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GLOBAL DYNAMICS OF THE
KUMMER–SCHWARZ DIFFERENTIAL EQUATION

JAUME LLIBRE1 AND CLAUDIO VIDAL2

Abstract. This paper studies the Kummer–Schwarz differential
equation 2ẋ

...
x −3ẍ2 = 0 which is of special interest due to its rela-

tionship with the Schwarzian derivative. This differential equation
is transformed into a first order differential system in R3, and we
provide a complete description of its global dynamics adding the
infinity.

1. Introduction and statements of main results

The Schwarzian derivative

(1) {x, t} =

...
x (t)

ẋ(t)
− 3

2

(
ẍ(t)

ẋ(t)

)2

,

plays an important role in the treatment of univalent functions, see
details in [5] and references therein. Here the dot denotes derivative
with respect to the independent variable t. When the right hand in
equation (1) is taken at zero, the resulting equation is the Kummer–
Schwarz equation which is given by

(2) 2ẋ
...
x − 3ẍ2 = 0,

and is of special interest due to its relationship to the Schwarzian de-
rivative and its exceptional algebraic properties. This equation is also
encountered in the study of geodesic curves in spaces of constant cur-
vature, Lie lists the characteristic functions for its contact symmetries,
see more results on this differential equation in [1], [4], [5] and [6]. But
up to now nobody has described its global dynamics. This will be the
objective of this paper.

The Kummer-Schwarz equation of third order (2) can be written as
the following rational differential system of first order

(3) ẋ = y, ẏ = z, ż =
3z2

2y
,
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in R3. Rescaling the time according to dτ/dt = 2y, we obtain the
equivalent polynomial differential system (outside the plane y = 0)

(4) x′ = 2y2, y′ = 2yz, z′ = 3z2,

here the prime denotes derivative with respect to the new independent
variable τ . This differential system is called the Kummer-Schwarz dif-
ferential system in R3.

We will study the flow of the polynomial differential system (4) in
the phase space R3, of course, in order to describe the flow of the
differential system (3) we must omit the plane y = 0.

1.1. Symmetries and reduction of the flow to the quadrant
y ≥ 0 and z ≥ 0. The differential system (4) is invariant under the
following two symmetries

S1(x, y, z) = (x, −y, z), and S2(x, y, z, τ) = (−x, y, −z, −τ).

The symmetry S1 says that the flow of system (4) is symmetric with
respect to the plane y = 0. Therefore, if (x(τ), y(τ), z(τ)) is a solution
of (4), then (x(τ), −y(τ), z(τ)) is also solution of (4). The symmetry
S2 says that the flow of system (4) is symmetric with respect to the
y–axis reversing the sense of the orbits. Therefore, if (x(τ), y(τ), z(τ))
is a solution of (4), then (−x(−τ), y(τ),−z(−τ)) is also solution of (4).
Using both symmetries in order to describe the flow of system (4) in
R3 it is enough to describe the flow of system (4) on the quadrant

Q = {(x, y, z) ∈ R3 : y ≥ 0, z ≥ 0}.
1.2. The Poincaré compactification. It is know that a polynomial
differential system in R3 can be extended to a unique analytic differen-
tial system on the closed ball B of radius 1 centered at the origin of R3,
called the Poincaré ball. More precisely, the whole space R3 is identi-
fied with the interior of B, and the infinity of R3 is identified with the
boundary of B, i.e. with the 2–dimensional sphere S2. For more details
see [2] and [7], and the appendix of this paper. The know technique for
making such an extension is called the Poincaré compactification and
it allows to study the dynamics of a polynomial differential system in
a neighborhood of infinity. Poincaré introduced this compactification
for polynomial differential systems in R2.

1.3. The global dynamics. Our main result is the description of the
global dynamics of the Kummer-Schwarz differential system (4) on the
compactified quadrat Q of Q inside the Poincaré ball B, see Figure
1. More precisely, we describe all the α– and ω–limit sets of all the
orbits of the Kummer-Schwarz differential system (4). For the standard
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definitions of orbit, α– and ω–limit sets of an orbit, and of the Poincaré
compactification, see for instance [3].

z

x

y

Figure 1. The quadrant Q of the Poincaré ball B.

Theorem 1. The following statements hold for the Kummer-Schwarz
differential system (4).

(a) On the quadrant Q the equilibrium points are all the points of
the x–axis, including its endpoints at infinity (X− at the end of
the negative x–axis and X+ at the end of the positive x–axis),
and additionally the endpoint Z+ at infinity of the positive z–
axis, see Figure 2.

(b) On the invariant boundary y = 0 of the quadrant Q the orbits
are the half–straight lines parallel to the z–axis having α–limit
an equilibrium point of the x–axis and ω–limit the equilibrium
point Z+, see Figure 2.

(c) On the invariant boundary z = 0 of the quadrant Q the orbits
are the straight lines parallel to the x–axis having α–limit the
equilibrium point X− and ω–limit the equilibrium point X+, see
Figure 2.

(d) On the infinity S2 ∩Q the flow is qualitatively the one described
in Figure 3, i.e. without taken into account the three equilibrium
points Z+, X− and X+ at the infinity of the quadrant Q all the
other orbits have ω–limit at the equilibrium point Z+, and α–
limit either at X−, or at X+.
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(e) The explicit solution (x(τ), y(τ), z(τ)) of the differential system
(4) such that (x(0), y(0), z(0)) = (x0, y0, z0) is

(5)

x(τ) = x0 +
2y2

0

z0

(
1

(1 − 3z0τ)1/3
− 1

)
,

y(τ) =
y0

(1 − 3z0τ)2/3
,

z(τ) =
z0

1 − 3z0τ
.

(f) Let γ be an orbit contained in the interior of the quadrant Q.
Then the α–limit of γ is the equilibrium point X− and its ω–
limit is the equilibrium point Z+.

(g) The differential system (4) has two independent first integrals
H1 = z2/y3 and H2 = x − 2y2/z. The set {H1 = h1} ∩ {H2 =
h2} ∩ Q is an orbit γ with endpoints at X− and Z+.

The proof of Theorem 1 is given in section 2.

The two independent first integrals H1 and H2 of statement (g) of
Theorem 1 are due to Goviender and Leach [4].

X_

Z+

+X

Figure 2. The flow on the invariant planes y = 0 and
z = 0 restricted to the quadrant Q.

2. Proof of Theorem 1

This section is dedicated to prove the different statements of Theo-
rem 1.
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Figure 3. The flow on the infinity restricted to the
quadrant Q.

Proof of statement (a) of Theorem 1. From the equations of the differ-
ential system (4) it follows immediately that the x–axis is filled with
equilibrium points, because x′ = y′ = z′ = 0 when y = z = 0. Now we
shall study the equilibriums points at the infinity of the quadrant Q
using the Poincaré compactification of R3 described in the appendix.

We start studying the equilibrium points at the infinity located on
the local chart U1, i.e. in x > 0 and its boundary at infinity. Thus the
compactified differential system (4) in the local chart U1 is given by

(6) ż1 = −2z3
1 + 2z1z2, ż2 = −2z2

1z2 + 3z2
2 , ż3 = −2z2

1z3.

At the infinity z3 = 0 of U1, i.e. in the points of the sphere S2 system
(6) reduces to

(7) ż1 = 2z1(−z2
1 + z2), ż2 = z2(−2z2

1 + 3z2).

So, the unique equilibrium point at the infinity of U1 is the origin
(0, 0, 0) of U1. Its linear part has all its eigenvalues equal to zero.
Therefore we need to study it using the technique of blow ups, see for
more details the Chapter 3 of [3]. Then, we obtain that the local phase
portrait of the equilibrium point (0, 0) of the differential system (7) is
qualitatively the one of Figure 4. The equilibrium point (0, 0, 0) of U1

corresponds to the endpoint X+ of the positive x–axis.

The local phase portrait at the equilibrium point (0, 0, 0) of V1 which
corresponds to the endpoint X− of the negative x–axis, is obtained do-
ing symmetry with respect to the center of the sphere S2 and reversing
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z1

z2

Figure 4. The local phase portrait of the equilibrium
point (0, 0) of the differential system (7).

the orientation of the orbits because the degree of the polynomial dif-
ferential system (4) is 2.

The flow of system (4) in the local chart U2 is given by the differential
system

(8) ż1 = −2z1z2 + 2, ż2 = −2z2
1z2 + 3z2

2 , ż3 = −2z2z3.

So there are no equilibrium points at infinity in this local chart.

In the local chart U3 the system (4) becomes

(9) ż1 = −3z1 + 2z2
2 , ż2 = −z2, ż3 = −3z3.

At the infinity of U3 the point (0, 0, 0) is the unique equilibrium point,
and its linear part has the eigenvalues −1 and −3 with multiplicity
two. Therefore, by the Hartman Theorem this equilibrium point is a
local attractor, and it corresponds to the endpoint Z+ of the positive
z–axis. �

Proof of statement (b) of Theorem 1. From the differential system (4)
it follows that x′ = 0 and y′ = 0 when y = 0, so the plane y = 0 and
the straight lines {y = 0} ∩ {x = constant} are invariant by the flow
of system (4). In other words, if an orbit of the differential system (4)
has a point in y = 0, or in {y = 0} ∩ {x = constant} then the whole
orbit is contained in that plane or straight line.

In short, on the invariant boundary y = 0 of the quadrant Q the
orbits are the half–straight lines parallel to the z–axis having α–limit
an equilibrium point of the x–axis and ω–limit the equilibrium point
Z+, see for more details the proof of statement (a). �

Proof of statement (c) of Theorem 1. From the differential system (4)
we have that y′ = 0 and z′ = 0 when z = 0, so the plane z = 0 and
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the straight lines {z = 0}∩ {y = constant} are invariant by the flow of
system (4).

In summary, on the invariant boundary z = 0 of the quadrant Q the
orbits are the straight lines parallel to the x–axis having α–limit the
equilibrium point X− and ω–limit the equilibrium point X+, see again
for more details the proof of statement (a). �

Proof of statement (d) of Theorem 1. From the fact that the infinity
S2 is invariant by the compactified flow of the polynomial differential
system (4), and the local phase portraits at the three equilibrium points
Z+, X− and X+ at the infinity of the quadrant Q studied in the proof
of statement (a), it follows that on the infinity S2 ∩ Q the flow is
qualitatively the one described in Figure 3. �

Proof of statement (e) of Theorem 1. Let (x(τ), y(τ), z(τ)) be the so-
lution of the differential system (4) such that (x(0), y(0), z(0)) = (x0, y0,
z0). From the differential equation z′ = 3z2 it follows easily that
z(τ) = z0/(1 − 3z0τ). Substituting z = z(τ) in y′ = 2yz we obtain
that y(τ) = y0/(1−3z0τ)2/3. Finally, substituting y = y(τ) in x′ = 2y2

and integrating we get that

x(τ) = x0 +
2y2

0

z0

(
1

(1 − 3z0τ)1/3
− 1

)
.

�

Proof of statement (f) of Theorem 1. Since x′ = 2y2 > 0 and z′ =
3z2 > 0 in the interior of the quadrant Q, for every orbit γ contained
in the interior of the quadrant Q we have that its α–limit has its x–
coordinate equal to −∞ and its z–coordinate equal to 0, and its ω–limit
has its x–coordinate equal to +∞ and its z–coordinate equal to +∞.
Taking into account either the solution of statement (e), or the phase
portrait on the boundary of the quadrant Q described in the statements
(b), (c) and (d) we get that the α–limit of γ is the equilibrium point
X− and its ω–limit is the equilibrium point Z+. �

Proof of statement (g) of Theorem 1. Let H1 = z2/y3 and H2 = x −
2y2/z. Then, since

dHk

dτ
=

∂Hk

∂x
x′ +

∂Hk

∂y
y′ +

∂Hk

∂z
z′ = 0,

for k = 1, 2, we obtain that H1 and H2 are first integrals of the differ-
ential system (4), i.e. they are constant on the solutions of system (4)
where they are defined. Since there gradients are linearly independent
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except at the points of z = 0 and y = 0 which have zero Lebesgue
measure, these two first integrals are independent.

It is not difficult to show that the set {H1 = h1}∩{H2 = h2}∩Q has
a unique component. Then, from either statement (e), or statement
(f) it follows that this set is formed by an orbit γ with endpoints at
X− and Z+. �

3. The appendix: Poincaré compactification of R3

In R3 we consider the polynomial differential system

ẋ = P 1(x, y, z), ẏ = P 2(x, y, z), ż = P 3(x, y, z),

or equivalently its associated polynomial vector field X = (P 1, P 2, P 3).
The degree n of X is defined as n = max{deg(P i) : i = 1, 2, 3}.

Let S3 = {y = (y1, y2, y3, y4) ∈ R4 : ∥y∥ = 1} be the unit sphere in
R4, and

S+ = {y ∈ S3 : y4 > 0} and S− = {y ∈ S3 : y4 < 0}
be the northern and southern hemispheres, respectively. The tangent
space to S3 at the point y is denoted by TyS3. Then, the tangent
hyperplane

T(0,0,0,1)S3 = {(x1, x2, x3, 1) ∈ R4 : (x1, x2, x3) ∈ R3}
is identified with R3.

We consider the central projections

f+ : R3 = T(0,0,0,1)S3 → S+ and f− : R3 = T(0,0,0,1)S3 → S− ,

defined by

f+(x) =
1

∆x
(x1, x2, x3, 1) and f−(x) = − 1

∆x
(x1, x2, x3, 1) ,

where ∆x =
(
1 +

∑3
i=1 x2

i

)1/2
. Through these central projections, R3

can be identified with the northern and the southern hemispheres, re-
spectively. The equator of S3 is S2 = {y ∈ S3 : y4 = 0}. Clearly, S2 can
be identified with the infinity of R3.

The maps f+ and f− define two copies of X, one Df+ ◦ X in the
northern hemisphere and the other Df−◦X in the southern one. Denote
by X the vector field on S3 \ S2 = S+ ∪ S− which restricted to S+

coincides with Df+ ◦ X and restricted to S− coincides with Df− ◦ X.

In what follows we shall work with the orthogonal projection of the
closed northern hemisphere to y4 = 0. Note that this projection is a
closed ball B of radius one, whose interior is diffeomorphic to R3 and
whose boundary S2 corresponds to the infinity of R3. We shall extend
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analytically the polynomial vector field X to the boundary, in such a
way that the flow on the boundary is invariant. This new vector field
on B will be called the Poincaré compactification of X, and B will be
called the Poincaré ball. Poincaré introduced this compactification for
polynomial vector fields in R2, and its extension to Rm can be found
in [7].

The expression for X(y) on S+ ∪ S− is

X(y) = y4




1 − y2
1 −y2y1 −y3y1

−y1y2 1 − y2
2 −y3y2

−y1y3 −y2y3 1 − y2
3

−y1y4 −y2y4 −y3y4







P 1

P 2

P 3


 ,

where P i = P i (y1/|y4|, y2/|y4|, y3/|y4|). Written in this way X(y) is a
vector field in R4 tangent to the sphere S3.

Now we can extend analytically the vector field X(y) to the whole
sphere S3 by

p(X)(y) = yn−1
4 X(y);

this extended vector field p(X) is called the Poincaré compactification
of X.

As S3 is a differentiable manifold, to compute the expression for
p(X) we can consider the eight local charts (Ui, Fi), (Vi, Gi) where
Ui = {y ∈ S3 : yi > 0}, and Vi = {y ∈ S3 : yi < 0} for i = 1, 2, 3, 4; the
diffeomorphisms Fi : Ui → R3 and Gi : Vi → R3 for i = 1, 2, 3, 4 are the
inverses of the central projections from the origin to the tangent planes
at the points (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0, ±1, 0) and (0, 0, 0,±1), re-
spectively. We now do the computations on U1. Suppose that the origin
(0, 0, 0, 0), the point (y1, y2, y3, y4) ∈ S3 and the point (1, z1, z2, z3) in
the tangent plane to S3 at (1, 0, 0, 0) are collinear, then we have

1

y1

=
z1

y2

=
z2

y3

=
z3

y4

,

and consequently

F1(y) =

(
y2

y1

,
y3

y1

,
y4

y1

)
= (z1, z2, z3)

defines the coordinates on U1.

As

DF1(y) =




−y2/y
2
1 1/y1 0 0

−y3/y
2
1 0 1/y1 0

−y4/y
2
1 0 0 1/y1



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and yn−1
4 =

( z3

∆z

)n−1

, the analytical field p(X) in U1 becomes

(10)
zn
3

(∆z)n−1

(
−z1P

1 + P 2, −z2P
1 + P 3,−z3P

1
)
,

where P i = P i (1/z3, z1/z3, z2/z3).

In a similar way we can deduce the expressions of p(X) in U2 and
U3. These are

(11)
zn
3

(∆z)n−1

(
−z1P

2 + P 1,−z2P
2 + P 3, −z3P

2
)

,

where P i = P i (z1/z3, 1/z3, z2/z3) in U2, and

(12)
zn
3

(∆z)n−1

(
−z1P

3 + P 1,−z2P
3 + P 2, −z3P

3
)

,

where P i = P i (z1/z3, z2/z3, 1/z3) in U3.

The expression for p(X) in U4 is zn+1
3 (P 1, P 2, P 3) where the compo-

nent P i = P i (z1, z2, z3).

The expression for p(X) in the local chart Vi is the same as in Ui

multiplied by (−1)n−1.

When we shall work with the expression of the compactified vector
field p(X) in the local charts we omit the factor 1/(∆z)n−1. We can do
that through a rescaling of the time.

We remark that all the points on the sphere at infinity in the coor-
dinates of any local chart have z3 = 0.

The ortogonal projection of the closed north hemisphere of S3 on
the hyperplane y4 = 0 is a closed ball B of radius 1 centered at the
origin of coordinates, whose interior is diffeomorphic to R3 = T(0,0,0,1)S3

and whose boundary S2 is the infinity of R3. This closed ball B is the
Poincaré ball.
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a geometric interpretation, Proyecciones 22, 3 (2003), 161–180.
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