN−1(x) are arbitrary functions satisfying

(7) ġj |gj=0 =




M+N∑

j1,...,jN−1=1

Gj1,...,jN−1{gj1 , . . . , gjN−1 , gj}



∣∣∣∣∣∣
gj=0

= 0,

for j = 1, 2, . . . ,M, and gM+j = xj for j = 1, 2, . . . , N.

Theorem 3 is proved in section 2.
Our third result characterizes the differential systems (1) having a given set of M1 partial

integrals and M2 first integrals with 1 ≤ M2 < N and M1 +M2 ≤ N.

Theorem 4. Let gl = gl(x) for l = 1, 2, . . . ,M1 and fk = fk(x) for k = 1, 2, . . . ,M2 < N
with M1 +M2 = M ≤ N be independent functions defined in the open set D ⊂ RN . Then the
most general differential systems in D which admit the partial integrals gl for j = 1, . . . ,M1

and the first integrals fk for k = 1, . . . ,M2 are

(8)

ẋj =

M1∑

k=1

Φk
{g1, . . . , gk−1, xj , gk+1, . . . , gM1

, f1, . . . , fM2
, gM+1 . . . gN}

{g1, g2, . . . gM1 , f1, . . . , fM2 , gM+1, . . . , gN} +

N∑

k=M+1

λk
{g1, . . . , gM1 , f1, . . . , fM2 , gM+1, . . . , gk−1, xj , gk+1, . . . , gN}

{g1, . . . , gM1 , f1, . . . , fM2 , gM+1, gM+2, . . . , gN} ,

for j = 1, 2, . . . , N, where gM+j for j = 1, . . . , N −M are arbitrary functions satisfying that
|S| = {g1, . . . gM1 , f1, . . . , fM2 , gM+1, . . . , gN} ̸= 0 in the set D where cj for j = 1, . . . ,M2

are arbitrary constants; the functions Φl = Φl(x), for l = 1, 2, . . .M1 and λM+k = λM+k(x)
for k = 1, 2, . . . N −M are arbitrary functions such that Φl|gl=0 = 0 for l = 1, . . . ,M1.

Theorem 4 is proved in section 3.
Two results which follow easily from the proof of Theorem 4 are:

Corollary 5. Under the assumptions of Theorem 4 but without partial integrals, i.e. if
M1 = 0, and M2 = M < N, then the most general differential systems in D which admit
the first integrals fk for k = 1, . . . ,M2 are

(9) ẋj =
N∑

k=M+1

λk
{f1, . . . , fM , gM+1, . . . , gk−1, xj , gk+1, . . . , gN}
{g1, . . . , gM1 , f1, . . . , fM2 , gM+1, gM+2, . . . , gN} ,

for j = 1, 2, . . . , N, where gM+j for j = 1, . . . , N −M are arbitrary functions satisfying that
|S| = {f1, . . . , fM , gM+1, . . . , gN−1, gN} ̸= 0 in the set D.

Corollary 6. Under the assumptions of Theorem 4 and if M1 + M2 = M = N , then the
differential system (8) takes the form

(10) ẋj =

M1∑

k=1

Φk
{g1, . . . , gk−1, xj , gk+1, . . . , gM1 , f1, . . . , fM2}

{g1, g2, . . . gM1 , f1, . . . , fM2}
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for j = 1, 2, . . . , N.

In the next result we provide a new proof of the classical result which states that a differ-
ential system in an open subset of RN having N − 2 first integrals and with zero divergence
is integrable by quadratures. In fact this result goes back to Jacobi and Whittaker, see for
more details on this result the book [20].

Theorem 7. Under the assumptions of Corollary 5 for M2 = N − 2 and determining the
functions gN−1, gN , λN−1, λN and µ satisfying

(11) {f1, . . . fN−2, µλN−1, gN} + {f1, . . . fN−2, gN−1, µλN} = 0,

where µ = µ(x) =
U

{f1, . . . , fN−2, gN−1, gN} for a convenient function U, then the solutions

of the differential equation

(12) ẋj = λN−2
{f1, . . . , fN−2, xj , gN}

{f1, . . . , fN−2, gN−1, gN} + λN
{f1, . . . , fN−2, gN−1, xj}
{f1, . . . , fN−2, gN−1, gN} = Xj(x),

for j = 1, 2, . . . , N, can be computed by quadratures. Moreover (11) is the divergence of
systems (12).

Theorem 7 is proved in section 4.
In what follows we present five new results on the integrability of systems (2), (6), (8),

(9) and (10).

Theorem 8. Under the assumptions of Theorem 1 differential system (2) is integrable if
and only if Φl = µ{F1, . . . , FN−1, gl}, λk = µ{F1, . . . , FN−1, gk} for l = 1, . . . ,M and
k = M+1, . . . , N, where µ, F1, . . . , FN−1 are arbitrary functions such that F1, . . . , FN−1 are
independent in D and µ{F1, . . . , FN−1, gl}|gl=0 = 0.

The following results are proved in a similar way to the proof of Theorem 8.

Theorem 9. Under the assumptions of Theorem 3 differential system (6) is integrable if
and only if

Φl =
M+N∑

α1,...,αN−1=1

Gα1,...,αN−1
{gα1

, . . . , gαN−1
, gl} = µ{F1, . . . , FN−1, gl},

for l = 1, . . . ,M > N , where µ, F1, . . . , FN−1 are arbitrary functions such that F1, . . . , FN−1

are independent in D and µ{F1, . . . , FN−1, gl}|gl=0 = 0.

Theorem 10. Under the assumptions of Theorem 4 differential system (8) is integrable if
and only if Φl = µ{F1, . . . , FN−1, gl}, λk = µ{F1, . . . , FN−1, gk}, for l = 1, . . . ,M1 and
k = M+1, . . . , N, where µ, F1, . . . , FN−1 are arbitrary functions such that F1, . . . , FN−1 are
independent in D and µ{F1, . . . , FN−1, gl}|gl=0 = 0.

Corollary 11. Under the assumptions of Corollary 5 differential system (9) is integrable
if and only if λk = µ{F1, . . . , FN−1, gk}, for k = M + 1, . . . , N where µ, F1, . . . , FN−1 are
arbitrary functions such that F1, . . . , FN−1 are independent in D.

Corollary 12. Under the assumptions of Corollary 6 differential system (10) is integrable
if and only if Φl = µ{F1, . . . , FN−1, gl}, where µ, F1, . . . , FN−1 are arbitrary functions,
F1, . . . , FN−1 independent in D and µ{F1, . . . , FN−1, gl}|gl=0 = 0.

In the next result we provide sufficient conditions for the existence of a first integral of
the differential system (2).
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Theorem 13. Suppose that we are under the assumptions of Theorem 1, and that in the
differential system (2) we choose

(13)

λM+1 = L0gM+1 + L1g,

λM+2 = L0gM+2 + L1gM+1 + L2g,

...
...

λN = L0gN + L1gN−1 + . . .+ LN−Mg,

with L0 =
M∑

j=1

Φjτj
gj

, where g =
M∏

j=1

|gj |τj ,and τj for j = 1, 2, . . .M are constants, and

L1, . . . LN−M are functions satisfying that

(14)

N−M∑

j=0

νjLj = 0,

for convenient constants νj for j = 0, 1, . . . ,M.

Let G = (G1, G2, . . . , GN−M )
T

=

(
gM+1

g
,
gM+2

g
, . . .

gN

g

)T

and

B =




1 0 0 0 . . . 0 0
G1 1 0 0 . . . 0 0
G2 G1 1 0 . . . 0 0
G3 G2 G1 1 . . . 0 0
...

...
...

... . . .
...

...

GN−M−2 GN−M−3 GN−M−4

... . . . 1 0

GN−M−1 GN−M−2 GN−M−3

... . . . G1 1




be. Then there exists a function R = (R1, . . . , RN−M )T satisfying R =

∫
B−1dG, being

dG = (dG1, dG2, . . . , dGN−M )
T

where dGk denotes the differential of Gk for k = 1, 2, . . . N.
Then

(15) F = |g|ν0 exp




N−M∑

j=1

νjRj


 ,

is a first integral of system (2).

Theorem 13 is proved in section 5.
Such first integral already was obtained in [37]. We observe that these kind of first

integrals appear also in the study of the invariant algebraic hypersurfaces with multiplicity
of a polynomial vector field, see [4, 28], and for more details on the functions Rj see the
proof of Theorem 13.

2. Applications to Lagrangian and Hamiltonian mechanics with constraints

As we observe from the previous section the solutions of the inverse problem in ordinary
differential equations have a very hight arbitrariness due to the undetermined functions
which appear. To obtain more exactly solutions need additional conditions to reduce this
arbitrariness. In this section we shall obtain additional conditions for getting the equations
of motion provided by the Lagrangian and Hamiltonian constrained mechanics. The aim of
this section is to solve the inverse problem in Lagrangian and Hamiltonian system.
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2.1. Inverse problem for constrained Lagrangian systems. Using Theorem 1 we will
be able to provide an answer to the problems (i).

We shall introduce the notations and definitions that we need for presenting our applica-
tions.

We shall denote by Q an N-dimensional smooth manifold and by TQ the tangent bun-
dle of Q with local coordinates x = (x1, . . . , xN ), and (x, ẋ) = (x1, . . . , xN , ẋ1, . . . , ẋN )
respectively (see for instance [19]).

The following definitions can be found in [1].

A Lagrangian system is a pair (Q, L̃) consisting of a smooth manifold Q, a function

L̃ : TQ −→ R. The point x ∈ Q denotes the position of the system and we call each tangent
vector ẋ ∈ TxQ the velocity of the system at the point x. A pair (x, ẋ) is called a state
of the system. In Lagrangian mechanics it is usual to call Q, the configuration space, the
tangent bundle TQ is called the phase space, L̃ is the Lagrange function or Lagrangian and
the dimension N of Q is the number of degrees of freedom.

The equations

(16) hj = hj(x, ẋ) = 0, for j = 1, . . . ,M ≤ N,

with rank

(
∂(h1, . . . , hM )

∂(ẋ1, . . . , ẋN )

)
= M, in all the points of Q, except in a zero Lebesgue measure

set, define M independent constraints for the Lagrangian systems (Q, L̃), i.e. we want that
the orbits (x(t), ẋ(t)) of the mechanical system satisfy (16).

Let M∗ be the submanifold of TQ defined by the equations (16), i.e.

M∗ = {(x, ẋ) ∈ TQ : hj(x, ẋ) = 0, for j = 1, . . . ,M ≤ N}
A constrained Lagrangian system is a triplet (Q, L̃,M∗).

We call the inverse problem for the constrained Lagrangian system the problem of deter-
mining for a given constrained Lagrangian system (Q, L̃,M∗), the field of force F = F(x) =
(F1(x), . . . , FN (x)) in such a way that the given submanifold M∗ is invariant by the flow of
the second order differential equations

d

dt

(
∂L̃

∂ẋj

)
− ∂L̃

∂xj
= Fj(x) for j = 1, . . . , N.

We shall study the case when the constraints are linear in the velocities in M∗, i.e.

(17) hj(x, ẋ) =
N∑

k=1

ajk(x)ẋk + αj(x) = 0, for j = 1, . . . ,M.

Our first main result provides the equations of motion of a constrained mechanical system
with Lagrangian function

(18) L̃ = T =
1

2

N∑

n,j=1

Gjn(x)ẋj ẋn :=
1

2
⟨ẋ, ẋ⟩ =

1

2
||ẋ||2,

where T is a Riemannian metric on Q (the kinetic energy of the system), and M = N linear
constraints given by

(19) gj =
N∑

n=1

Gjn(x) (ẋn − vn(x)) = 0 for j = 1, . . . , N,

where v(x) = (v1(x), . . . , vN (x)) is a given vector field.

Theorem 14. Let Σ be a constrained Lagrangian mechanical system with configuration
space Q, kinetic energy T given in (18), and constraints given by (19). The equations of
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motion of Σ are the Lagrangian differential equations

(20)
d

dt

(
∂L

∂ẋj

)
− ∂L

∂xj
= 0 for j = 1, . . . , N,

with L =
1

2
||ẋ − v||2 = T − ⟨ẋ, v⟩ +

1

2
||v||2, which are equivalently to

(21)

d

dt

(
∂T

∂ẋj

)
− ∂T

∂xj
=

∂

∂xj

(
1

2
||v||2

)
+

N∑

n=1

ẋn

(
∂pj

∂xn
− ∂pn

∂xj

)

=
∂

∂xj

(
1

2
||v||2

)
+

N∑

n=1

vn

(
∂pj

∂xn
− ∂pn

∂xj

)
,

where

(22) pj =
N∑

n=1

Gjnvn, for j = 1, 2, . . . , N.

In view of the second Newton law: acceleration is equal to force (see for instance [44]),
we obtain that the right hand side of the equations of motion (21) are the generalized forces
acting on the mechanical system which depends only on its position. Consequently the field
of force F with components

(23) Fj =
∂

∂xj

(
1

2
||v||2

)
+

N∑

n=1

vn

(
∂pj

∂xn
− ∂pn

∂xj

)

is the most general field of force depending only on the position of the natural mechanical
system which is constrained to move on the N dimensional subset of the phase space given
by (19) In short the equations of motion (21) provide a complete answer to the inverse
problem (i) when the constraints are given in the form (19).

Now we want to solve the inverse problem (i) for the classical constraints

(24)
N∑

n=1

ajn(x)ẋn = 0 for j = 1, . . . ,M.

We recall that the equations of motion of a constrained Lagrangian system with La-

grangian L̃ =
1

2
||ẋ||2 − U(x), and constrains given by (24) but with a field of forces

F̃ = (F̃1, . . . , F̃N ) depending on positions and velocities are the Lagrange equations with
multipliers

(25)

d

dt

(
∂T

∂ẋk

)
− ∂T

∂xk
= F̃k(x, ẋ) = − ∂U

∂xk
+

M∑

j=1

µjajk, for k = 1, . . . , N,

N∑

n=1

ajn(x)ẋn = 0, for j = 1, . . . ,M,

where µj = µj(x, ẋ) are the Lagrangian multipliers. As we can observe the forces F̃ are

composed by the potential forces with components − ∂U

∂xk
and the reactive forces generated

by constraints with components
M∑

j=1

µjajk for k = 1, . . . , N. For more details see [1].

In short we have two equations of motions: the ones given in (20), or what is the same
(21) for constraints of type (19), and the classical ones given in (25) for the constraints
(24). In order to solve the problem (i) for the constraints (24) we establish the relationship
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between these two sets of equations. For doing this we shall choose conveniently the vector
field v which appear in (19).

In view of that the constraints (19) are equivalently to the constraints ẋj = vj(x) for

j = 1, . . . , N. On the other hand from (24) we obtain that ⟨aj , v⟩ =
N∑

n=1

ajnvn = 0, thus v

must be orthogonal to the independent vectors aj = (aj1, . . . , ajN ) for j = 1, . . . ,M. So we
introduce the N independent 1-forms, the first M of these 1-forms are associated to the M
constraints (24), i.e.

(26) Ωj =
N∑

n=1

ajn(x)dxn for j = 1, . . . ,M,

and we choose the 1-forms Ωj for j = M + 1, . . . , N arbitrarily, but satisfying that the
determinant |Υ| of the matrix Υ = (ajk) :

(27) Υ =




Ω1(∂1) . . . Ω1(∂N )
...

...
...

ΩN (∂1) . . . ΩN (∂N )


 =




a11 . . . aN1

...
...

...
aN1 . . . aNN


 ,

is nonzero. The ideal case would be when this determinant is constant. In other words the
N 1-forms Ωj for j = 1, . . . , N are independent. Now we define the vector field v as

(28) v = − 1

|Υ|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω1(∂1) . . . Ω1(∂N ) 0
...

...
...

...
ΩM (∂1) . . . ΩM (∂N ) 0

ΩM+1(∂1) . . . ΩM+1(∂N ) νM+1

...
...

...
...

ΩN (∂1) . . . ΩN (∂N ) νN

∂1 . . . ∂N 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
⟨
Υ−1P, ∂x

⟩
,

where P = (0, . . . , 0, νM+1, . . . , νN )
T
, the functions νj = νj(x) are nonzero arbitrary func-

tions due to the arbitrariness of Ωj for j = M + 1, . . . , N.

Proposition 15. The vector field (28) is the most general vector field satisfying the con-
straints (24), i.e. Ωj(v) = 0 for j = 1, . . . ,M, where the Ωj are given in (26).

We define

(29) Λ = Λ(x) = (Λ1(x), . . . ,ΛN (x))
T

= (ΥT )−1Hv(x) = AP,

where A = (Ajk) is an N ×N antisymmetric matrix such that

(30) A =
(
ΥT
)−1

HΥ−1, H = (Hjn) =

(
∂pn

∂xj
− ∂pj

∂xn

)
.

Theorem 16. Let Σ be a constrained Lagrangian mechanical system with configuration space
Q, kinetic energy T given in (18), and constraints given by (19) with v = (v1, . . . , vN )T :
given by (28).

The equations of motion of Σ are

(31)
d

dt

(
∂T

∂ẋj

)
− ∂T

∂xj
= Fj(x) =

∂

∂xj

(
1

2
||v||2

)
+

M∑

k=1

Λkakj ,

for j = 1, . . . , N, where the Λk’s are defined in (29) with

(32) Λk =
M∑

j=1

Akjνj = 0 for k = M + 1, . . . , N.
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Remark 17. Equations (32) define a system of the first order partial differential equations
with unknown functions νM+1, . . . , νN (see (28), (30) and (32)).

We observe that equations (32) can be rewritten as follows

(33) Ãb = 0 with b = (νM+1, . . . , νN )T ,

where Ã is an (N − M) × (N − M) antisymmetric matrix. Thus if N − M is even then,
from (28), it follows that the vector b is nonzero, consequently the determinant of the matrix

|Ã| = µ2
N,M must be zero, i.e. µN,M = 0. If N −M is odd then |Ã| is always zero. If in this

case rank(Ã) = r, then without loss of generality we can assume that (32) takes the form

(34)

N∑

j=M+1

Akjνj = 0 for k = M + 1, . . . ,M + r.

In particular for M = 1, N = 3, M = 2, N = 4 we obtain respectively

(35)

µ3,1 = a1H23 + a2H31 + a3H12 = 0,

µ4,2 = (α42α31 − α32α41)H12 + (α41α22 − α21α42)H13+

(α21α32 − α31α22)H14 + (α42α11 − α12α41)H23+

(α12α31 − α32α11)H24 + (α22α11 − α12α21)H34 = 0.

Remark 18. Equations (31) can be interpreted as the equations of motion of the constrained

Lagrangian system with Lagrangian L̃ = T +
1

2
||v||2 and constraints (24). The field of force

with components

(36) Fj(x) =
∂

∂xj

(
1

2
||v||2

)
+

M∑

k=1

Λkakj ,

for j = 1, . . . , N, has the same structure than the field of forces determine in (25), but there
are three important differences. First the potential and reactive components in (36) are re-
lated through the vector field v (which itself is determined by the constraints), while in (25)the

potential U is completely independent of the reactive forces with components
M∑

k=1

µkakj . Sec-

ond the multipliers Λ1, . . . ,ΛM in (36) depend only on the position of the mechanical system,
while in (25) the Lagrangian multipliers µj depends on the position and velocity, and finally
system (31) was deduced from Lagrangian differential system (20), while system (25) in
general has no relations with the Lagrangian equations.

In the applications of Theorem 16 we will determine the functions νM+1, . . . , νN as solu-
tions of (32) together with the condition

(37) U = −1

2
||v||2 + h,

where h is a constant. Under the potential (37) we obtain that between the fields of force

F̃ given in (25) and F given in (36) the only difference consists in the coefficients which
determine the reactive forces.

The following two questions arises: There exist solutions of equations (32) and (37) in
such a way that the solutions of the differential system

(38)
d

dt

(
∂T

∂ẋj

)
− ∂T

∂xj
= − ∂U

∂xj
+

M∑

k=1

Λkakj ,

for j = 1, . . . , N, where the Λk’s are defined in (29), coincide with the solutions of (25)?
If the answer to the previous question is always positive, then there are equations of

motion with field of forces only depending on the positions (31) equivalent to the Lagrangian
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equations of motions with constraints (25). In short, we would have a new model to describe
the behavior of the mechanical systems with linear constraints with respect to the velocity.

The second question is: What is the mechanical meaning of the differential equations
generated by the vector field (28), i.e.

(39) ẋ = v(x) = Υ−1P,

under the conditions (32) and of the differential equations

(40)
d

dt

(
∂T

∂ẋj

)
− ∂T

∂xj
=
∂

1

2
||v||2

∂xj
+

M∑

k=1

µkakj ?

Partial answer to theses questions are given in the examples of section 8.

Now we consider a mechanical system with configuration space Q of the dimension N
and kinetic energy T given by (18). The problem of determining the most general field of
force depending only on the position of the system, for which the curves defined by

(41) fj = fj(x) = cj ∈ R for j = 1, . . . ,N − 1,

are formed by orbits of the mechanical system, is called as the generalized Dainelli‘s inverse
problem in dynamics. If we assume that the given family of curves (41) admits the family
of orthogonal hypersurfaces S = S(x) = cN , then this problem is called the generalized
Dainelli Joukovski’s inverse problem.

If the field of force is potential in the generalized Dainelli inverse problems, then such
problems coincide with the Suslov’s inverse problem, or the inverse problem in Celestial
Mechanics and generalized Dainelli Joukovski’s inverse problem coincide with the Joukovski
problem (for more details see [43]).

The solutions of the generalized Dainelli’s problem for N = 2, and of the Joukovski’s
problems for N = 2, 3 can be found in [50, 8, 22, 16]. A complete solution of the Suslov
problem can be found in [46], but this solution in general is complicate to implement.

The following result provides a solution of these inverse problems.

Theorem 19. Under the assumptions of Theorem 16 if the given M = N − 1 1-forms (26)
are closed, i.e. Ωj = dfj for j = 1, . . . , N − 1, then the following statements hold.

(a) System (31) takes the form

(42)
d

dt

(
∂T

∂ẋj

)
− ∂T

∂xj
=

∂

∂xj

(
1

2
||v||2

)
+ νN

N−1∑

k=1

ANk
∂fk

∂ xj
=: Fj ,

for j = 1, . . . , N, where νN = νN (x) is an arbitrary function. Clearly Fj are the
components of the most general field of force that depends only on the position under
which a given N − 1 parametric family of curves (41) can be described as orbits of
the mechanical system.

(b) If

(43) νN

N−1∑

k=1

ANk
∂fk

∂ xj
= − ∂h

∂ xj
,

for j = 1, . . . , N − 1, where h = h(f1, . . . , fN−1), then the family of curves (41) can
be freely described by a mechanical system under the influence of forces derived from

the potential function V = −U =
1

2
||v||2 − h(f1, . . . , fN−1).

(c) If we assume that the given family of curves (41) admits the family of orthogonal
hypersurface S = S(x) = cN defined by

(44)

⟨
∂S

∂x
,
∂fj

∂x

⟩
= 0 for j = 1, . . . , N − 1,
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then the most general field of force that depends only on the position of the system
under which the given family of curves are formed by orbits of (42) is

(45) F =
∂

∂x

(
ν√
2

∥∥∥∥
∂S

∂x

∥∥∥∥
)2

+

⟨
∂

∂x

(
ν2

2

)
,
∂S

∂x

⟩
∂S

∂x
−
∥∥∥∥
∂S

∂x

∥∥∥∥
2
∂

∂x

(
ν2

2

)
,

where ν = ν(x) is an arbitrary function on Q. If we choose ν and h = h(f1, . . . , fN−1)
satisfying the first order partial differential equation

(46)

⟨
∂

∂x

(
ν2

2

)
,
∂S

∂x

⟩
∂S

∂x
−
∥∥∥∥
∂S

∂x

∥∥∥∥
2
∂

∂x

(
ν2

2

)
= −∂h

∂x
,

then the field of force F is given by the potential

(47) V =
ν2

2

∥∥∥∥
∂S

∂x

∥∥∥∥
2

− h(f1, . . . , fN−1).

If (41) is such that fj = xj = cj for j = 1, . . . , N − 1 then (47) takes the form

(48) V =
ν2|G̃|
2∆

(
∂S

∂xN

)2

− h(x1, . . . , xN−1).

where G̃ = (G̃nm) is the inverse matrix of the matrix G and

∆ =

∣∣∣∣∣∣∣

G̃11 . . . G̃1,N−1

... . . .
...

G̃1,N−1 . . . G̃N−1,N−1

∣∣∣∣∣∣∣
.

Clearly (46) holds in particular if ν = ν(S) and h is a constant.

(d) Under the assumption (b) we have that

∫

gt
v(γ)

σ = const., where σ = ⟨v, dx⟩ is the

1-form associated to vector field v, gt
v is the flow of v, and γ is an arbitrary closed

curve on Q.

We note that statement (a) of Theorem 19 provides the answer to the generalized Dainelli’s
inverse problem, which before was only solved for N = 2 by Dainelli. Statement (b) of The-
orem 19 gives a simpler solution to the Suslov’s inverse problem, already solved by the
same Suslov. Statement (c) of Theorem 19 provides the answer to the generalized Dainelli-
Joukovski’s problem solved by Joukovski for the case when the field of force is potential and
N = 2, 3. Finally statement (d) of Theorem 19 is the well known Thomson’s Theorem (see
[26]) in our context.

Theorems 14, 16 and Proposition 15 are proved in section 8. Theorem 19 is proved in
section 10.

2.2. Inverse problem for constrained Hamiltonian systems. In this section we shall
apply Theorems 1 and 4, Corollaries 5 and 6 to solve the problem (ii) of the introduction.

Now we consider M a 2N -dimensional smooth manifold with local coordinates (x,y) =
(x1, . . . , xN , y1, . . . , yN ) , and let Ω2 be a closed non-degenerate 2-form, i.e. (M, Ω2) is a
symplectic manifold, H : M −→ R a smooth function, and M a submanifold of M. The
quaternary (M,Ω2,M, H) is called constrained Hamiltonian system (see [1]).

We call the inverse problem for constrained Hamiltonian systems, the problem of the
determination of the vector field W with components (W1, . . . ,W2N ) with Wj = Wj(x,y)
in such a way that the submanifold M is invariant by the flow of the differential system

(49) ẋk = {H, xk}∗ +Wk, ẏk = {H, yk}∗ +WN+k, for k = 1, . . . , N,
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where

(50) {H, G}∗ =
N∑

k=1

(
∂H

∂yk

∂G

∂xk
− ∂H

∂xk

∂G

∂yk

)
,

is the Poisson bracket.
In particular if Wk = 0 for k = 1, . . . , N, then (49) coincides with the standard Hamil-

tonian equations for a mechanical system which are under the action of the external forces
with components WN+1, . . . ,W2N .

Theorem 20. Let (M,Ω2,M1, H) be a constrained Hamiltonian system and let fj =
fj(x,y) for j = 1, . . . , N be a given set of independent functions defined in M. Assume
that {f1, . . . , fN , x1, . . . , xN} ̸= 0, in M, then the manifold

M1 = {(x,y) ∈ M : fj(x,y) = cj ∈ R for j = 1, . . . , N} ,
where cj for j = 1, . . . , N are arbitrary constants, is invariant by the flow of differential
system

(51)

ẋk = {H, xk}∗,

ẏk = {H, yk}∗ −
N∑

j=1

{H, fj}∗{f1, . . . , fj−1, yk, fj+1, . . . fN , x1, . . . , xN}
{f1, . . . , fN , x1, . . . , xN}

= {H, yk}∗ +Wk+N ,

for k = 1, . . . , N .
Under the assumptions

(52) {f1, . . . , fN , x1, . . . , xN} = 0 and {f1, . . . , fN , x1, . . . , xN−1, y1} ̸= 0,

the submanifold M1 is invariant by the flow of the differential system

(53)

ẋk = {H, xk}∗, for k = 1, . . . , N − 1,

ẋN = {H, xN}∗−
N∑

j=1

{H, fj}∗{f1, . . . , fj−1, xN , fj+1, . . . , fN , x1, . . . , xN−1, y1}
{f1, . . . , fN , x1, . . . , xN−1, y1}

= {H, xN}∗ +WN ,

ẏ1 = {H, y1}∗ + λ{f1, . . . , fN , x1, . . . , xN−1, y1}
= {H, y1}∗ +W1+N ,

ẏk = {H, yk}∗−
N∑

j=1

{H, fj}∗{f1, . . . , fj−1, yk, fj+1, . . . fN , x1, . . . , xN−1, y1}
{f1, . . . , fN , x1, . . . , xN−1, y1}

+

λ{f1, . . . , fN , x1, . . . , xN−1, yk}
= {H, yk}∗ +Wk+N , for k = 2, . . . , N,

where λ = λ (x,y) is an arbitrary function.

We observe that the solution (51) of the inverse problem in constrained Hamiltonian sys-
tems for the case when the first integrals are pairwise in involution, and H = H(f1, . . . , fN )
becomes into the Hamiltonian system ẋk = {H, xk}∗, ẏk = {H, yk}∗. Additionally sys-
tem (53), when the first integrals are pairwise in involution satisfying (52) and H =
H(f1, . . . , fN ), becomes into the differential system

ẋk = {H, xk}∗, ẏk = {H, yk}∗ + λ{f1, . . . , fN , x1, . . . , xN−1, yk},
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for k = 1, . . . , N. These equations are the equations of motion of the mechanical system with
the constraints {f1, . . . , fN , x1, . . . , xN} = 0.

Theorem 21. Let (M,Ω2,M̃1, H) be a constrained Hamiltonian system and let fj =
fj(x,y) for j = 1, . . . , N + r, with r < N be a given set of independent functions defined in
M and such that {f1, . . . , fN+r, x1, . . . , xN−r} ≠ 0. Then the manifold

M̃1 = {(x,y) ∈ M : fj(x,y) = cj ∈ R for j = 1, . . . , N + r} ,
where cj are arbitrary constants, is invariant by the flow of the differential system

(54)

ẋk = {H, xk}∗,

ẋn = {H, xn}∗ −
N+r∑

j=1

{H, fj}∗{f1, . . . , fj−1, xn, fj+1, . . . , fN+r, x1, . . . , xN−r}
{f1, . . . , fN+r, x1, . . . , xN−r}

= {H, xn}∗ +Wn,

ẏm = {H, ym}∗ −
N+r∑

j=1

{H, fj}∗{f1, . . . , fj−1, ym, fj+1, . . . , fN+r, x1, . . . , xN−r}
{f1, . . . , fN+r, x1, . . . , xN−r}

= {H, ym}∗ +Wm+N ,

for k = 1, . . . , N − r, n = N − r + 1, . . . , N, m = 1, . . . , N.

Remark 22. With respect to Theorems 20 and 21 we observe the following. If we assume
that {f1, . . . , fN , x1, . . . , xN} ̸= 0, in M, and H = H(f1, . . . , fN ) then the system of equa-
tions fj(x,y) = cj , for j = 1, . . . , N can be solved locally with respect to y, (momenta)
i.e. yj = uj(x, c), for j = 1, . . . , N where c = (c1, . . . , cN ). If the given first integrals are

pairwise in involution, i.e. {fj , fk} = 0, then
N∑

j=1

uj(x, c)dxj = dS(x). Consequently from

the Liouville theorem:

Theorem 23. If a Hamiltonian system has N independent first integrals in involution,
which can be solved with respect to the momenta, then its motion can be obtained with
quadratures, that is, the equation of motion can be solved simply by evaluating integrals.

We obtain that the Hamiltonian system ẋk = {H, xk}∗, ẏk = {H, yk}∗, for k = 1, . . . , N
is integrable by quadratures (for more details see [26].

In general the given set of first integrals is not necessarily in involution. The solution of
the inverse problem in constrained Hamiltonian system shows that in this case the differential
equations which have as invariant the submanifold M1 is in general not Hamiltonian. The
origin of the theory on noncommutative integration is the Nekhoroshevs Theorem (see [30]).
The following result holds (see [26]).

Theorem 24. If a Hamiltonian system with N degrees of freedom has N + r independent
first integrals fj for j = 1, . . . , N + r, such that the f1, . . . , fN−r first integrals are in
involution with all integrals f1, . . . , fN+r. Then the Hamiltonian system is integrable by
quadratures.

If f1, f2, . . . , fN−r are the first integrals which are in involution with all the first inte-
grals and H = H(f1, f2, . . . , fN−r), then the differential system (54) is Hamiltonian and is
integrable by quadratures.

Theorem 25. Let (M,Ω2,M2, H) be a constrained Hamiltonian system and let gj : M −→
R for j = 1, . . . ,M < N be given independent functions in M, where

M2 = {(x,y) ∈ M : gj(x,y) = 0 for j = 1, . . . ,M < N},
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We choose the arbitrary functions gm for m = M + 1, . . . , 2N in such a way that the
determinant {g1, . . . , gM , gM+1, . . . , g2N} ≠ 0 in M.

We shall study only the case when {g1, . . . , gM , gM+1, . . . , gN , x1, . . . , xN} ≠ 0. Then the
submanifold M2 is an invariant manifold by the flow of the differential system

(55)

ẋk = {H, xk}∗,

ẏk = {H, yk}∗+

M∑

j=1

(Φj − {H, gj}∗) {g1, . . . , gj−1, yk, gj+1, g2M , g2M+1, . . . , gN , x1, . . . , xN}
{g1, . . . , gN , x1, . . . , xN} +

N∑

j=M+1

(λj − {H, gj}∗){g1, . . . , g2M+1, . . . , gj−1, yk, gj+1, . . . gN , x1, . . . , xN}
{g1, . . . , gN , x1, . . . , xN}

= {H, yk}∗ +Wk+N ,

for k = 1, . . . , N, where λj for j = M + 1, . . . , N, and Φj are arbitrary functions satisfying
Φj |gj=0 = 0 for j = 1, . . . ,M.

We observe that equations (55) on the submanifold M2 when the arbitrary functions λk

are λk = {H, gk}∗ become

(56)

ẋj = {H,xj}∗,
ẏj = {H, yj}∗+

−
M∑

k=1

({H, gk}∗)
{g1, . . . , gk−1, yj , gk+1, . . . , gN1 , . . . , gN , x1, . . . , xN}

{g1, . . . , gN , x1, . . . , xN} ,

for j = 1, . . . , N. This system can be interpreted as the equations of motion of the con-
strained mechanical system with Hamiltonian H under the action of the external forces
with components

Wj+N = −
M∑

k=1

{H, gk}∗ {g1, . . . , gk−1, yj , gk+1, . . . , gN1 , . . . , gN , x1, . . . , xN}
{g1, . . . , gN , x1, . . . , xN} ,

generated by the constraints gj = 0 for j = 1, . . . ,M.
Theorem 20, 21 and 25 are proved in section 11.

3. Preliminaries and new properties of the Nambu bracket

The Nambu bracket

∣∣∣∣
∂(h1, . . . , hN )

∂(x1, . . . , xN )

∣∣∣∣ := {h1, . . . , hN} was proposed by Nambu to gen-

eralize Hamiltonian mechanics. This skew symmetric bracket satisfies the Leibniz rule and
the fundamental identity

(57)

0 = F (f1 . . . , fN−1, g1 . . . , gN ) :=

N∑

n=1

{g1, . . . , gn−1, {f1 . . . , fN−1, gn}, gn+1, . . . , gN} − {f1 . . . , fN−1, {g1 . . . , gN}},

where f1, f2, . . . , fN−1, g1, . . . , gN are arbitrary functions. For more details see [29, 49, 21].
In this section we show new properties of this bracket which we will use in the proofs and

in the applications of the results stated in the two previous sections.
We shall need the next result:
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Proposition 26. The following identities hold

(58)

N∑

j=1

∂f

∂xj
{g1, . . . , gk−1, xj , gk+1, . . . , gN} = {g1, . . . , gk−1, f, gk+1 . . . , gN},

∂f

∂xk
= {x1, . . . , xk−1, f, xk+1, . . . , xN},

Kj :=
N∑

j=1

∂

∂xj
{g1, . . . , gk−1, xj , gk+1 . . . , gN} = 0,

for k = 1, 2, . . . , N and

(59)

∂f1
∂xN

∣∣∣∣
∂ (G, f2, . . . , fN )

∂ (y1, . . . , yN )

∣∣∣∣+ . . .+
∂fN

∂xN

∣∣∣∣
∂ (f1, . . . , fN−1, G)

∂ (y1, . . . , yN )

∣∣∣∣

=
∂G

∂y1

∣∣∣∣
∂ (f1, . . . , fN )

∂ (xN , y2, . . . , yN )

∣∣∣∣+ . . .+
∂G

∂yN

∣∣∣∣
∂ (f1, . . . , fN )

∂ (y1, . . . , yN−1, xN )

∣∣∣∣ .

Here the functions g1, . . . , gN , f1, . . . , fN , G and f are arbitrary.

Proof. The proof of the first relation is the following

{g1, . . . , gk−1, f, gk+1 . . . , gN} =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂1g1 . . . ∂Ng1
...

...
∂1gk−1 . . . ∂Ngk−1

∂1f . . . ∂Nf
∂1gk+1 . . . ∂Ngk+1

...
...

∂1gN . . . ∂NgN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= ∂1f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂1g1 . . . ∂Ng1
...

...
∂1gk−1 . . . ∂Ngk−1

1 0 . . .
∂1gk+1 . . . ∂Ngk+1

...
...

∂1gN . . . ∂NgN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ . . .+ ∂Nf

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂1g1 . . . ∂Ng1
...

...
∂1gk−1 . . . ∂Ngk−1

0 . . . 1
∂1gk+1 . . . ∂Ngk+1

...
...

∂1gN . . . ∂NgN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= {g1, . . . , gk−1, x1, gk+1, . . . , gN}∂1f + . . .+ {g1, . . . , gk−1, xN , gk+1, . . . , gN}∂Nf.

The proof of the second relation follows easily from the definition of the Nambu bracket.
The proof of the third relation is the following. Taking in the second identity of (58)
f = {g1, . . . , gk−1, xj , gk+1 . . . , gN} we obtain

Kj :=
N∑

j=1

{x1, . . . , xj−1, {g1, . . . , gk−1, xj , gk+1, . . . , gN}, xj+1, . . . , xN}.

By using the fundamental identity (57) we get

Kj = {g1, . . . , gk−1, gk+1, . . . , gn, {x1, . . . , xj−1, xj , xj+1, . . . , xN}} = 0,

because {x1, . . . , xj−1, xj , xj+1, . . . , xN} = 1. We observe that this identity can be proved
by applying only the properties of the determinants, but this proof is long.
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The proof of (59) is easy to obtain by considering that the value of determinant
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂y1

. . .
∂f1
∂yN

∂f1
∂xN

... . . .
...

...
∂fN

∂y1
. . .

∂fN

∂yN

∂fN

∂xN

∂G

∂y1
. . .

∂G

∂yN
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

can be obtained by developing by the last row or, what is the same by the last column. �

Proposition 27. The Nambu bracket satisfy the identities
(60)

0 = Ω (f1 . . . , fN−1, g1 . . . , gN , G) :=

N∑

n=1

{f1, . . . , fN−1, gn}{g1, . . . , gn−1, G, gn+1, . . . , gN} − {f1 . . . , fN−1, G}{g1 . . . , gN},

0 = Fλ (f1 . . . , fN−1, g1 . . . , gN ) :=

N∑

n=1

{g1, . . . , gn−1, λ{f1 . . . , fN−1, gn}, gn+1, . . . , gN} − {f1 . . . , fN−1, λ{g1 . . . , gN}},

for arbitrary functions f1, . . . , fN−1, G, g1, . . . , gN , λ.

Note that the second identity is a generalization of the fundamental identity (57) which
is obtained when λ = 1.

Proof. Indeed, using the first property of (58) we obtain the first identity (see for instance
[43])

Ω (f1 . . . , fN−1, g1 . . . , gN , G) =

∣∣∣∣∣∣∣∣∣

dg1(∂1) . . . dg1(∂N ) {f1, . . . , fN−1, g1}
... . . .

...
...

dgN (∂1) . . . dgN (∂N ) {f1, . . . , fN−1, gN}
dG(∂1) . . . dG(∂N ) {f1, . . . , fN−1, G}

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dg1(∂1) . . . dg1(∂N )

N∑

j=1

{f1, . . . , fN−1, xj}dg1(∂j)

... . . .
...

...

dgN (∂1) . . . dgN (∂N )

N∑

j=1

{f1, . . . , fN−1, xj}dgN (∂j)

dG(∂1) . . . dG(∂N )

N∑

j=1

{f1, . . . , fN−1, xj}dG(∂j)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
N∑

j=1

{f1, . . . , fN−1, xj}

∣∣∣∣∣∣∣∣∣

dg1(∂1) . . . dg1(∂N ) dg1(∂j)
... . . .

...
...

dgN (∂1) . . . dgN (∂N ) dgN (∂j)
dG(∂1) . . . dG(∂N ) dG(∂j)

∣∣∣∣∣∣∣∣∣
= 0.

This proves the first identity.
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The proof of the second identity is as follows. Taking G = xj in the first identity of (60)
we obtain

λΩ(f1, . . . , fN−1, g1, . . . , gN , xj) :=

λ{f1, . . . , fN−1, g1}{xj , g2, . . . , gN} + . . .+ λ{f1, . . . , fN−1, gN}{g1, . . . , gN−1, xj}
. . .− λ{f1, . . . , fN−1, xj}{g1, . . . , gN} = 0.

Using the third identity of (58), from the last expression we have

0 =
N∑

j=1

∂

∂xj
(λΩ(f1, . . . , fN−1, g1, . . . , gN , xj)) =

N∑

j=1

{xj , g2, . . . , gN} ∂

∂xj
(λ{f1, . . . , fN−1, g1}) + . . .

+

N∑

j=1

(
{g1, g2, . . . , gN−1, xj}

∂

∂xj
(λ{f1, . . . , fN−1, gN}) −

{f1, . . . , fN−1, xj}
∂

∂xj
(λ{g1, . . . , gN})

)
.

Now using the first identity of (58), the previous expression becomes

0 = {λ{f1, . . . , fN−1, g1}, g2, . . . , gN} + . . .+ {g1, g2, . . . , gN−1, λ{f1, . . . , fN−1, gN}} . . .
−{f1, . . . , fN−1, λ{g1, . . . , gN}} = Fλ (f1, . . . , fN−1, g1, . . . , gN ) .

This complete the proof of the second identity. �

Remark 28. We note that the second identity of (60) has obtained from the first identity
of (60). So, in some sense the first identity of (60) is more basic. In fact, from the proof
of the second identity of (60) we obtain

Fλ (f1, . . . , fN−1, g1, . . . , gN ) =
N∑

j=1

∂

∂xj
(λΩ(f1, . . . , fN−1, g1, . . . , gN , xj)) .

Now we establish the relationship between the Nambu bracket and the classical Poisson
bracket. We suppose that N = 2n, and xj = xj and xj+n = yj for j = 1, . . . , n.

Proposition 29. Between the Poisson bracket and the Nambu bracket there are the following
equalities

(61)

n∑

j=1

{H, f, x1 . . . , xj−1, xj+1, . . . , xn, y1, . . . , yj−1, yj+1, . . . , yn} = {H, f}∗,

2n∑

j=1

{H, fj}∗{f1, . . . , fj−1, G, fj+1, . . . , f2n} = {H,G}∗{f1, . . . , f2n}.
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Proof. The first equality it is easy to obtain by using the definition of the Nambu bracket.
The second equality follows in view of the identity Ω (f1 . . . , fN−1, g1 . . . , gN , G) = 0. Indeed,

2n∑

k=1

{H, fk}∗{f1, . . . , fk−1, G, fk+1, . . . , f2n}

=
2n∑

k=1

( n∑

j=1

{H, fk, x1 . . . , xj−1, xj+1, . . . , xn, y1, . . . , yj−1, yj+1, . . . , yn}·

{f1, . . . , fk−1, G, fk+1, . . . , f2n}
)

=

n∑

j=1

( 2n∑

k=1

{H, fk, x1 . . . , xj−1, xj+1, . . . , xn, y1, . . . , yj−1, yj+1, . . . , yn}·

{f1, . . . , fk−1, G, fk+1, . . . , f2n}
)

=

n∑

j=1

{H,G, x1 . . . , xj−1, xj+1, . . . , xn, y1, . . . , yj−1, yj+1, . . . , yn}{f1, . . . , f2n}

= {H,G}∗{f1, . . . , f2n}.

�

4. Proof of Theorems 1 and 3

In this section we construct the most general autonomous differential system on D ⊂ RN

having the set of invariant hypersurfaces gj = 0 for j = 1, 2, . . . ,M, with M ≤ N, and
M > N.

Proof of Theorem 1. We consider the vector field

(62)

X = − 1

{g1, . . . , gN}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dg1(∂1) . . . dg1(∂N ) Φ1

dg2(∂1) . . . dg2(∂N ) Φ2

...
...

...
...

dgM (∂1) . . . dgM (∂N ) ΦM

dgM+1(∂1) . . . dgM+1(∂N ) λM+1

...
...

...
...

dgN (∂1) . . . dgN (∂N ) λN

∂1 . . . ∂N 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
N∑

k,j=1

SjkPj

|S| ∂k =
⟨
S−1P, ∂x

⟩
,

where Sjk for k, j = 1, . . . , N is the determinant of the adjoint of the matrix S after
removing the row j and the column k (see (3)), S−1 is the inverse matrix of S, and

P = (P1, . . . , PN )T = (Φ1, . . . ,ΦM , λM+1, . . . , λN )
T
. From (62) it is easy to obtain the



20 J. LLIBRE, R. RAMÍREZ AND N. SADOVSKAIA

relationship

(63)

X(gj) = Φ1
{gj , g2, . . . , gN}
{g1, g2, . . . , gN} + . . .+ ΦM

{g1, . . . , gM−1, gj , gM+1, . . . , gN}
{g1, . . . , gM−1, gM , gM+1, . . . , gN}+

λM+1
{g1, . . . , gM , gj , gM+2, . . . , gN}

{g1, . . . , gM , gM+1, gM+2, . . . , gN} + . . .+ λN
{g1, . . . , gN−1, gj}
{g1, . . . , gN−1, gN}

=

{
Φj for 1 ≤ j ≤ M

λj otherwise.

Thus

(64) X(gj) = Φj , X(gM+k) = λM+k,

for j = 1, 2, . . .M, and k = 1, . . . , N −M. In view of assumption Φj |gj=0 = 0 we obtain that
the gj = 0 for j = 1, 2, . . .M are invariant hypersurfaces of the vector field X.

The vector field X already was used in [43, 37]. Note that it is well defined in view of
assumption (3).

Now we shall prove that system (2) is the most general differential system which admits

the given set of independent partial integrals. Indeed let ẋ = X̃(x) be another differential

system having g1, g2, ..., gM as partial integrals, i.e. X̃(gj)|gj=0 = 0 for j = 1, 2, . . . ,M.
Then taking

Φj = X̃(gj) =
N∑

l=1

X̃l∂lgj =
N∑

l=1

X̃l{x1, . . . , xl−1, gj , xl+1, . . . , xN},

for j = 1, 2, ..,M, and

λM+k = X̃(gM+k) =
N∑

l=1

X̃l∂lgM+k =
N∑

l=1

X̃l{x1, . . . , xl−1, gM+k, xl+1, . . . , xN},

for k = 1, . . . , N − M, (here we use the second identity of (58)) and substituting Φj and
λM+k into formula (62) we get for arbitrary function F

X(F ) =
N∑

l=1

Φj
{g1, . . . , gj−1, F, gj+1 . . . , gM , . . . , gN}

{g1, g2, . . . , gN} +

N∑

j=M+1

λM+j
{g1, . . . , gM , gM+1, . . . , gj−1, F, gj+1 . . . , gN}

{g1, g2, . . . , gN}

=
N∑

j=1

N∑

l=1

X̃l{x1, . . . , xl−1, gj , xl+1, . . . , xN}{g1, . . . , gj−1, F, gj+1, . . . , gN}
{g1, g2, . . . , gN}

=
N∑

l=1

X̃l

N∑

j=1

{x1, . . . , xl−1, gj , xl+1, . . . , xN}{g1, . . . , gj−1, F, gj+1, . . . , gN}
{g1, g2, . . . , gN}

=
N∑

l=1

X̃l{x1, . . . , xl−1, F, xl+1, . . . , xN} = X̃(F ),

Here we have used the first identity of (60) and the second of (58). Hence, in view of
arbitrariness of F the theorem has been proved. �

Proof of Theorem 3. First of all we determine the differential system by using the N inde-
pendent functions gj = gj(x) for j = 1, 2, . . . , N. Thus we obtain system (5). Clearly this
differential system admits additional partial integrals gj for j = N + 1, . . . ,M if and only
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if X(gν) = Φν , Φν |gν=0 = 0, for ν = N + 1, . . . ,M . Equivalently, using (62) can be
written as

(65) Φ1{gν , . . . , gN} + . . .+ ΦN{g1, . . . , gN−1, gν} − Φν{g1, . . . , gN−1, gN} = 0.

Now we prove that

(66) Φν =
M+N∑

α1,...,αN−1=1

Gα1,...,αN−1
{gα1 , . . . , gαN−1

, gν}

is a solution of (65) for ν = 1, 2, . . . ,M ≥ N, where Gα1,...,αN−1 = Gα1, ...αN−1(x) are
arbitrary functions satisfying (7).

Indeed, in view of (65) and (66) we obtain

M+N∑

α1,...,αN−1=1

Gα1,...,αN−1({gα1 , . . . , gαN−1 , g1}{gν , g2, . . . , gN−1, gN} + . . .

+{gα1 , . . . , gαN−1 , gN}{g1, g2, . . . , gN−1, gν} − {gα1 , . . . , gαN−1 , gν}{g1, g2, . . . , gN−1, gN})

=

M+N∑

α1,...,αN−1=1

Gα1,...,αN−1Ω
(
{gα1 , . . . , gαN−1 , g1, . . . , gN , gν

)
= 0

which is identically zero by (60).
Inserting (66) into (5) and from the second identity of (60) we obtain from the equation

ẋν = Φ1
{xν , g2 . . . , gN}
{g1, . . . , gN} + . . .+ ΦN

{g1, . . . , gN−1, xν}
{g1, . . . , gN}

=
M+N∑

α1...αN−1=1

Gα1,...,αN−1

{g1, . . . , gN}
N∑

n=1

{gα1 , . . . , gαN−1
, gn}{g1, . . . , gn−1, xν , gn+1, . . . , gN}

=
M+N∑

α1,...,αN−1=1

Gα1,...,αN−1

(
{gα1 , . . . , gαN−1

, xν}
)

for j = 1, 2, . . . , N. Now we prove that this differential system which coincides with (6) is
the most general. Indeed using that gM+j = xj for j = 1, . . . , N, system (6) admits the
representation

(67)

ẋ1 =




M+N∑

α1,...,αN−1=1
α1,...,αN−1 ̸=(M+2,...,N)

Gα1,...,αN−1
{gα1 , . . . , gαN−1

, x1}


+

GM+2, M+3 ...,M+N{x2, . . . , xN , x1},
...

...

ẋN =




M+N∑

α1,...,αN−1=1
α1,...,αN−1 ̸=(M+1,...,N−1)

Gα1,...,αN−1
{gα1 , . . . , gαN−1

, xN}


+

GM+1, M+2 ...,M+N−1{x1, . . . , xN−1, xN}.

Note that {x1, . . . , xj−1, xj+1, . . . , xN , xj} ∈ {−1, 1}. Therefore if ẋj = X̃j for j = 1, . . . , N
is another differential system having the given set of partial integrals, then by choosing
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conveniently functions GM+2, M+3 ...,M+N , . . . GM+1, M+2 ...,M+N−1 we deduce that the con-

structed vector field (67) contain the vector field X̃ =
(
X̃1, X̃2, . . . , X̃N

)
. So the proof of

Theorem 3 follows. �
Corollary 30. Under the assumptions of Theorem 3 for N = 2 system (6) takes the form

(68)

ẋ =
M∑

j=1

Gj{gj , x} +GM+1{y, x} =
M∑

j=1

Gj{gj , x} −GM+1,

ẏ =
M∑

j=1

Gj{gj , y} +GM+2{x, y} =
M∑

j=1

Gj{gj , y} +GM+2,

where Gj = Gj(x, y) for j = 1, 2, . . .M + 2 are arbitrary functions satisfying (7). Moreover
(7) becomes

(69)




M∑

j=1

Gj{gj , gk} +GM+1{y, gk} +GM+2{x, gk}



∣∣∣∣∣∣
gk=0

= 0,

for k = 1, 2, . . .M.

Proof of Corollary 30. It follows immediately from Theorem 3. �
Remark 31. We note that conditions (69) hold in particular if

(70) Gj =
M∏

m=1
m ̸=j

gm G̃j

where G̃j = G̃j(x, y) for j = 1, . . . ,M + 2 are arbitrary functions.
Inserting (70) into (68) we obtain the following differential system

(71) ẋ =
M∑

j=1

M∏

m=1
m ̸=j

gmG̃j{gj , x} −
M∏

m=1

gmG̃M+1, ẏ =
M∑

j=1

M∏

m=1
m ̸=j

gmG̃j{gj , y} +
M∏

m=1

gmG̃M+2.

We observe that system (71) coincides with polynomial differential (5) of [5] when the
partial integrals are polynomial and generic in the sense defined in [5].

5. Proof of Theorem 4 and Theorem 7

Proof of Theorem 4. Let X be the vector field

X = − 1

|S|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dg1(∂1) . . . dg1(∂N ) Φ1

...
...

...
dgM1(∂1) . . . dgM1(∂N ) ΦM1

df1(∂1) . . . df1(∂N ) 0
...

...
...

...
dfM2(∂1) . . . dfM2(∂N ) 0
dgM+1(∂1) . . . dgM+1(∂N ) λM+1

...
...

...
...

dgN (∂1) . . . dgN (∂N ) λN

∂1 . . . ∂N 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
⟨
S−1P, ∂x

⟩
,

where P = (P1, . . . , PN )
T

= (Φ1, . . . ,ΦM1 , 0, . . . , 0, λM+1, . . . , λN )
T
, which is the vector

field associated to differential system (8) where |S| = {g1, . . . , gM1 , f1, . . . , fM2 , gM+1, . . . , gN}.
Clearly this vector field is well defined in view of the assumptions.
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From X(gj) = Φj , Φ|gj=0 = 0, for j = 1, . . . ,M1 we deduce that gj are partial integrals
of vector field X and X(fj) = 0 for j = 1, . . . ,M2 we obtain that fj are first integrals of
vector field X.

Now we prove that system (8) is the most general differential system admitting the partial

integrals gj and the first integrals fk. Indeed let ẋ = X̃(x) be another differential system
which admits gj for j = 1, . . . ,M1 partial integrals and fk for k = 1, . . . ,M2 first integrals

withM1+M2 ≤ N, i.e. X̃(gj)|gj=0 = 0 for j = 0, 1, . . . ,M1 and X̃(fk) = 0 for k = 1, . . . ,M2.

Then taking Φj = X̃(gj) and λM+k = X̃(fk) and analogously to the proof of Theorem 1 we

deduce that the vector field X̃ is a particular case of the vector field X. Thus the theorem
is proved. �

Proof of Theorem 7. In view of Corollary 5 it follows (12), or equivalently

(72) ẋ = S−1P,

where P = (0, . . . , 0, λN−1, λN )
T

(see for more details the proof of Theorem 1, i.e. (62)).
Hence Corollary 5 gives the most general differential system which admits first integrals
fj for j = 1, . . . , N − 2. After the change of variables (x1, . . . , xN ) −→ (y1, . . . , yN ) where
yj = fj for j = 1, . . . , N − 2, and yN−1 = xN−1, yN = xN we obtain that the differential
system (72) on the set

Ec = {(y1, y2, . . . yN ) ∈ RN : y1 = c1, . . . , yN−2 = cN−2}

becomes ẋ = B−1ẏ = B−1Ŝ−1P̃, where Ŝ and B are defined by

S =
∂ (f1, . . . , fN−2, gN−1, gN )

∂ (x1, . . . , xN )
=
∂ (f1, . . . , fN−2, gN−1, gN )

∂(y1, . . . , yN )

∂ (y1, . . . , yN )

∂ (x1, . . . , xN )
= ŜB

ẋj =

N∑

k=1

(
∂ xj

∂yk

)
ẏk,

and z̃ denotes the function z(x1, . . . , xN ) expressed in the variables y = (y1, . . . , yN ).
Clearly we have that

Ŝ =




1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
...

...
...

...
0 0 . . . 1 0 0

dgN−1(∂1) dgN−1(∂2) . . . dgN−1(∂N−2) dgN−1(∂N−1) dgN−1(∂N )
dgN (∂1) dgN (∂2) . . . dgN (∂N−2) dgN (∂N−1) dgN (∂N )



,

where ∂j = ∂
∂yj

and consequently

|Ŝ| =

∣∣∣∣
dgN−1(∂N−1) dgN−1(∂N )
dgN (∂N−1) dgN (∂N )

∣∣∣∣ =
∂gN−1

∂yN−1

∂gN

∂yN
− ∂gN−1

∂yN

∂gN

∂yN−1
= {gN−1, gN}.
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After a change of variables xj = xj(y1, . . . , yN ) for j = 1, . . . , N system ẋj = Xj(x) can be
rewritten as ẏ = Y(y). A computation shows that

Y =
⟨
Ŝ−1P̃, ∂y

⟩

= − 1

|Υ̂|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 0 0 0 0
0 . . . 0 0 0 0
... . . .

...
...

...
...

0 . . . 1 0 0 0
dgN−1(∂1) . . . dgN−1(∂N−2) dgN−1(∂N−1) dgN−1(∂N ) λN−1

dgN (∂1) . . . dgN (∂N−2) dgN (∂N−1) dgN (∂N ) λN

∂1 . . . ∂N−2 ∂N−1 ∂N 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= − 1

|Ŝ|

∣∣∣∣∣∣

dgN−1(∂N−1) dgN−1(∂N ) λN−1

dgN (∂N−1) dgN (∂N ) λN

∂N−1 ∂N 0

∣∣∣∣∣∣
.

Thus

(73)

ẏN−1 = Y(yN−1) = λ̃N−1
{ yN−1, g̃N , }
{g̃N−1, g̃N} + λ̃N

{g̃N−1, yN−1, }
{g̃N−1, g̃N} = YN−1(y),

ẏN = Y(yN ) = λ̃N−1
{ yN , g̃N}

{g̃N−1, g̃N} + λ̃N
{g̃N−1, yN }
{g̃N−1, g̃N} = YN (y),

ẏj = Y(yj) = 0, for j = 1, . . . , N − 2.

On the other hand from (11) and (12) and Remark 26 it follows that

(74)

N∑

j=1

∂(UXj)

∂xj
= {f1, . . . , fN−2, µλN−1, gN} + {f1, . . . , fN−2, gN−1, µλN} = 0.

On the other hand from the relations

N∑

j=1

∂Xj

∂xj
=

1

D

N∑

m=1

∂ (DYm)

∂ym
,

where D = |S| (see (3)) is the Jacobian. Hence we obtain from (74) the well known relation

N∑

j=1

∂(UXj)

∂xj
=

1

D

N∑

j=1

∂
(
ŨDYj

)

∂yj
=

1

D



∂
(
ŨDYN−1

)

∂ yN−1
+
∂
(
ŨDYN

)

∂yN


 = 0,

Consequently the function DŨ is an integrating factor of (73).
The equality (11) is obtained from Proposition 26 by considering the vector fields X

determined by (12), hence

div
(
λ̃N−1{f1, . . . , fN−2, xj , gN} + λ̃N{f1, . . . , fN−2, gN−1, xj}

)

=
N∑

j=1

∂λ̃N−1

∂xj
{f1, . . . , fN−2, xj , gN} +

N∑

j=1

∂λ̃N

∂xj
{f1, . . . , fN−2, gN−1, xj}

= {f1, . . . , fN−2, λ̃N−1, gN} + {f1, . . . , fN−2, gN−1, λ̃N},

where λ̃j =
λj

{f1, . . . , fN−2, gN−1, gN} for j = N − 1, N. Thus the theorem is proved. �
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6. Proof of Theorem 8

Proof of Theorem 8. Assume that the vector field X associated to differential system (2) is
integrable, i.e. admit N − 1 independent first integrals F1, . . . , FN−1. Thus from the equa-
tions X(Fj) = 0 for j = 1, . . . , N − 1 we obtain the representation X = µ{F1, ..., FN−1, ∗},
where µ is an arbitrary function. Thus X(gl) = Φl = µ{F1, ..., FN−1, gl}, X(gk) = λk =
µ{F1, ..., FN−1, gk}, for l = 1, . . . ,M and k = M + 1, . . . , N. So the “only if” part of the
theorem follows. Now we shall prove the “if” part.

We suppose that Φl = µ{F1, ..., FN−1, gl}, and λk = µ{F1, ..., FN−1, gk}. Thus the vector
field associated to differential system (2) takes the form

X(xj) =
M∑

n=1

Φn
{g1, . . . , gn−1, xj , gn+1, gM , . . . , gN}

{g1, . . . , gN} +

N∑

n=M+1

λn
{g1, . . . , gM , gM+1, . . . , gn−1, xj , gn+1, . . . , gN}

{g1, . . . , gN}

= µ
N∑

n=1

{F1, ..., FN−1, gn}{g1, . . . , gn−1, xj , gn+1, . . . , gN}
{g1, . . . , gN} .

In view of the first identity (60) we obtain that

X(xj) = µ{F1, ..., FN−1, xj}
{g1, . . . , gN}
{g1, . . . , gN} = µ{F1, ..., FN−1, xj}.

Thus functions F1, . . . , FN−1 are first integrals of X. Hence the vector field is integrable. �

7. Proof of Theorem 13

Proof of Theorem 13. Let X = (X1, . . . , XN ) be the vector field associated to system (2).
Since gM+j = gGj for j = 1, 2, . . . N −M, and using (13) and (64) we obtain

X(g) =
M∑

j=1

gτj
gj

X(gj) = g
M∑

j=1

τjΦj

gj
= L0g,

X(gM+1) = λM+1 equivalently X(g)G1 + gX(G1) = L0 g G1 + L1g,

and similarly it follows that

L0 g G2 + gX(G2) = L0 g G2 + L1gG1 + L2g,

...

L0 g GN−M + gX(GN−M ) = L0 g GM−N + . . .+ LN−Mg.

Thus

(75)

X(g) = L0g,

X(G1) = L1,

X(G2) = L1G1 + L2,

...

X(GN−M ) = L1GN−M−1 + L2GN−M−2 . . .+ LN−M ,

or, in matrix form X(G) = BL, where L = (L1, . . . , LN−M )
T
.
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We introduce the 1-forms ω1, ω2, ..., ωN−M as follows

dG1 = ω1

dG2 = G1ω1 + ω2

...
dGN−M = GM−M−1ω1 + ...+G1ωN−M−1 + ωN−M .

or equivalently

(76) dG = BW,

where W = (ω1, . . . , ωN−M )
T
. Consequently by considering (75) and relation dG(X) =

X(G) we obtain that

(77) W(X) = L.

A one-form is said to be a closed one-form if its exterior derivative is everywhere equal
to zero. Denoting by ∧ the wedge product on the differential 1-forms, we obtain

0 = d2G1 = dω1,
0 = d2G2 = dG1 ∧ ω1 +G1dω1 + dω2 = ω1 ∧ ω1 +G1dω1 + dω2 = dω2,
0 = d2G3 = dG2 ∧ ω1 +G2dω1 + dG1 ∧ ω2 +G2dω2 + dω3,

= G1 (ω1 ∧ ω1) + ω2 ∧ ω1 + ω1 ∧ ω2 +G2dω1 +G2dω2 + dω3 = dω3,

analogously we deduce that dωj = 0 for j = 4, . . . , N −M, thus the 1-forms ωj are closed.
Therefore ωj = dRj , where Rj is a convenient function. Hence, by (77), we get

ωj(X) = Lj , for j = 1, 2, . . . , N −M.

Let R = (R1, . . . , RN−M )
T

be the vector defined by dR = (ω1, . . . , ωN−M )
T

= W =
B−1dG, obtained from (76).

After the integration of the system dR = B−1dG we obtain R =

∫
B−1dG. Hence

R1 = G1,

R2 = G2 − G2
1

2!
,

R3 = G3 −G1G2 +
G3

1

3!
,

R4 = G4 −G1G3 +G2
1G2 − G4

1

4!
− G2

2

2!
,

R5 = G5 −G1G4 +G2
1G3 −G3

1G2 +
G5

1

5!
+
G3

2

3!
,

...

Therefore, since Gj =
gM+j

g
we deduce the representations

R1 =
gM+1

g
=
A1

g
,

R2 =
gM+2

g
− 1

2!

(
gM+1

g

)2

=
A2

g2
,

R3 =
gM+3

g
− gM+1gM+2

g2
+

1

3!

(
gM+1

g

)3

=
A3

g3
,

...
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So we have Rj =
Aj

gj
, for j = 1, 2, . . . N −M, where Aj are functions previously defined.

From the equalities X(ln |g|) = L0, X(Rj) = dRj(X) = ωj(X) = Lj for j = 1, . . . N −M
and (14) we have that

0 =

N−M∑

j=0

νjLj = ν0X(ln g) +

N−M∑

j=1

νjX(Rj) = X


ln


gν0 exp




N−M∑

j=1

νjRj






 = 0.

Thus F = gν0 exp




N−M∑

j=1

νjRj


 = gν0 exp




N−M∑

j=1

νj
Aj

gj


 , is a first integral of differential

system (2). We observe that the functions gj for j = 1, . . . ,M in general are not algebraic.
�

8. Proof of Theorems 14, 16 and Proposition 19.

Proof of Theorem 14. We consider the differential system (2) with N as 2N and with in-
variant hypersurfaces gj(x1, . . . , x2N ) = 0 for j = 1, . . . , N1 ≤ N . Taking the functions gm

for m = N1, . . . , 2N as follows gα = gα(x1, . . . , x2N ), gN+j = xj , for α = N1 + 1, . . . , N
if N1 < N and j = 1, . . . , N, . We assume that {g1, g2, . . . , gN , x1, . . . , xN} ̸= 0. Hence the
system (2) takes the form

(78)

ẋj = λN+j ,

ẋj+N =

N1∑

k=1

Φk
{g1, . . . , gk1 , xj+N , gk+1, . . . , gN , x1, . . . , xN}

{g1, g2, . . . , gN , x1, . . . , xN} + . . .+

2N∑

k=N1+1

λk
{g1, . . . , gN1+1, . . . , gk−1, xj+N , gk+1, . . . , gN , x1, . . . , xN}

{g1, . . . , gN , x1, . . . , xN} ,

for j = 1, . . . ,K.
In particular if we take gj = xN+j − pj(x1, . . . , xN ) = 0, where pj = pj(x1, . . . , xN ) are

convenient functions for j = 1, . . . , N, then from (78) we obtain

ẋj = λN+j , ẋN+j = Φj +
N∑

n=1

λN+n
∂pj

∂xn
,

thus

(79) ẋj = λN+j ,
d

dt
(xN+j − pj) = Φj .

Taking the arbitrary functions λN+j and Φj as follows λN+j =
N∑

n=1

G̃jnxN+n, Φj =
∂L

∂xj
,

for j = 1, . . . , N , where G̃jn = G̃jn(x1, . . . , xN ) are elements of a symmetric definite positive

matrix G̃, and

L =
1

2

N∑

n,j=1

Gjn(x)(ẋj−vj)(ẋn−vn) =
1

2
||ẋ−v||2 =

1

2
||ẋ||2−⟨v, ẋ⟩+1

2
||v||2 = T−⟨v, ẋ⟩+1

2
||v||2,

where G = (Gjk) is the inverse matrix of G̃ = (G̃jk).
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We can write gj as gj = xj+N − pj =
N∑

n=1

Gjn(ẋn − vn) = 0 for j = 1, . . . , N . Then,

gj = 0 if and only if ẋ1 − v1 = . . . = ẋN − vN = 0. Since Φj =
∂L

∂xj
= −

⟨
ẋ − v,

∂v

∂xj

⟩
,

hence Φj |gj=0 =
∂L

∂xj
|ẋ=v = 0, for j = 1, . . . , N.

On the other hand in view of the relations gj = xj+N − pj =

N∑

n=1

Gjn (ẋn − vn) =
∂L

∂ẋj
,

we finally deduce that equations (79) can be written as the Lagrangian differential equations

(80)
d

dt

(
∂L

∂ẋj

)
− ∂L

∂xj
= 0, for j = 1, . . . , N.

After computation and in view of the constraints (19) we finally obtain differential system
(21). This complete the proof of the theorem. �

Proof of Proposition 19. First we prove that the vector field (28) is such that

(81)

N∑

n=1

Ωj(∂n)vn = Ωj(v) = 0 for j = 1, . . . ,M,

N∑

n=1

ΩM+k(∂n)vn = ΩM+k(v) = νM+k for k = M + 1, . . . , N.

Indeed, from the relation v(x) = S−1P we get that

Υv(x) = (Ω1(v), . . . ,ΩM (v), ΩM+1(v), . . . ,ΩN (v))
T

= P = (0, . . . , 0, νM+1, . . . , νN )
T
.

Thus we obtain (81). Consequently the vector field v satisfies the constraints.
Now we show that vector field v is the most general satisfying these constraints. Let

ṽ = (ṽ1, . . . , ṽN ) be another vector field satisfying the constraints, i.e.

N∑

n=1

Ωj(∂n)ṽn =

Ωj(ṽ) = 0 for j = 1, . . . ,M . Taking the arbitrary functions νM+1, . . . , νN as follows νM+k =
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N∑

n=1

ΩM+j(∂n)ṽnwe obtain from (28) the relations

v = − 1

|Υ|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω1(∂1) . . . Ω1(∂N )

N∑

n=1

Ω1(∂n)ṽn

... . . .
...

...

ΩM (∂1) . . . ΩM (∂N )

N∑

n=1

ΩM (∂n)ṽn

ΩM+1(∂1) . . . ΩM+1(∂N )
N∑

n=1

ΩM+1(∂n)ṽn

... . . .
...

...

ΩN (∂1) . . . ΩN (∂N )
N∑

n=1

ΩN (∂n)ṽn

∂1 . . . ∂N 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= − 1

|Υ|
N∑

n=1

ṽn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω1(∂1) . . . Ω1(∂N ) Ω1(∂n)
... . . .

...
...

ΩM (∂1) . . . ΩM (∂N ) ΩM (∂n)
ΩM+1(∂1) . . . ΩM+1(∂N ) ΩM+1(∂n)

... . . .
...

...
ΩN (∂1) . . . ΩN (∂N ) ΩN (∂n)
∂1 . . . ∂N 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Thus

v = − 1

|Υ|
N∑

n=1

ṽn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ω1(∂1) . . . Ω1(∂N ) 0
... . . .

...
...

ΩM (∂1) . . . ΩM (∂N ) 0
ΩM+1(∂1) . . . ΩM+1(∂N ) 0

... . . .
...

...
ΩN (∂1) . . . ΩN (∂N ) 0
∂1 . . . ∂N −∂n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
N∑

j,k=1

ṽn∂n = ṽ.

Thus Proposition 15 is proved. �

Proof of Theorem 16. Let σ is the 1-form associated to the vector field v, i.e.

(82) σ = ⟨v, dx⟩ =

N∑

j,k=1

Gjkvjdxk =

N∑

n=1

pn dxn.

Then the 2-form dσ admit the development

(83) dσ =
N∑

n,j=1

(
∂pn

∂xj
− ∂pj

∂xn

)
dxj ∧ dxn =

1

2

N∑

n,j=1

AnjΩn ∧ Ωj .

Here we have used that the 1-forms Ω1, . . . ,ΩN are independent, and consequence they form
a basis of the 1-form space. Hence Ωk ∧ Ωn for k, n = 1, . . . , N form a basis of the 2-form
space.
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From (83) we have that the inner product of vector field v and dσ i.e. ıvdσ is such that

(84) ıvdσ =

N∑

n,j=1

vn

(
∂pn

∂ xj
− ∂pj

∂ xn

)
dxj = ⟨Hv, dx⟩ ,

where the matrix H is

(
∂pn

∂ xj
− ∂pj

∂ xn

)
.

Again from (83) we have that
(85)

ıvdσ(∗) = dσ(v, ∗) =
1

2

N∑

n,j=1

bnjΩn ∧ Ωj(v, ∗)

=
1

2

N∑

n,j=1

Anj (Ωn(v)Ωj(∗) − Ωj(v)Ωn(∗))

=
1

2

N∑

n,j=1

AnjΩn(v)Ωj(∗) − 1

2

N∑

n,j=1

AjnΩn(v)Ωj(∗)

=
1

2

N∑

n,j=1

(Anj −Ajn)Ωn(v)Ωj(∗) =
N∑

n,j=1

AnjΩn(v)Ωj(∗) =
N∑

n=1

ΛnΩn(∗).

Now from the last equality and (83) we have

(86) ıvdσ(∂j) =

N∑

n=1

ΛnΩn(∂j) =

N∑

n,j=1

vn

(
∂pn

∂ xj
− ∂pj

∂ xn

)
.

Clearly, from these relations it follows that Hv(x) = ΥT Λ, hence Λ = (ΥT )−1Hv(x) =
(ΥT )−1HΥ−1P = AP, here we used the equality v(x) = Υ−1P.

From (86) and (21) we obtain

(87)
d

dt

(
∂T

∂ẋj

)
− ∂T

∂xj
=

∂

∂xj

(
1

2
||v||2

)
+

N∑

j=1

ΛjΩj(∂k),

for k = 1, . . . , N. From (87), (26) and (32) we get (31). In short Theorem 16 is proved. �

9. Applications of Theorems 14, 16 and Proposition 19

In this section we illustrate in some particular cases the relation between three mathe-
matical models:

(i) the classical model deduced from the d’Alembert-Lagrange principle (see (25)),
(ii) the model deduced from the Lagrangian equations (20) (see (31)), and
(iii) the model obtained from the first order differential equations (39) under the condi-

tions (32).

9.1. Suslov problem on SO(3). In this example we study the problem of integration of
equations of motion in the classical problem of nonholonomic dynamics formulated by Suslov
[47]. We consider the rotational motion of a rigid body around a fixed point and subject
to the nonholonomic constraint < ã, ω >= 0 where ω = (ω1, ω2, ω3) is the angular velocity
of the body, ã is a constant vector, and < , > is the scalar product. Suppose that the
body rotates in a force field with potential U(γ) = U(γ1, γ2, γ3). Applying the method of
Lagrange multipliers we write the equations of motion (25) in the form

(88) Iω̇ = Iω ∧ ω + γ ∧ ∂U

∂γ
+ µã, γ̇ = γ ∧ ω, < ã, ω >= 0,
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where

(89) γ = (γ1, γ2, γ3) = (sin z sinx, sin z cosx, cos z),

(x, y, z) = (φ,ψ, θ) are the Euler angles, and I is the tensor of inertia.
Using the constraint equation < ã, ω >= 0, the Lagrange multiplier µ can be expressed

as a function of ω and γ as follows

µ = −

⟨
ã, Iω ∧ ω + γ ∧ ∂U

∂γ

⟩

⟨ã, I−1ã⟩ .

System (88) always has three independent integrals

K1 =
1

2
(Iω, ω) + U(γ), K2 = γ2

1 + γ2
2 + γ2

3 , K3 = ⟨ã, ω⟩ .
Note that K1 is the energy first integral.

In order to have real motions we must take K2 = 1, K3 = 0. In this case we can reduce
the problem of integration of (88) to the problem of existence of an invariant measure and
fourth independent integrals. Thus, if there exist a fourth first integral K4 independent
with K1, K2, K3, then the Suslov problem is integrable [25]. It is well-known the following
result, see [24].

Proposition 32. If ã is an eigenvector of operator I, i.e.

(90) Iã = κã,

then the phase flow of system (88) preserves the “standard” measure in R6 = R3{ω}×R3{γ}.
G.K. Suslov has considered a particular case when the body is in absence of external

forces: U ≡ 0. If (90) holds, then the equations (88) have the additional first integral
K4 = (Iω, Iω). E.I. Kharlamova in [23] studied the case when the body rotates in the
homogenous force field with the potential U = (b, γ) where the vector b is orthogonal to the
vector ã. Under these conditions the equations of motion have the first integralK4 = (Iω,b).
V.V. Kozlov in [24] consider the case when b = εã, ε ̸= 0. The integrability problem in this
case was study in particular in [25, 33]. For the case U = ε det I(I−1γ, γ) system (88) has

the Clebsch-Tisserand first integral [24] K4 = 1
2 (Iω, Iω) − 1

2
εdet I(I−1γ, γ).

From now on we suppose that equality (90) is fulfilled. We assume that vector ã coincides
with one of the principal axes and without loss of generality we can choose it as the third
axis, i.e., ã = (0, 0, 1) and consequently the constrained becomes ω3 = 0. Equations of
motion have the following form

(91)
I1ω̇1 = γ2∂γ3U − γ3∂γ2U, I2ω̇2 = γ3∂γ1U − γ1∂γ3U,

γ̇1 = −γ3ω2, γ̇2 = γ3ω1, γ̇3 = γ1ω2 − γ2ω1,

where Ik are the principal moments of inertia of the body with respect to the k− axis, i.e.,
I = diag(I1, I2, I3). The second group of differential system from (91) is well–known as
Poisson differential equations. We observe that the above mentioned choice of ã guarantees
that the phase flow of system (91) preserves the standard measure in R5{ω1, ω2, γ}.

Now we illustrate the partial answer for the stated questions in Remark 18 . We study
the integrability of the Suslov problem in the case of equations (91). We suppose that the
manifold Q is the special orthogonal group of rotations of R3, i.e. Q = SO(3), with the
Riemann metric G given by




I3 I3 cos z 0
I3 cos z (I1 sin2 x+ I2 cos2 x) sin2 z + I3 cos2 z (I1 − I2) sinx cosx sin z

0 (I1 − I2) sinx cosx sin z I1 cos2 x+ I2 sin2 x


 ,

with determinant |G| = I1I2I3 sin2 z.
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In this case we have that the constraint is ω3 = ẋ+ ẏ cos z = 0.
By choosing the 1-form Ωj for j = 1, 2, 3 as follows Ω1 = dx+cos z dy, Ω2 = dy, Ω3 =

dz. we obtain |Υ| = 1. Hence the differential system (39) can be written as

(92) ẋ = ν2 cos z ẏ = −ν2, ż = −ν3
From (22) we compute

(93)

p1 = 0,

p2 = (I1 sin2 x+ I2 cos2 x)ν2 sin2 z + (I2 − I1)ν3 cosx sinx sin z,

p3 = −ν3(I2 sin2 x+ I1 cos2 x) + (I2 − I1)ν2 sinx cosx sin z.

Changing ν1 and ν2 by µ1 and µ2 as

µ1 = I2(ν3 sinx− ν2 sin z cosx), µ2 = I1(ν3 cosx+ ν2 sin z sinx),

we obtain

p1 = 0, p2 = µ1 sin z cosx− µ2 sin z sinx, p3 = sinxµ1 + cosxµ2.

Now the first of condition (35) takes the form

(94) µ3,1 = a1H23 + a2H31 + a3H12 = ∂zp2 − ∂yp3 + cos z∂xp3 = 0

After the change γ1 = sin z sinx, γ2 = sin z cosx, γ3 = cos z, the system (92) by consid-
ering the constraints and condition (94) can be written as

(95) γ̇1 =
1

I2
µ1γ3, γ̇2 =

1

I1
µ2γ3, γ̇3 = − 1

I1I2
(I1µ1γ1 + I2µ2γ2)

(96) sin z

(
γ3

(
∂µ1

∂γ2
− ∂µ2

∂γ1

)
− γ2

∂µ1

∂γ3
+ γ1

∂µ2

∂γ3
)

)
− cosx ∂yµ2 − sinx ∂yµ1 = 0,

respectively.
Clearly if µj = µj(x, z,K1,K4) for j = 1, 2, then the equation (96) takes the form

(97) γ3

(
∂µ1

∂γ2
− ∂µ2

∂γ1

)
− γ2

∂µ1

∂γ3
+ γ1

∂µ2

∂γ3
= 0,

By comparing (91) with (95) we obtain that ω1 = −µ2

I1
, ω2 =

µ1

I2
.

We define F1 and F2 as

(98) F1 = I1ω1 − µ2(γ1, γ2, γ3,K1,K4), F2 = I2ω2 + µ1(γ1, γ2, γ3,K1,K4).

and we assume that

(99) J =
∂F1

∂K1

∂F2

∂K4
− ∂F2

∂K1

∂F1

∂K4
̸= 0, in for all (ω1, ω2, γ1, γ2, γ3) ∈ R5,

Clearly if (99) holds then F1 = F2 = 0 can be solved with respect to K1 and K4 , i.e.
K1 = K1(ω1, ω2, γ1, γ2, γ3), K4 = K4(ω1, ω2, γ1, γ2, γ3).

In order to give a partial answer to the question stated in Remark 18 we shall study
system (91) with the potential

(100) U = −||v||2 + h = − 1

2I1I2
(I1µ

2
1 + I2µ

2
2) + h,

(see formula (37)).
The following result holds (see [40])

Theorem 33. We suppose that a body in the Suslov problem rotates under the action of
the force field defined by the potential (100) where µ1 = µ1(γ1, γ2, γ3,K1,K4) and µ2 =
µ2(γ1, γ2, γ3,K1,K4) are solutions of the first order partial differential equation (97) for
arbitrary constants K1 and K4 and such that (99) takes place. Then the following statements
hold.
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(a) The equations (91) have the first integrals K1 and K4 defined implicitly through
the equations F1 = F2 = 0 given in (98). Consequently they are integrable by
quadratures. In particular

(101)

µ1 =
∂S̃(γ1, γ2, γ3,K1,K4)

∂γ1
+ Ψ1(γ

2
2 + γ2

3 , γ1,K1,K4),

µ2 =
∂S̃(γ1, γ2, γ3,K1,K4)

∂γ2
+ Ψ2(γ

2
1 + γ2

3 , γ2,K1,K4),

are solutions of (97), where S̃,Ψ1, Ψ2, Ω are arbitrary smooth functions such that

S̃(γ1, γ2, γ3,K1,K4) = S(γ1, γ2,K1,K4) +

∫
Ω(γ2

1 + γ2
2 , γ3,K1,K4)d(γ

2
1 + γ2

2)

(b) The Suslov’s, Kharlamova-Zabelina’s, Kozlov’s, Clebsch-Tisserand’s, Tisserand-Okunova’s
and Dragović-Gajić-Jovanović’s first integrals can be obtained from (98) with µ1 and
µ2 determined by (101).

Proof. After some calculations we obtain that the derivative of F1 along the solutions of
(91) takes the form

Ḟ1 = I1ω̇1 + µ̇2

= γ2
∂U

∂γ3
− γ3

∂U

∂γ2
− ∂µ2

∂γ1
γ3ω2 +

∂µ2

∂γ2
γ3ω1 +

∂µ2

∂γ3
(γ1ω2 − γ2ω1)

= γ2
∂U

∂γ3
− γ3

∂U

∂γ2
+ ω2(γ1

∂µ2

∂γ3
− γ3

∂µ2

∂γ1
) + ω1(γ3

∂µ2

∂γ2
− γ2

∂µ2

∂γ3
)

= γ2
∂U

∂γ3
− γ3

∂U

∂γ2
+
F2 + µ1

I2
(γ1

∂µ2

∂γ3
− γ1

∂µ2

∂γ3
) +

F1 − µ2

I1
(γ3

∂µ2

∂γ2
− γ2

∂µ2

∂γ3
)

= γ2
∂

∂γ3

(
U +

1

2I1I2
(I1µ

2
1 + I2µ

2
2)

)
− γ3

∂

∂γ2

(
U +

1

2I1I2
(I1µ

2
1 + I2µ

2
2)

)

+
µ1

I2

(
γ3

(
∂µ1

∂γ2
− ∂µ2

∂γ1

)
− γ2

∂µ1

∂γ3
+ γ1

∂µ2

∂γ3

)

+
F2

I2

(
γ1
∂µ2

∂γ3
− γ3

∂µ2

∂γ1

)
+
F1

I1

(
γ3
∂µ2

∂γ2
− γ2

∂µ2

∂γ3

)
.

A similar relation can obtained for Ḟ2.
In view of (100), (97) and (98) we deduce that Ḟ1 = Ḟ2 = 0. By solving the equations

Fj = 0 for j = 1, 2 with respect to K1, K4 we finally obtain the require first integrals. Hence
the proof of the first part of statement (a) follows. The integrability by quadratures comes
from the Euler-Jacobi Theorem (see for instance [3]).

Finally it is easy to check that the functions µ1 and µ2 defined in (101) satisfy the equation
(97). This completes the proof of statement (a).

Now we prove the statement (b). First we consider the functions

µ1 =
∂S̃(γ1, γ2, γ3,K1,K4)

∂γ1
=

∂S̃

∂γ1
, µ2 =

∂S̃(γ1, γ2, γ3,K1,K4)

∂γ2
=

∂S̃

∂γ2
.

Hence the implicit first integrals K1 and K4 defined implicitly by the equations

(102) F1 = I1ω1 − ∂S̃

∂γ2
= 0, F2 = I2ω2 +

∂S̃

∂γ1
= 0.

Now we show that the Suslov’s, Kharlamova-Zabelina’s and Kozlov’s first integral can be
obtained from (102).
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For the Suslov’s integrable case we have that S̃ = C1γ1 + C2γ2, where C1 and C2 are
arbitrary constants. Thus µ1 = C1, µ2 = C2 and U =const. as a consequence the
functions F1 and F2 of (98) become F1 = I1ω1 − C2 = 0, F2 = I2ω2 + C1 = 0. Thus

K1 = I1ω
2
1 + I2ω

2
2 =

C2
2

I2
+
C2

1

I1
, K4 = I2

1ω
2
1 + I2

2ω
2
2 = C2

2 + C2
1 .

For the Kharlamova-Zabelina’s integrable case we have

S̃ =
2/3√

I1b21 + I2b22

(
h̃+ b1γ1 + b2γ2

)3/2

− K4

b21I1 + b22I2
(b2I2γ1 − b1I1γ2) ,

where h̃ = I1I2

(
K2

4I1I2
b21I1 + b22I2

−K1

)
, K1 and K4 are arbitrary constants, then

µ1 =
b1√

I1b21 + I2b22

√
h̃+ b1γ1 + b2γ2 − K4b2I2

b21I1 + b22I2
,

µ2 =
b2√

I1b21 + I2b22

√
h̃+ b1γ1 + b2γ2 +

K4b1I1
b21I1 + b22I2

.

Hence the the functions F1 and F2 of (98) are

(103)

F1 = I1ω1 −
(

b2√
I1b21 + I2b22

√
h̃+ b1γ1 + b2γ2 +

K4b1I1
b21I1 + b22I2

)
= 0,

F2 = I2ω2 +

(
b1√

I1b21 + I2b22

√
h̃+ b1γ1 + b2γ2 − K4b2I2

b21I1 + b22I2

)
= 0.

Thus

K1 = I1ω
2
1 + I2ω

2
2 − 1

I1I2
(b1γ1 + b2γ2) , K4 = I1ω1b1 + I2ω2b2.

The first integral K4 is the well–know Kharlamova-Zabelina’s first integral [23].
For the Kozlov’s integrable case we have I1 = I2 and

S̃ = −K4 arctan
γ1

γ2
+

1

2

∫
D(γ2

1 + γ2
2)d(γ2

1 + γ2
2),

where

D(u) = I1

√
K1 + a

√
1 − u

u
− K2

4

u2
,

a is a real constant, K1 and K4 are arbitrary real constants. Hence

µ1 = − γ2K4

γ2
1 + γ2

2

+ γ1D(γ2
1 + γ2

2), µ2 =
γ1K4

γ2
1 + γ2

2

+ γ2D(γ2
1 + γ2

2).

Consequently the functions F1 and F2 of (98) are

F1 = ω1 −
(

γ1K4

γ2
1 + γ2

2

+ γ2D(γ2
1 + γ2

2

)
= 0, F2 = ω2 +

(
− γ2K4

γ2
1 + γ2

2

+ γ1D(γ2
1 + γ2

2

)
= 0.

Thus K1 = ω2
1 + ω2

2 − a
√

1 − γ2
1 − γ2

2 = ω2
1 + ω2

2 − aγ3 K4 = ω1γ1 + ω2γ2. This case
correspond to the well–known integrable “Lagrange case” of the Suslov problem [25].

Finally we analyze the case when the functions µ1 and µ2 are given by the formula

(104) µ1 = Ψ1(γ
2
1 + γ2

3 , γ1,K1,K4), µ2 = Ψ2(γ
2
1 + γ2

3 , γ2,K1,K4).

The potential function (100) in this case coincides with the potential obtained by Dragović-
Gajić-Jovanović in [11]. We call this case the Generalized Tisserand case. In particular,
if

µ1 =
√
h1 + (a1 + a3)(γ2

3 + γ2
2) + (b1 + a3)γ2

1 + f1(γ1),

µ2 =
√
h2 + (a2 + a4)(γ2

3 + γ2
1) + (b2 + a4)γ2

2 + f2(γ2),
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where a1, a2, a3, a4, b1, b2, , h1, h2, are arbitrary real constants: h1 =
I2(I1K1 −K4)

I1 − I2
, and

h2 =
I1(I2K1 −K4)

I1 − I2
, and f1 = f1(γ1) and f2 = f2(γ2) are arbitrary functions, then the

functions F1 and F2 of (98) take the form

F1 = I1ω1 −
√
h2 + (a2 + a4)(γ2

3 + γ2
1) + (b2 + a4)γ2

2 + f2(γ2) = 0,

F2 = I2ω2 +
√
h1 + (a1 + a3)(γ2

3 + γ2
2) + (b1 + a3)γ2

1 + f1(γ1) = 0.

The case when fj(γj) = αj γj , for j = 1, 2 was studied in [35], where α1 and α2 are real
constants. If f1 = f2 = 0, we obtain the Tisserand’s case [24]. The first integrals in the
Clebsch-Tisserand’s case are

K1 = I1ω
2
1 + I2ω

2
2 −

(
b1 + a3

I2
+
a2 + a4

I1

)
γ2
1

−
(
a1 + a3

I2
+
b2 + a4

I1

)
γ2
2 −

(
a1 + a3

I2
+
a2 + a4

I1

)
γ2
3 ,

K4 = I2
1ω

2
1 + I2

2ω
2
2 − (b1 + a3 + a2 + a4) γ

2
1

− (a1 + a3 + b2 + a4) γ
2
2 − (a1 + a3 + a2 + a4) γ

2
3 ,

it is easy to obtain from F1 = 0 and F2 = 0. Thus statement (b) follows. In short, the
theorem is proved. �

9.2. Nonholonomic Chaplygin systems. We illustrated Theorem 16 in the noholonomic
Chaplygin systems.

It was pointed out by Chaplygin [4] that in many nonholonomic systems the generalized
coordinates x1, . . . , xN can be chosen in such a way that the equations of the non–integrable
constraints, can be written in the form

(105) ẋj =
N∑

k=M+1

âjk(xM+1, . . . , xN )ẋk, for j = 1, 2, . . . ,M,

A constrained Chaplygin-Lagrangian mechanical system is the mechanical system with La-
grangian L̃ = L̃(xM+1, . . . , xN , ẋ1, . . . , ẋN ), subject to M linear nonholonomic constraints
(105).

We shall solve the inverse problem for this constrained system when the Lagrangian
function is the following

(106) L̃ = T =
1

2

N∑

n,j=1

Gjn(xM+1, . . . , xN )ẋj ẋn

In this section we determine the vector field (28) and differential system (31) for con-
strained Chaplygin-Lagrangian mechanical system with Lagrangian (106).

First we determine the 1-forms Ωj for j = 1, . . . , N. Taking

Ωj = dxj −
N∑

k=M+1

âjk(xM+1, . . . , xN )dxk, for j = 1, 2, . . . ,M,

Ωk = dxk for k = M + 1, . . . , N,
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we obtain that

(107) Υ =




1 0 . . . 0 0 −â1 M+1 . . . −â1 N

0 1 . . . 0 0 −â2 M+1 . . . −â2 N

...
...

...
...

...
...

...
...

0 0 0 . . . 1 −âM M+1 . . . −âM N

0 0 0 . . . 0 1 0 0
...

...
... . . .

...
...

...
...

0 0 0 . . . 0 0 0 1




,

thus |Υ| = 1 and consequently

Υ−1 =




1 0 . . . 0 0 â1 M+1 . . . â1 N

0 1 . . . 0 0 â2 M+1 . . . â2 N

...
...

...
...

...
...

...
...

0 0 0 . . . 1 âM M+1 . . . âM N

0 0 0 . . . 0 1 0 0
...

...
... . . .

...
...

...
...

0 0 0 . . . 0 0 0 1




.

Thus the vector field (28) in this case generate the following differential equations

(108) ẋj =
N∑

n=M+1

âjnνn ẋk = νk for j = 1, . . . ,M, k = M + 1, . . . , N.

Differential system (31) in this case admits the representation

(109)

d

dt

(
∂T

∂ẋk

)
=

∂

∂xk

(
1

2
||v||2

)
+ Λk,

d

dt

(
∂T

∂ẋj

)
− ∂T

∂xj
=

∂

∂xj

(
1

2
||v||2

)
−

M∑

k=1

Λkâkj ,

for j = M + 1, . . . , N, k = 1, . . . ,M, where Λ1, . . . ,ΛM are determine by the formula
(29), (30) and (32).

We observe that system (109) coincide with the Chaplygin system. Indeed, excluding
Λk from the first of the equations of (109) and denoting by L∗ the expression in which the
velocities ẋ1, . . . , ẋM , have been eliminated by means of the constraints equations (105), i.e.

L∗ = L|
ẋj=

N∑

k=M+1

âjkẋk

= (T +
1

2
||v||2)

∣∣∣∣
ẋj=

N∑

k=M+1

âjkẋk

,

Therefore, we obtain

∂L∗

∂ẋj
=

∂L

∂ẋj
+

M∑

α=1

∂L

∂ẋα
âαj ,

∂L∗

∂xj
=

∂L

∂xj
+

M∑

α=1

N∑

m=M+1

∂L

∂ẋα
ẋm

∂âαm

∂xj
,

for j = M + 1, . . . , N.
From these relations, we have

d

dt

(
∂L∗

∂ẋj

)
− ∂L∗

∂xj
=

N∑

m=M+1

M∑

l=1

(
∂âlj

∂xm
− ∂âlm

∂xj

)
ẋm

∂L

∂ẋl
,

for j = M + 1, . . . , N, k = 1, . . . ,M, which are the equations which Chaplygin published in
the Proceeding of the Society of the Friends of Natural Science in 1897.
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9.3. The Chapliguin–Caratheodory sleigh. We shall now analyze one of the most classi-
cal nonholonomic systems : The Chapliguin–Carathodory’s sleigh (for more details see [31]).
Hence, one has the constrained Lagrangian system with the configuration space Q = S1×R2,
with the Lagrangian function

L̃ =
m

2

(
ẏ2 + ż2 +

JC

2
ẋ2

)
− U(x, y, z),

and with the constraint εẋ+ sinxẏ − cosxż = 0, where m, Jc and ε are parameters related
with the sleigh. Observe that the Chapliguin’s skate is a particular case of this mechanical
system and can be obtained when ε = 0

To determine the vector field (28) in this case we choose the 1-forms Ωj for j = 1, 2, 3 as
follows (see [43]) Ω1 = εdx+ sinx dy− cosx dz, Ω2 = cosx dy+ sinx dz, Ω3 = dx, hence
|Υ| = 1.

Differential equations (39) and the first condition of (35) take the form respectively

(110) ẋ = ν3, ẏ = ν2 cosx− ελ3 sinx, ż = ν2 sinx+ εν3 cosx,

where νj = νj(x, y, z, ε) for j = 2, 3 are solutions of the partial differential equation

(111)
0 = µ3,1 = a1H23 + a2H31 + a3H12 =

sinx(J∂zν3 + εm∂yν2) + cosx(J∂yν3 − εm∂zν2) −m(∂xν2 − εν3),

where J = JC + ε2m.
For the Chapliguin skate (ε = 0) we have

(112) ẋ = ν3, ẏ = ν2 cosx, ż = ν2 sinx, ẏ cosx− ẋ cosx = 0,

(113) JC(sinx∂zν3 + cosx∂yν3) −m∂xν2 = 0,

where νj = νj(x, y, z, 0) for j = 2, 3. Now we study the behavior of the Chapliguin skate
by using the differential equations generated by the vector field v with ν2 and ν3 satisfying
partial differential equation (113).

Proposition 34. All the trajectories of the Chapliguin skate (ε = 0) under the action of
the potential field of force with potential U = mgy can be obtained from differential system
(112) where ν2 and ν3 are solutions of (113).

Proof. Indeed, for the case when ε = 0 the equation of motions of Chapliguin skate obtained
from (25) are

ẍ = 0, ÿ = mg + sinxµ, z̈ = − cosxµ, sinxẏ − cosxż = 0.

Hence, we obtain
d

dt
(
ż

sinx
) = g cosx. We study only the case when ẋ|t=t0 = C0 ̸= 0, as a

consequence,

(114) ẋ = C0, ẏ =

(
g sinx

C0
+ C1

)
cosx, ż =

(
g sinx

C0
+ C1

)
sinx.

Clearly, the solutions of these equations coincide with the solutions of (112) and (113) under
the condition ||v||2 = JCν

2
3 +mν2

2 = 2(−mgy + h). Indeed, taking

ν3 = C0, ν2 =

√
2(−mgy + h) − JC C

2
0

m
,

where C0 is an arbitrary constant. We obtain the differential system

ẋ = C0, ẏ =

√
2(−mgy + h) − JC C

2
0

m
cosx, ż =

√
2(−mgy + h) − JC C

2
0

m
sinx.

The solutions of this system coincide with the solutions of (114). In short the proposition
is proved. �



38 J. LLIBRE, R. RAMÍREZ AND N. SADOVSKAIA

In what follows we study the motion of the Chapliguin–Carathodory’s sleigh without
action of the active forces.

Proposition 35. All the trajectories of Chapliguin–Carathodory’s sleigh in absence of active
forces can be obtained from (110) with the condition (111).

Proof. Indeed, taking in (111) νj = νj(x, ε), j = 1, 2 such that ∂xν2 = ε ν3, then all the
trajectories of equation (110) are given by

y = y0+

∫
(ν2 cosx− εν3 sinx)dx

ν3
, z = z0−

∫
(ν2 sinx− εν3 cosx)dx

ν3
, t = t0+

∫
dx

λ3(x, ε)
.

On the other hand, for the Chapliguin–Caratheodory sleigh in absence of active forces
from the (25) we have

JC ẍ = εµ, mÿ = sinxµ, mz̈ = − cosxµ, εẋ+ sinxẏ − cosxż = 0.

Hence, after integration we obtain the system

ẋ = qC0 cos θ, ẏ = C0(sin θ cosx− qε cos θ sinx), ż = C0(sin θ sinx+ qε cos θ cosx),

where θ = qεx + C and q2 =
m

JC +mε2
, which are a particular case of equations (110)

with ν2 = C0 sin θ, ν3 = C0q cos θ. Clearly in this case 2||v||2 = (JC + mε2)ν2
3(x, ε ) +

mν2
2(x, ε ) = mC2

0 = 2(−U + h), and the equation ∂xν2 = εν3 holds. Thus the proposition
follows. �

9.4. Gantmacher’s system. We shall illustrate this case in the following system which we
call Gantmacher’s system (see for more details [18]).

Two material points m1 and m2 with equal masses are linked by a metal rod with fixed
length l and small mass. The system can move only in the vertical plane and so the speed of
the midpoint of the rod is directed along the rod. It is necessary to determine the trajectories
of the material points m1 and m2.

Let (q1, r1) and (q2, r2) be the coordinates of the points m1 and m2. Introducing the fol-

lowing change of coordinates: x1 =
q2 − q1

2
, x2 =

r1 − r2
2

, x3 =
r2 + r1

2
, x4 =

q1 + q2
2

,

we obtain the mechanical system with configuration space Q = R4, Lagrangian function

L =
1

2

4∑

j=1

ẋ2
j − gx3, and constraints are x1ẋ1 + x2ẋ2 = 0, x1ẋ3 − x2ẋ4 = 0. The equations

of motion (25) obtained from the d’Alembert-Lagrange principle are

(115) ẍ1 = µ1x1, ẍ2 = µ1x2, ẍ3 = −g + µ2x1, ẍ4 = −µ2x2,

where µ1, µ2 are the Lagrangian multipliers which we determine as follows

(116) µ1 = − ẋ2
1 + ẋ2

2

x2
1 + x2

2

, µ2 =
ẋ2ẋ4 − ẋ1ẋ3 + gu1

x2
1 + x2

2

.

After the integration of (115) we obtain (for more details see [18])

(117) ẋ1 = −φ̇x2, ẋ2 = φ̇x1, ẋ3 =
f

r
x2, ẋ4 =

f

r
x1,

where (φ, r) are the polar coordinates: x1 = r cosφ, x2 = r sinφ and f is a solution of

the equation ḟ = −2g

r
x2.

To construct the differential systems (39) and (28) we determine the 1-forms Ωj for
j = 1, 2, 3, 4 as follow (see [43])

Ω1 = x1dx1 + x2dx2, Ω2 = x1dx3 − x2dx4,
Ω3 = x1dx2 − x2dx1, Ω4 = x2dx3 + x1dx4.
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Here Ω1 and Ω2 are given by the constraints, and Ω3 and Ω4 are chosen in order that the
determinant |Υ| becomes nonzero, and if it can be chosen constant will be the ideal situation.

Hence we obtain that |Υ| = −(x2
1 + x2

2)
2 = − l2

4
̸= 0. By considering that in this case N = 4

and M = 2 then from (35) we obtain

(118) µ4,2 = x2∂x3ν3 − x1∂x4ν3 + x2∂x1ν4 + x1∂x2ν4 = 0.

Differential equations (39) take the form

(119) ẋ1 = −ν3x2, ẋ2 = ν3x1, ẋ3 = ν4x2, ẋ4 = ν4x1.

It is easy to show that the functions ν3, ν4 :

(120) ν3 = g3(x
2
1 + x2

2), ν4 =

√
2(−gx3 + h)

(x2
1 + x2

2)
− g2

3(x2
1 + x2

2),

where g and h are constants, and g3 is an arbitrary function in the variable x2
1 + x2

2, are
solutions of (118) as a consequence from the relation (37) we have

2||v||2 = (x2
1 + x2

2)(ν
2
3 + ν2

4) = 2(−g x3 + h) = 2(−U + h).

The solutions of (119) with ν3 and ν4 given in (120) are

(121)

x1 = r cosα, x2 = r sinα, α = α0 + g3(r)t,

x3 = u0
3 +

g

2g3(r)
t− g

4g2
3(r)

sin 2α− −
√

2gC

g3(r)
cosα,

x4 = −h+
r2g2

3(r)

2g
+

( √
g√

2g3(r)
sinα+ C

)2

,

where C, r, α0, u
0
3, h, are arbitrary constants, g3 is an arbitrary on r function.

To compare these solutions with the solutions obtained from (117) we observe that they
coincide. We note that we have obtained the trajectories of the masses m1 and m2 solving
the differential equations of first order (119) with the functions (120).

Finally we observe that for the Gantmacher system the system (31) takes the form

(122) ẍ1 = Λ1x1, ẍ2 = Λ1x2, ẍ3 = −g + Λ2x1, ẍ4 = Λ2x2,

and admits as solutions the ones given in (121) (see Remark 18).

Remark 36. From these examples we give a partial answer to the questions stated in Remark
18. Differential equations generated by the vector field (28) under the conditions (33) can
be applied to study the behavior of the nonholonomic systems with linear constraints with
respect to the velocity (at least for certain class of such system). Is it possible to apply
this mathematical model to describe the behavior of the nonholonomic systems with linear
constraints with respect to velocity in general? For the moment we have no answer to this
question.
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10. Proof of Theorem 19. Applications

Proof of Theorem 19. In this case we obtain that the vector field (28) is

(123)

v = − 1

|Υ|

∣∣∣∣∣∣∣∣∣∣∣

df1(∂1) . . . df1(∂N ) 0
... . . .

...
...

dfN−1(∂1) . . . dfN−1(∂N ) 0
dfN (∂1) . . . dfN (∂N ) νN

∂1 . . . ∂N 0

∣∣∣∣∣∣∣∣∣∣∣

=
νN

|Υ|

∣∣∣∣∣∣∣∣∣

df1(∂1) . . . df1(∂N )
... . . .

...
dfN−1(∂1) . . . dfN−1(∂N )

∂1 . . . ∂N

∣∣∣∣∣∣∣∣∣
= ν̃{f1, . . . , fN−1, ∗}.

Condition (32) in this case takes the form ΛN = ANNνN = 0. Since the matrix A is
antisymmetric, then ANN = 0. On the other hand from Λj = ANjνN , for j = 1, . . . , N − 1,
we deduce that system (31) takes the form

d

dt

∂T

∂ẋj
− ∂T

∂xj
= Fj =

∂

∂xj

(
1

2
||v||2

)
+

N−1∑

k=1

Λkdfk(∂j)

=
∂

∂xj

(
1

2
||v||2

)
+ νN

N−1∑

k=1

ANkdfk(∂j).

From these relations we obtain the proof of statement (a) of the theorem.
The statement (b) follows trivially from the previous result.
The proof of statement (c) follows by considering that under the assumption (44) we have

⟨
∂S

∂x
,
∂Ψ

∂x

⟩
= ϱ

∣∣∣∣∣∣∣∣∣

df1(∂1) . . . df1(∂N )
... . . .

...
dfN−1(∂1) . . . dfN−1(∂N )
dΨ(∂1) . . . dΨ(∂N )

∣∣∣∣∣∣∣∣∣
= ϱ{f1, . . . , fN−1,Ψ},

where Ψ and ϱ = ϱ(x1, . . . , xN ) are an arbitrary functions. Hence the 1-form associated

to the vector field v is σ = ⟨v, dx⟩ =

⟨
ν
∂S

∂x
, dx

⟩
= ν dS where ν =

ν̃

ϱ
(see (82)). Thus

dσ = dν ∧ dS and consequently from (84) we have

ıvdσ =
N∑

n,j=1

vn

(
∂pn

∂xj
− ∂pj

∂xn

)
dxj = dν(v)dS − dS(v)dν

= v(ν)dS − v(S)dν =

⟨
v(x),

∂ν

∂x

⟩
dS −

⟨
v(x),

∂S

∂x

⟩
dν

=
1

2

(⟨
∂ν2

∂x
,
∂S

∂x

⟩
dS −

∥∥∥∥
∂S

∂x

∥∥∥∥
2

dν2

)
.

After some computations, we deduce that the field of force F which in view of (86) admits

the representation Fj =
∂

∂xj

(
1

2
||v||2

)
+ ıvdσ(∂j). Hence we obtain (45).

If the curve is given by intersection of the hyperplane fj = xj for j = 1, . . . , N − 1, then
the condition (44) takes the form

(124)
N∑

k=1

G̃αk
∂S

∂xk
= 0, α = 1, . . . , N − 1,
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where G̃ is the inverse matrix of the matrix G.

By solving these equations with respect to
∂S

∂xk
for k = 1, . . . , N − 1 we obtain

∂S

∂xk
=

∂S

∂xN

∆

∣∣∣∣∣∣∣

G̃11 . . . G̃1,k−1 −G̃1N G̃1,k+1 . . . G̃1,N−1

... . . .
...

... . . .
...

...

G̃1,N−1 . . . G̃N−1,k−1 −G̃N−1,N G̃N−1,k+1 . . . G̃N−1,N−1

∣∣∣∣∣∣∣

:= Lk
∂S

∂xN
.

By using these relations and in view of (124), after some computations by considering that
N∑

n=1

LnG̃Nn = |G̃| we deduce that

(125)

⟨
∂S

∂x
,
∂F

∂x

⟩
:=

N∑

j,k=1

G̃jk
∂S

∂xk

∂F

∂xj
=

N∑

j=1

G̃Nk
∂S

∂xk

∂F

∂xN
=

|G̃|
∆

∂S

∂xN

∂F

∂xN
.

Consequently we obtain the following expression for the equations (46)

(126)

−∂h

∂x
=

⟨
∂

∂x

(
ν2

2

)
,
∂S

∂x

⟩
∂S

∂x
−
∥∥∥∥
∂S

∂x

∥∥∥∥
2
∂

∂x

(
ν2

2

)

=
|G̃|
∆

∂S

∂xN

(
∂

∂xN

(
ν2

2

)
∂S

∂x
−
(
∂S

∂xN

)
∂

∂x

(
ν2

2

))
.

In view of (125) we obtain that the potential function V takes the form

V =
ν2

2

∥∥∥∥
∂S

∂x

∥∥∥∥
2

− h(f1, . . . , fN−1) =
ν2

2

|G̃|
∆

(
∂S

∂xN

)2

− h(x1, . . . , xN−1).

We observe that if G̃αN = 0 for α = 1, . . . , N − 1, then |G̃| = ∆ G̃NN and SN = xN = cN
is a family of hyperplanes orthogonal to the hyperplanes fj = xj = cj for j = 1, . . . , N − 1.
After integrating (126) we obtain that

V =
1

2
G̃NNν

2 − h =


g(xN ) −

N−1∑

j=1

∫
h(x1, . . . , xN−1)

∂

∂xj

(
1

G̃NN

)
dxj


 G̃NN ,

where g = g(xN ) and h = h(x1, . . . , xN−1) are arbitrary functions.

Clearly if ν = ν(S). Then σ = dΦ(S) where Φ =

∫
ν(S)dS. Therefore dσ = 0. So

ıvdσ = 0. The proof of statement (c) follows.
Now we prove statement (d). We use the homotopy formula Lv = ıvd+dıv, see [19]. The

condition (43) in view of (85) is equivalent to

ıvdσ =
N−1∑

j=1

Λjdfj = νN

N−1∑

j=1

ANjdfj = −dh.

Thus Lvσ = ıvdσ + dıvσ = −dh + dσ(v) = −dh + d||v||2 = d
(
||v||2 − h

)
, here we use the

relation σ(v) =< v,v >= ||v||2. Hence, if gt
v is the flow of v and γ is a closed curve on Q,

then the integral I =

∫

gt
v(γ)

σ is a function on t. In view of the well- known formula (see

[26]) İ =

∫

gt
v(γ)

Lvσ, we obtain that İ = 0. In short Theorem 19 is proved. �

In the two following subsections we illustrate the statement (c) of Theorem 19.
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10.1. Inverse Stäckel’s problem. Let

(127) fj = fj(x) =
n∑

k=1

∫
φkj(xk)√
Kk(xk)

dxk = cj , j = 1, 2, . . . , N − 1,

be a given N −1 -parametric family of orbits in the configuration space Q of the mechanical
system with N degrees of freedom and kinetic energy

(128) T =
1

2

N∑

j=1

ẋ2
j

Aj
,

where Kk(xk) = 2Ψk(xk) + 2
N∑

j=1

αjφkj(xk), αk, for k = 1, 2, . . . , N are constants,Ψk =

Ψk(xk) are arbitrary functions and Aj = Aj(x) such that

(129)
{φ1, . . . , φN−1, xj}
{φ1, . . . , φN−1, φN} = Aj ,

for j = 1, 2, . . . , N. Here dφα =
N∑

k=1

φkα(xk)dxk, φkα = φkα(xk), for k = 1, . . . , N, α =

1, . . . , N are arbitrary functions.

From (128) follows that the metric G is diagonal with Gjj =
1

Aj
.

The inverse Stäckel problem is the problem of determining the potential field of force
that under which any curve of the family (127) is a trajectory of the mechanical system.
The solution is as follows (see [43]).

Proposition 37. For a mechanical system with a configuration space Q and kinetic en-

ergy (128), the potential field of force F =
∂V

∂x
, for which the family of curves (127) are

trajectories is

(130) V = −U = ν2(S)

( {φ1, . . . , φN−1, Ψ}
{φ1, . . . , φN−1, φN} + αN

)
− h0,

where S =

∫ N∑

j=1

√√√√Ψk(xk) +
N∑

k=1

αjφkj(xk) dxk =

∫ N∑

k=1

dxk

qk(xk)
is a function such that the

hypersurface S = cN is orthogonal to the given hypersurfaces fj = cj .

Proof. After some tedious computations we get the equality

{f1, . . . , fN−1, ∗}
{f1, . . . , fN−1, fN} =

∣∣∣∣∣∣∣∣∣

q1dφ1(∂1) . . . qNdφ1(∂N )
...

...
q1dφN−1(∂1) . . . qNdφN−1(∂N )

∂1 . . . ∂N

∣∣∣∣∣∣∣∣∣
∏N

j=1 qj{φ1, . . . , φN}

=
N∑

j=1

(
Aj

qj
∂j

)
=

N∑

j=1

(
Aj

∂S

∂xj
∂j

)
,

From (123) we have v(x) = νG−1 ∂S

∂x
, hence in view of the first identity of (58) we obtain

⟨
∂S

∂x
,
∂fj

∂x

⟩
=

N∑

k=1

Akφkj =
N∑

k=1

Ak
∂φj

∂xk
=

{φ1, . . . , φN−1, φj}
{φ1, . . . , φN−1, φN} = 0,
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for j = 1, . . . , N − 1, thus we obtain the orthogonality of the surfaces.
On the other hand from the relation

∥v∥2 = ν2

N∑

k=1

Ak(Kk(xk))2 = ν2
N∑

k=1

Ak


2Ψk(xk) + 2

N∑

j=1

αjφkj(xk)




= 2ν2

N∑

k=1

AkΨk(xk) + 2ν2
N∑

j=1

αj

N∑

k=1

Akφkj(xk)

= 2ν2


 {φ1, . . . , φN−1, Ψ}

{φ1, . . . , φN−1, φN} +
N∑

j=1

αj
{φ1, . . . , φN−1, φj}
{φ1, . . . , φN−1, φN}




= 2ν2

( {φ1, . . . , φN−1, Ψ}
{φ1, . . . , φN−1, φN} + αN

)
,

here we used the first identity of (58), where dΨ =

N∑

j=1

Ψk(xk)dxk. We observe that if we

choose ν = ν(S), then from (46) we obtain that the field of force which generates the given
family of orbits (127) is potential with potential function given by (130). In particular if
ν = 1 and h0 = αN then we obtain the classical Stäckel potential (see [13]). �

We observe that from (129) (130) follows that the metric G and potential function U can
be determined from the given functions (127).

10.2. Inverse Problem of two fixed centers. The next example is a particular case of
the inverse Stäckel’s problem. This problem is called the inverse problem of two fixed centers
(for more details see [43]).

Let P be a particle of infinitesimal mass which is attracted by two fixed centers C0 and
C1 with mass m0 and m1 respectively. We select the coordinates so that the origin coincides
with the center of mass and the x–axis passing through the points C0 and C1. Denoting
by r0, r1 and 2c the distances between C0(x0, 0, 0 and P (x, y, z), C1(x1, 0, 0) and P (x, y, z)
and C0(x0, 0, 0) and C1(x1, 0, 0) respectively, we obtain that

r0 =
√

(x− x0)2 + y2 + z2, r =
√

(x− x1)2 + y2 + z2, 2c = |x1 − x0|.

Then we have a particle with configuration space R3 and Lagrangian function

L =
1

2

(
ẋ2 + ẏ2 + ż2

)
−
(
m0

r0
+
m1

r1

)
f,

where f is the attraction constant (see [12]).
After the coordinate change

x =
m0 −m1

m1 +m0
c+ c λ µ, y = c

√
(λ2 − 1)(1 − µ2) cosw, z = c

√
(λ2 − 1)(1 − µ2) sinw

we obtain

L =
c2(λ2 − µ2)

4(λ2 − 1)
λ̇2 − c2(λ2 − µ2)

4(1 − µ2)
µ̇2 +

c2(λ2 − 1)(1 − µ2)

2
ẇ2 −f

(m0 +m1)λ+ (m1 −m0)µ

c(λ2 − µ2)
,

and r0 = c(λ+ µ), r1 = c(λ− µ), where 1 ≤ λ < +∞, −1 ≤ µ ≤ 1, 0 ≤ w ≤ 2π.
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Clearly the matrix G̃ in this case is

G̃ =




2(λ2 − 1)

c2(λ2 − µ2)
0 0

0
2(1 − µ2)

c2(λ2 − µ2)
0

0 0
1

c2(λ2 − 1)(1 − µ2)



.

The inverse problem of the two fixed centers involves the construction of the potential
field of forces for which the given family of curves

f1(λ, µ, w) =

∫
dλ√
R2(λ)

−
∫

dµ√
R1(µ)

= c1,

f2(λ, µ, w) w − A

2

(∫
dλ

(λ2 − 1)
√
R2(λ)

+

∫
dµ

(1 − µ2)
√
R1(µ)

)
= c2,

are formed by trajectories of the equations of motion, where R1 and R2 are functions such
that

R1(µ) = h0c
2µ4 + fc(m0 −m1)µ

3 + (a2 − h0c
2)µ2 − fc(m0 −m1)µ− A2

2
− a2

R2(λ) = h0c
2λ4 + fc(m0 +m1)λ

3 + (a2 − h0c
2)λ2 − fc(m0 +m1)λ− A2

2
− a2,

here C, h0, f, A and a2 are real constants.
After some computations we deduce

{f1, f2, F} = − 1√
R1(µ)

∂λF − 1√
R2(λ)

∂µF − A(λ2 − µ2)

2
√
R1(µ)R2(λ)(λ2 − 1)(1 − µ2)

∂wF =

= − c2(λ2 − µ2)

2
√
R1(µ)R2(λ)

( 2(λ2 − 1)

c2(λ2 − µ2)

(√R2(λ)

(λ2 − 1)
∂λF

)
+

2(1 − µ2)

c2(λ2 − µ2)

(√R1(µ)

(1 − µ2)
∂µF

)

+
1

c2(λ2 − 1)(1 − µ2)

(
A∂wF

))
:= ϱ

⟨
∂S

∂x
,
∂F

∂x

⟩

= ϱ(G̃11∂λS∂λF + G̃22∂µS∂µF + G̃33∂wS∂wF ),

where F is an arbitrary function, and

ϱ = − c2(λ2 − µ2)

2
√
R1(µ)R2(λ)

, S(λ, µ, w) =

∫ √
R1(µ)

(1 − µ2)
dµ+

∫ √
R2(λ)

(λ2 − 1)
dλ+Aw.

Hence from (130) we obtain

V =
1

2
ν2(S)

∥∥∥∥
∂S

∂x

∥∥∥∥
2

−h0 =
ν2

c2

( R1(µ)

(1 − µ2)(λ2 − µ2)
+

R2(λ)

(λ2 − 1)(λ2 − µ2)
+

A2

(λ2 − 1)(1 − µ2)

)
−h0.

In view of the equalities

R1(µ)

1 − µ2
= −h0c

2µ2 + (m1 −m0)cfµ− a2 − A2

2(1 − µ2)
,

R2(λ)

λ2 − 1
= h0c

2λ2 + (m0 +m1)cfλ+ a2 − A2

2(λ2 − 1)
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we deduce that

U = ν2
(
h0 +

(m0 +m1)λ+ (m1 −m0)µ

c(λ2 − µ2)
f
)

− h0.

By taking ν = 1, then U = f
(m0 +m1)λ+ (m1 −m0)µ

c(λ2 − µ2)
, which coincides with the well

known potential (see [12, 13].)

10.3. Joukovski’s example. We shall study a mechanical systems with three degrees of
freedom. If we denote by x1 = p, x2 = q, x3 = r, then we consider the mechanical system
with kinetic energy

T =
1

2r2

(
ṗ2 − 2p ṗ ṙ + q̇2 − 2q q̇ ṙ +

(
p2 + q2

r2
+ r2

)
ṙ2
)
.

Consequently the matrix G̃ is such that

G̃ =




p2 + r4

r2
pq

r2
p

r

pq

r2
q2 + r4

r2
q

r

p

r

q

r
1




. .

Then we get |G̃| = r4, ∆ = p2 + q2 + r4. We determine the field of force derived from the
potential-energy function (48) in such a way that the family of curves p = c1, q = c2 can be
freely described by a particle with kinetic energy T .

In this case equations (124) are

g̃11
∂S

∂p
+ g̃12

∂S

∂q
+ g̃13

∂S

∂r
=

p2 + r4

r2
∂S

∂p
+
pq

r2
∂S

∂q
+
p

r

∂S

∂r
= 0,

g̃21
∂S

∂p
+ g̃22

∂S

∂q
+ g̃23

∂S

∂r
=

q2 + r4

r2
∂S

∂q
+
pq

r2
∂S

∂p
+
q

r

∂S

∂r
= 0.

The solutions of these partial differential equations are S = S

(
p2 + q2

r2
− r2

)
,where S is

an arbitrary function in the variable
p2 + q2

r2
− r2.

Without loss of generality below we consider that S =
p2 + q2

r2
− r2. Hence after some

computations we obtain that conditions (126) take the form

(131)
∂h

∂p
=

2p

r

∂ν2

∂r
+

(p2 + q2 + r4)

r2
∂ν2

∂p
,

∂h

∂q
=

2q

r

∂ν2

∂r
+

(p2 + q2 + r4)

r2
∂ν2

∂q
.

From the compatibility conditions of these equations we obtain that h = h(p2 + q2), ν =
ν(p2 + q2, r). In the coordinates ξ = p2 + q2, r = r the conditions (131) write

(132)
∂h

∂ξ
=

1

r2

(
r
∂ν2

∂r
+ 2(ξ + r4)

∂ν2

∂ξ

)
.

Thus, from (48), the potential function takes the form

(133) V =
1

2
ν2(ξ, r)

(
ξ

r2
+ r2

)
− h(ξ),

where ν = ν(ξ, r) and h = h(ξ) are solutions of (132).
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We shall look for the solution h = h(ξ) of (132) when the function ν2 is given by

ν2 = Ψ

(
ξ

r2
− r2

)
+

+∞∑

j=−∞
aj(ξ)r

j .

where the series is a formal Laurent series, and Ψ = Φ(
ξ

r2
− r2) is an arbitrary function.

By inserting ν2 in (132) we obtain

+∞∑

j=−∞

(
jaj + 2ξ

daj

dξ
+ 2

daj−4

dξ

)
rj =

r2

2

dh

dξ
.

We choose the coefficients aj satisfying

jaj + 2ξ
daj

dξ
+ 2

daj−4

dξ
= 0 ⇐⇒ (j − 2)aj +

d

dξ
(2ξaj + 2aj−4) , for j ̸= 2,

2a2 + 2ξ
da2

dξ
+ 2

da−2

dξ
=

dh

2dξ
⇐⇒ d

dξ

(
2ξa2 + 2a−2 − h

2

)
= 0.

Consequently the potential function (133) takes the form

V = 4


Ψ

(
ξ

r2
− r2

)
+

+∞∑

j=−∞
aj(ξ)r

j



(
ξ

r2
+ r2

)
− 4ξa2 − 4a−2 − h0.

If we change p = xz, q = yz, r = z where x, y, z are the cartesian coordinates, then
in these coordinates the kinetic and potential function takes the form respectively

T =
1

2

(
ẋ2 + ẏ2 + ż2

)
,

V = 4


Ψ

(
x2 + y2 − z2

)
+

+∞∑

j=−∞
aj(z

2(x2 + y2))zj


(x2 + y2 + z2

)
−

4z2(x2 + y2)a2(z
2(x2 + y2)) − 4a−2(z

2(x2 + y2)) − h0.

Clearly if aj = 0 for j ∈ Z then we obtain the potential V = Ψ
(
x2 + y2 − z2

) (
x2 + y2 + z2

)
−

h0 obtained by Joukovski in [22]. On the other hand, if Ψ = 0, aj = 0 for j ∈ Z \ 2 and
4a2 = a then we obtain the potentials V = az4 − h0 given in [43].

11. Proof of Theorem 20, 21 and 25

Proof of Theorem 20. Under the assumptions of Corollary 5 taking the N of the corollary
as 2N, introducing the notations yj = xN+j , and choosing gN+j = xj for j = 1, . . . , N, we
obtain that the differential systems (9) takes the form

(134) ẋj = λN+j , ẏj =
N∑

k=1

λN+k
{f1, . . . , fN , x1, . . . , xk−1, yj , xk+1, . . . , xN}

{f1, . . . , fN , x1, . . . , xN} ,

for j = 1, 2, . . . , N. These equations are the most general differential equations which admits
N independent first integrals and satisfy the condition {f1, . . . , fN , x1, . . . , xN} ̸= 0.

The proof of Theorem 20 is obtained by choosing the arbitrary functions λN+j as follows
λN+j = {H,xj}∗, where H is the Hamiltonian function for j = 1, . . . , N . From the identity
(61) with G = yk, fN+j = xj for j = 1, . . . , N, we obtain that differential system (134)
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can be rewritten as

ẋj = {H,xj}∗,

ẏj =
N∑

k=1

({H,xk}∗)
{f1, . . . , fN , x1, . . . , xk−1, yj , xk+1, . . . , xN}

{f1, . . . , fN , x1, . . . , xN}

= {H, yj}∗ −
N∑

k=1

{H, fk}∗ {f1, . . . , fk−1, yj , fk+1, . . . , fN , x1, . . . , . . . , xN}
{f1, . . . , fN , x1, . . . , xN}

+

N∑

k=1

Wj
{f1, . . . , fN , x1, . . . , xk−1, yj , xk+1, . . . , xN}

{f1, . . . , fN , x1, . . . , xN} .

Clearly if the first integrals are in involution and Wj = 0, then we obtain that the Hamil-
tonian system with Hamiltonian H = H(f1, . . . , fN ) is integrable by quadratures.

Now we shall prove the equations (53). Since {f1, . . . , fN , x1, . . . , . . . , xN} = 0 and
{f1, . . . , fN , x1, . . . , , xN−1, y1} ̸= 0. Taking Wj = 0 for j = 1, . . . , N − 1 and λN+j =
∂ H

∂ yj
= {H,xj}∗, for j = 1, . . . , N − 1, where H is the Hamiltonian function and in

view of the identity (61) with G = xN , fN+j = xj for j = 1, . . . , N − 1, f2N = y1, and
G = yj , fN+j = xj for j = 1, . . . , N − 1, f2N = y1, we obtain that differential system
(134) can be rewritten as

ẋj = {H,xj}∗, for j = 1, . . . , N − 1,

ẋN =
N−1∑

k=1

{H,xk}∗ {f1, . . . , fN , x1, . . . , xk−1, xN , xk+1, . . . , y1}
{f1, . . . , fN , x1, . . . , , xN−1, y1}

+λ2N
{f1, . . . , fN , x1, . . . , xN−1, xN}
{f1, . . . , fN , x1, . . . , , xN−1, y1}

= {H,xN}∗ −
N∑

k=1

{H, fj}∗ {f1, . . . , fk−1, xN , fk+1, . . . , fN , x1, . . . , . . . , y1}
{f1, . . . , fN , x1, . . . , , xN−1, y1}

+(λ2N − {H, y1}∗)
{f1, . . . , fN , x1, . . . , xN−1, xN}
{f1, . . . , fN , x1, . . . , , xN−1, y1}

,

ẏ1 = λ2N ,

ẏj =
N−1∑

k=1

{H,xk}∗ {f1, . . . , fN , x1, . . . , xk−1, yj , xk+1, . . . , xN}
{f1, . . . , fN , x1, . . . , , xN−1, y1}

+λ2N
{f1, . . . , fN , x1, . . . , xN−1, yj}
{f1, . . . , fN , x1, . . . , , xN−1, y1}

= {H, yj} −
N∑

k=1

{H, fj}∗ {f1, . . . , fk−1, yj , fk+1, . . . , fN , x1, . . . , . . . , xN}
{f1, . . . , fN , x1, . . . , , xN−1, y1}

+(λ2N − {H, y1}∗)
{f1, . . . , fN , x1, . . . , xN−1, yk}
{f1, . . . , fN , x1, . . . , , xN−1, y1}

.

Therefore by choosing λ2N = {H, y1}∗ + λ{f1, . . . , fN , x1, . . . , , xN−1, y1}, we get the differ-
ential system (53).

In view of the identity (59) with G = fj from (53) we obtain the relations

ḟk =
N∑

j=1

∂fk

∂yj
{f1, . . . , fN , x1, . . . , yj} =

∂fk

∂xN
{f1, . . . , fN , x1, . . . , xN} = 0.



48 J. LLIBRE, R. RAMÍREZ AND N. SADOVSKAIA

Differential system (53) when {H, fj} = 0 for j = 1, . . . , N is the standard Hamiltonian
system with the constraints {f1, . . . , fN , x1, . . . , xN} = 0. �

11.1. Neumar-Moser integrable system. We shall illustrate these theorem in the Neumann-
Moser’s integrable system.

Now we study the case when we have N independent involutive first integrals of the form

(135) fν = (Axν +Byν)2 + C

N∑

j ̸=ν

(xνyj − xjyν)
2

aν − aj
,

for ν = 1, . . . , N, where A, B and C are constants such that C(A2 +B2) ̸= 0. Thus we study
the constrained Hamiltonian system

(
R2N , Ω2,M, , H

)
.

The case when A = 0, B = 1, C = 1 and A = 1, B = 0, C = 1 was study in particular
in [34]. The case when AB ̸= 0 was introduced in [41]). In particular if C = (A+B)2 then

from (135) we obtain that fν = A2f
(1)
ν +B2f

(2)
ν + 2ABf

(3)
ν where

f (1)
ν = x2

ν+

N∑

j ̸=ν

(xνyj − xjyν)
2

aν − aj
, f (2)

ν = y2
ν+

N∑

j ̸=ν

(xνyj − xjyν)
2

aν − aj
, f (3)

ν = xνyν+

N∑

j ̸=ν

(xνyj − xjyν)
2

aν − aj
.

It is easy to show that the following relations hold {f (α)
k , f

(α)
m }∗ = 0, for α = 1, 2, 3, m, k =

1, . . . , N, i.e. are in involution.
After some computations we obtain that {f1, . . . , fN , x1, . . . , xN} ̸= 0 if B ̸= 0. Then

taking in (51) H = H(f1, . . . , fN ), and Wj = 0 for j = 1, . . . , N we obtain a completely
integrable Hamiltonian system ẋj = {H, xj}∗, ẏj = {H, yj}∗.

IfB = 0 then {f1, . . . , fN , x1, . . . , xN} = 0 Then taking in (53)H = H(f1, . . . , fN ), Wj =
0 for j = 1, . . . , N and in view of the relations {f1, . . . , fN , x1, . . . , xN−1, yj} = ϱ(x)xj for
j = 1, . . . , N , for convenient function ϱ = ϱ(x), we obtain the differential system

(136) ẋ = {H, x}∗, ẏ = {H, y}∗ + λ̃x,

where λ̃ = ϱλ. In particular for N = 3 we deduced that

{f1, f2, f3, x1, x2, x3} = 0, {f1, f2, f3, x1, x2, y1} =
K

∆
x3x1,

{f1, f2, f3, , x1, x2, y2} =
K

∆
x3x2, {f1, f2, f3, x1, x2, y3} =

K

∆
x3x3,

where ∆ = (a1 −a2)(a2 −a3)(a1 −a3), and K is a convenient function. Thus the differential

system (136) with ϱ =
Kx3

∆
describes the behavior of the particle with Hamiltonian H =

H(f1, f2, f3) and constrained to move on the sphere x2
1 + x2

2 + x2
3 = 1.

If we take H =
1

2
(a1f1 + a2f2 + a3f3) =

1

2

(
||x||2||y||2 − ⟨x, y⟩2 + a1x

2
1 + a2x

2
2 + a3x

2
3

)

and λ = Ψ(x2
1 + x2

1 + x2
1), then from equations (136) we deduce that the equations of

motion of a particle on a 3-dimensional sphere, with an anisotropic harmonic potential
(Neumann’s problem). This system is one of the best understood integrable systems of
classical mechanics.
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Proof of Theorem 21. The differential systems (9) under the assumptions of Theorem 21
takes the form

(137)

ẋj = λN+j , for j = 1, 2, . . . , N − r,

ẋn =
2N∑

k=N+1

λk
{f1, . . . , fN , x1, . . . , xk−1, xn, xk+1, . . . , xN}

{f1, . . . , fN , x1, . . . , xN} ,

for n = N − r + 1, . . . , N,

ẏm =

2N∑

k=N+1

λk
{f1, . . . , fN , x1, . . . , xk−1, yn, xk+1, . . . , xN}

{f1, . . . , fN , x1, . . . , xN} , ,

for m = 1, 2, . . . , N.

These equations are the most general differential equations which admits N+r first integrals
which satisfies the condition {f1, . . . , fN+r, x1, . . . , xN−r} ≠ 0.

By choosing in (49) the arbitrary functions Wj = 0 and λN+j = {H,xj}∗ for j =
1, . . . , N−r, whereH is the Hamiltonian and by using the identity (61) withG = xk, fN+r+j =
xj for j = 1, . . . , N − r, and G = yk, fN+r+j = xj for j = 1, . . . , N − r, we obtain
that differential system (137) can be rewritten as

ẋj = {H,xj}∗ for j = 1, 2, . . . , N − r,

ẋk =
N−r∑

j=1

{H,xj}∗ {f1, . . . , fN+r, x1, . . . , xj−1, xk, xj+1, . . . , xN−r}
{f1, . . . , fN+r, x1, . . . , xN−r}

= {H,xk}∗−
N+r∑

k=1

{H, fj}∗ {f1, . . . , fj−1, xk, fj+1, . . . , fN+r, x1, . . . , . . . , xN−r}
{f1, . . . , fN+r, x1, . . . , xN−r}

,

for k = N − r + 1, . . . , N,

ẏj =

N−r∑

k=1

{H,xk}∗ {f1, . . . , fN+r, x1, . . . , xk−1, yj , xk+1, . . . , xN}
{f1, . . . , fN+r, x1, . . . , xN−r}

= {H, yj}∗−
N+r∑

k=1

{H, fk}∗ {f1, . . . , fk−1, yj , fk+1, . . . , fN+r, x1, . . . , . . . , xN−r}
{f1, . . . , fN+r, x1, . . . , xN−r}

,

for j = 1, 2, . . . , N. Hence we get the differential system (54). �

Proof of Theorem 25. Analogously to the proof of Theorem 3 from formula (78), denoting
by (∂1, . . . , ∂2N ) = (∂x1 , . . . , ∂xN

, ∂y1 , . . . , ∂yN
), and taking the arbitrary functions λN+j =

{H̃, xj}∗ for j = 1, . . . , N, where H̃ is the Hamiltonian function, from identity (61) with
fj = gj , fN+j = xj , G = yj , for j = 1, . . . , N, we obtain the differential system (55).
This is the proof of the Theorem 25 �

11.2. Gantmacher system. We shall illustrate Theorem 25 in the nonholonomic sys-
tem study in subsection 9.4. Thus we shall study the constrained Hamiltonian system
(R8,Ω2,M2,H) with M2 = {g1 = x1y1 + x2y2 = 0, g2 = x1y3 − x2y4 = 0.. We choose
the arbitrary functions gj for j = 3, . . . , 8 as follows

g3 = x1y2 − x2y1, g4 = x2y3 + x1y4, gj+4 = xj , for j = 1, 2, 3, 4.
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We apply Theorem 25. In view of the relations

{g1, g2, g3, g4, x1, . . . , x4} = −(x2
1 + x2

2)
2, {y1, g2, g3, g4, x1, . . . , x4} = −x1(x

2
1 + x2

2),

{g1, y1, g3, g4, x1, . . . , x4} = 0, {g1, g2, y1, g4, x1, . . . , x4} = x2(x
2
1 + x2

2),

{g1, g2, g3, y1, x1, . . . , x4} = 0, {g1, g2, g3, g4, y1, x2, x3, x4} = (x1y1 − x2y2)(x
2
1 + x2

2),

{g1, g2, g3, g4, x1, y1, x3, , x4} = (x1y2 + x2y1)(x
2
1 + x2

2), {g1, g2, g3, g4, x1, x2, y1, x4} = 0,

{g1, g2, g3, g4, x1, x2, x3, y4} = 0.

In a similar form we can obtain the remain determinant. Thus system (55) takes the form

(138)

ẋj = {H̃, xj}∗, for j = 1, 2, 3, 4,

ẏ1 = {H̃, y1}∗ − x1{H, g1}∗

x2
1 + x2

2

− (λ3 − {H, g3}∗)
x2

x2
1 + x2

2

,

ẏ2 = {H̃, y2}∗ − x2{H, g1}∗

x2
1 + x2

2

+ (λ3 − {H, g3}∗)
x1

x2
1 + x2

2

,

ẏ3 = {H̃, y3}∗ − x1{H, g2}∗

x2
1 + x2

2

+ (λ4 − {H, g4}∗)
x2

x2
1 + x2

2

,

ẏ4 = {H̃, y4}∗ +
x2{H, g2}∗

x2
1 + x2

2

+ (λ4 − {H, g4}∗)
x1

x2
1 + x2

2

.

In particular, taking λ3 = {H, g3}∗, λ4 = {H, g4}∗, and H =
1

2

(
y2
1 + y2

2 + y2
3 + y2

4

)
− gx3,

thus in view of (116) we obtain

{H, g1}∗ = y2
1 + y2

2 = −µ1(x
2
1 + x2

2), {H, g2}∗ = y1y3 − y2y4 + gx1 = −µ2(x
2
1 + x2

2).

Consequently differential equations (56) take the form

ẋ1 = y1, ẋ2 = y2, ẋ3 = y3, ẋ4 = y4,

ẏ1 = x1µ1, ẏ2 = x2µ1, ẏ3 = −g + x1µ2, ẏ4 = −x2µ2,

which coincide with the Hamiltonian form of equations (122).

Acknowledgements

The first author is partially supported by a MICINN/FEDER grant number MTM2009-
03437, by an AGAUR grant number 2009SGR-410 and ICREA Academia. The second au-
thor was partly supported by the Spanish Ministry of Education through projects TSI2007-
65406-C03-01 “E-AEGIS” and Consolider CSD2007-00004 “ARES”.

References

[1] V.I. Arnold, Dynamical systems III, Springer-Verlag, 1996.
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[21] R. Ibañez, M. de León, J. Marreros and E. Padrón, Leibniz algebroid associated with a Nambu-

Poisson structure, J.Phys. A: Math. Gen. 32 (1999), 8129–8144.
[22] N.E. Joukovski, Postroenye potencialnaia funksia po zadannie cemiestvo trayectories, Sobranye

sochinyeni , T.1, Ed.Gostexizdat, 1948 (in Russian).
[23] E.I. Kharlamova-Zabelina, Rapid rotation of a rigid body about a fixed point under the presence of

a nonholonomic constraints, Vestnik Moskovsk. Univ., Ser. Math. Mekh., Astron., Fiz.Khim. 6 (1957),
25 (in Russian).

[24] V.V. Kozlov, On the integration theory of the equations of nonholonomic mechanics, Regular and
chaotic dynamics 7 (2) (2002), 161–172.

[25] V.V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics, 1995 Springer-Verlag,
Berlin.

[26] V.V. Kozlov, Dynamical systems X, General theory of vortices, Spriger , 2003.

[27] J. Llibre and C. Pantazi, Polynomial differential systems having a given Darbouxian first integral,
Bull. Sci. Math. 128 (2004), 775–788.

[28] J. Llibre, On the integrability of the differential systems in dimension two and of the polynomial
differential systems in arbitrary dimension, J. of Applied Analysis and Computation 1 (2011), 33–52.

[29] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 7 (1973), 2405–2412.
[30] N.N. Nekhoroshev, Variables ”action-angle” and their generalizations, Tr. Mosk. Mat. Obshch. 26

(1972), 181–198 (in Russian).
[31] J.I. Neimark and N.A. Fufaev, Dynamics of Nonholonomic Systems, American Mathematical Society,

1972.
[32] I. Newton, Philosophie Naturalis Principia, Mathematica, London, 1687.
[33] A.J. Maciejewski and M. Przybylska, Non-integrability of the Suslov problem, Regular and Chaotic

Dynamics 7 (1) (2002), 73–80.

[34] J. Moser, Various aspects of integrable Hamiltonian systems, in S. Helagason J. Coates, editor, Dy-
namical Systems, C.I.M.E. Lectures, Bressanone 1978, Birkhäauser, Boston, 2 edition, 1983, 233–290.
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[42] N. Sadovskaia and R. Raḿırez, Inverse approach to study the planar polynomial vector field with

algebraic solutions, J. Physics A: Math. and Gen. 37 (2004), 3847–3868.
[43] N. Sadovskaia, Inverse problem in theory of ordinary differential equations, Thesis Ph. D., Univ.
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