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ABSTRACT. In this paper we discuss local and formal Darboux first
integrals of analytic differential systems, using the theory of Poincaré-
Dulac normal forms. We study the effect of local Darboux integrability
on analytic normalization. Moreover we determine local restrictions on
classical Darboux integrability of polynomial systems.

1. INTRODUCTION

Classically, Darboux integrability was introduced for planar polynomial
vector fields, but the notion directly carries over to polynomial vector fields
in higher dimension. Thus, we say that a differential equation

Py(z)
1) i=P@)=|

Po(x)
in C™ with polynomial right-hand side admits a Darboux first integral if
there exist pairwise relatively prime polynomials ¢1,...,¢, and nonzero
complex numbers d,...,d, such that the identity

Xp (ool ) =0

holds. (Here, as usual, Xp = ZP@'B%Z- is the derivation corresponding to
P, and the Lie bracket of vector fields P and @ is defined via Xp g =
XpXg — XgXp.) The existence of a Darboux first integral implies that
each ¢; is a semi-invariant (also called Darboux polynomial) of P, thus

Xp(pi)=Li ¢, 1<i<r

with polynomials L; (called the cofactors of the ¢;); equivalently each zero
set of ¢; is an invariant set for £ = P(z). Given semi-invariants ¢; with
cofactors L;, existence of a Darboux first integral is equivalent to the identity

dy-In+---+d,-L.=0.

For details and further results we refer to the survey [9] of Darboux integra-
bility for polynomial systems.

In the present paper we will discuss an extension of Darboux integrability
to (germs of) complex local analytic vector fields, and to formal vector fields
on C™. Due to the straightening theorem, the existence of local Darboux
first integrals is guaranteed near any non-stationary point; therefore we will
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focus on stationary points in the present paper. A fundamental tool in
the investigation will be the theory of Poincaré-Dulac normal forms. For
systems in normal form with non-nilpotent linear part one obtains precise
restrictions on the local analytic or formal functions involved, as well as
the possible exponents. Indeed, every Darboux first integral of a system in
normal form is also a first integral of the semisimple part of its linearization.
Since every formal differential system is formally equivalent to a system in
normal form, we obtain Theorem 1 for general formal vector fields. There
are, on the one hand, applications to analytic normalizability of analytic
systems. In particular A.D. Bruno’s ”Condition A” [4] is satisfied if and
only if there exist n — 1 independent Darboux first integrals, and we obtain
convergence criteria as well as a transparent proof for an upper bound for
the number of independent formally meromorphic first integrals (Theorems
2 and 3). On the other hand the local results are applicable to the classical
question of Darboux integrability for polynomial vector field. Via local
obstructions near stationary points they provide easily applicable criteria
for nonexistence of classical Darboux first integrals.

2. DEFINITIONS AND BASICS

We first review some properties of formal and convergent power series
rings. Details and proofs can be found, for instance, in the monograph by
Zariski and Samuel [13], Chapter VII. We denote by C[[z1, ..., x,]] the ring
of formal power series in n variables. Its elements can be represented in the

form
v=> v
E>0
with each ¥®) a homogeneous polynomial in z1,..., z, of degree k. If

¥ # 0 then we call the smallest ¢ with () % 0 the order of 1, and de-
note this number by o(¢)). A formal power series v is (multiplicatively)
invertible in C[[zy,..., x,]] if and only if /(*) # 0, thus its order equals 0.
There is a unique maximal ideal m := {¢ 90 = O}. Moreover, the ring
of formal power series is a unique factorization domain, thus every nonzero
non-invertible series is a product of irreducible ones, and this representation
is unique up to the ordering of factors and multiplication by invertible series.
Mutatis mutandis, these properties carry over to the subring C[[z1, ..., zy]l.
of power series that converge in some neighborhood of 0, which may be iden-
tified with the ring of (germs of) analytic functions in 0.
Following Shafarevich [10], we call the quotient field C((x1,..., z,)). of
C[[z1,- .., xn]]c the field of (local) meromorphic functions. For the quotient
field C((x1, ..., x,)) of C[[z1,..., z,]] no name seems to be in general use;
for the present paper we adopt the name ”field of formally meromorphic
functions”. (In Reference [6] the term ”generalized rational functions” was
used.)

Finally, we consider on C" local analytic or formal differential systems of
the form

(2) & =F(x)=Az+ Y fP(2)

k>2
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with a linear map A = DF(0), and every f*) a homogeneous vector valued
polynomial of degree k. The decomposition

(3) A=Ay + A, [As, A =0

with semisimple A; and nilpotent A,,, will be of some relevance. Moreover,
we denote the eigenvalues of A (hence of A;) by

(4) )\17'--7)\n

counting each eigenvalue according to multiplicity. If A is represented by
a diagonal matrix then we will tacitly assume that the ); in this order are
the diagonal entries. To F' we associate the Lie derivative X g, which acts
on Cl[[z1,..., zy]], resp. on C[[z1,..., zy]]., and the actions extend to the
quotient fields.

Definition 1. Let ¢ € Cllxy,..., x,]] \ {0} be non-invertible. Then 1 is
called a formal semi-invariant (or formal Darboux function) of F (or of (2))
if there is a formal power series K (called cofactor) such that

Xp() = K -4
If F, ¢ and K are convergent in some neighborhood of 0 then we will call ¥
a local analytic semi-invariant (or local analytic Darboux function).

Remark 1. (a) Due to the unique factorization property of power series
rings, every irreducible factor of a semi-invariant is a semi-invariant. This
is proven just as in the polynomial case.

(b) By the Hilbert-Riickert Nullstellensatz, a non-invertible analytic function
is a semi-invariant of F' if and only if its zero set is invariant for (2). This is
proven analogously to the polynomial case.

(c) Every invertible series would automatically satisfy the defining identity
for semi-invariants; but in the analytic case the local zero set of an invertible
function is empty, hence invertible functions are of no geometric interest in
view of (b) above. It is important to notice, however, that multiplying a
semi-invariant by an invertible series will yield a semi-invariant.

Now that the notions of semi-invariant have been carried over to power
series rings and vector fields, we can proceed to define Darboux integrability.
An expression like 1%, given a formal power series 1) and a complex number

d, makes sense in a suitable differential field extension of C((x1,..., ,)),
and there is a canonical extension of Xz to such extension fields. If 1 is
invertible, ©(%) = 1 with no loss of generality, then ¥ € C[[x1,..., z,]] in

view of the binomial series expansion

- =3 (§)w-v*

k>0

which converges with respect to the m-adic topology on the ring of formal
power series. (See Zariski and Samuel [13], Chapter VIII, Section 2. The
m-adic topology is induced by the norm ||| := 27°(%) for nonzero . Thus
a series » 7 of formal power series converges in the m-adic topology if and
only if the orders of the 7 tend to infinity as kK — 00.) In the local analytic
case one may proceed without differential field extensions, since one can
always reduce the matter to powers in C.
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Definition 2. System (2) admits a formal (resp. local) Darboux first inte-
gral if there are formal (resp. local analytic) semi-invariants 1, ...,¢, and
nonzero complex numbers dq, ..., d, such that

XF( flwg7> = 0.

Moreover, one then calls 1/)?1 <)% o Darboux first integral of F. If all the d;
are integers then we speak of a formally meromorphic (resp. meromorphic)
first integral.

Just as for the polynomial case, one may equivalently express the first
integral condition via cofactors. If K; is the cofactor of 1);, respectively,
then the system admits the Darboux first integral 1/;‘111 -9 if and only if

d-Ki+---+d,- K, =0.

3. DARBOUX FIRST INTEGRALS FOR NORMAL FORMS

Following the definition given e.g. in [11] we say that system (2) is in
Poincaré-Dulac normal form if

[A,, F] = 0.

Up to a linear transformation this is equivalent to the following coordinate-
dependent definition (see e.g. Bruno [4], Bibikov [1]): Assume that A is in
Jordan canonical form (thus Ag is diagonal), with eigenvalues Aq,..., Ay,.
Denote by (eq,...,e,) the standard basis of C" and let x1,...,x, be the
corresponding coordinates. Call a vector monomial z]"" - --z]'"e; resonant
if miAi 4+ -+ mpA, — Aj = 0. Then system (2) is in normal form if and
only if every f*) is a linear combination of resonant vector monomials.

Poincaré-Dulac normal forms have been used to establish necessary con-
ditions for the existence of analytic or formal first integrals [7, 8], and for the
existence of formally meromorphic first integrals [6]. Applications include
results on analytic normalization for analytic systems; see [14, 15] and [§]

We now extend the normal form approach to semi-invariants and Darboux
integrability. We first note a few facts. See e.g. the references [4], [1] for
the well-known first statement in the following Proposition. The second
statement is straightforward.

Proposition 1. For any formal system (2) there exists a "near-identity”
formal transformation

®(x) = x + higher order terms

and a system
& = F*(z) = Az + higher order terms
in Poincaré-Dulac normal form, such that
D®(2)F*(z) = F(®(x)

holds for all x. A series v is a semi-invariant of F, with cofactor K, if and
only if Y o ® is a semi-invariant of F*, with cofactor K o ®.
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Therefore, regarding formal semi-invariants and Darboux integrability we
may assume that the vector field is in normal form. The advantage of
normal forms lies in greater transparency when it comes to investigating
semi-invariants.

Definition 3. Let F' be in Poincaré-Dulac normal form. A semi-invariant

Y of F, with Xp(v) = K -1, is called distinguished if
Xa,() =K(0) -1 and X4,(K) =0.
The following was shown in [12], Lemma 2.2.

Lemma 1. Assume that F is in normal form, and let ¢ be a formal semi-
invariant of F'. Then there is an invertible series p and a distinguished semi-
invariant ¥ of F' such that ¢ = p - . In particular, every semi-invariant of
F is also a semi-invariant of As.

Note that Lemma 1 applies in particular to the semi-invariants of A;. We
will require a less restrictive characterization of distinguished semi-invariants
for linear systems.

Lemma 2. Let ¢ be a semi-invariant of £ = Asx, with cofactor K, such
that Xa,(K) =0. Then K is constant.

Proof. For any integer m > 0 the restriction of X 4, to the space of homo-
geneous polynomials of degree m is a semisimple linear map; see [11]. Let
1 be the smallest degree nonzero term in ¢ and write the representation
with homogeneous polynomials as

v=> v
7>0
likewise, let
K=> k"
>0

with each £ homogeneous of degree i. For degree ¢+ j the semi-invariance
condition implies

Xa, (w(fﬂ')) - ZJ: f(O) (4=
=0

We now prove X4, (¢(é+j)) = kO by induction on j. The start j =0
is immediate. Going from j — 1 to j, and using the induction hypothesis
Xa, (D) = kOp+i=D as well as the fact that X4, (k)) = 0 for
1 <1 < g, we see that

X4 <¢(e+j>> — ROy = 3™ (=)

i>1

lies in the eigenspace of X 4, corresponding to the eigenvalue k© . On the
other hand one has the eigenspace decomposition

Pt — Z wé@ra‘)
B
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with the sum extending over the eigenvalues of X 4,. Applying X4, shows
that X4, (@ZJ(ZH)) — k9 lies in a sum of eigenspaces for eigenvalues
different from k(). Since one has a direct sum decomposition, this implies

X4 (¢(Z+j)) — kOyt+d) = g,
completing the induction step. O
We next restate a result from [11] on eigenspaces of X 4.

Lemma 3. (a) Assume that As is represented by a diagonal matriz with
respect to the standard basis. Then any homogeneous distinguished semi-
invariant ¢ of & = Asx is a linear combination of monomials, and the
cofactor is equal to

miAL + -+ MmpAn,

if the monomial x™ - - - x]' appears in ¢ with nonzero coefficient.
(b) For arbitrary semisimple As, every cofactor of a distinguished semi-
invariant is a linear combination of the eigenvalues with nonnegative integers

as coefficients.

With regard to Darboux first integrals, irreducible analytic and formal
semi-invariants are of particular importance. The following (well-known)
examples show that their number (up to multiplication by invertible series)
may be finite or infinite, depending on the eigenvalues.

Ezamples. (a) If the eigenvalues Aj,..., A, are linearly independent over
the rationals Q then the only irreducible distinguished semi-invariants of
A = A, are the coordinate functions x1,...,z,. This follows directly from

the fact that two different monomials :c’fl - zkn and x‘il - bn have different
cofactors k1 A1+ -+ kp A, resp. €1 A1+ -+, N\, In this case any Poincaré-
Dulac normal form is necessarily linear.

(b) If n = 2m, wy,...,wy, are linearly independent over Q and Ay;_; = wj,
A2j = —wj then the only irreducible distinguished semi-invariants of A = A;
are the coordinate functions 1, ..., z,. This follows from the fact that every

monomial has a unique representation

(751 Um,

$]1“1 .. ;E?]z” = ;1;11’1 .. ~:L'Z" . (:L'll’z) s (l'n—lxn)

with vg;_1 = 0 or vg; = 0 for all j, and the cofactor E’]ﬂ:l (v2j—1 — v2j) wj
uniquely determines the v;. Note that in this case there exist nontrivial
Poincaré-Dulac normal forms.

(¢c) In case n = 2, Adg = 2- A1 # 0, for every § € C the semi-invariant
Vg 1= w2+ Bz is irreducible, and different choices of 3 yield relatively prime
power series. Thus there exist infinitely many irreducible semi-invariants for

the cofactor A9, and for each choice of pairwise distinct constants 51, ..., B
and nonzero constants eq,...,es with > e; = 0 one has a Darboux first
integral

(w2 + Bra1)™ -+ (22 + Bsa1)™
See [11], Theorem 3.2 for further details in dimension 2.

The following is the principal technical result on semi-invariants of normal
forms.



LOCAL DARBOUX INTEGRALS OF ANALYTIC DIFFERENTIAL SYSTEMS 7

Proposition 2. Assume that F is in normal form, and let d)”lll ¢ be a
Darboux first integral of (2). Then there exist distinguished semi-invariants
P1,..., Y such that

d d d d
di g Lo g
L ohd

In particular the v; are also semi-invariants of As and @Z)ill -8 is a Dar-
bouzx first integral of & = Agsx.

Proof. By Lemma 1, for ¢ = 1,...,r—1 there exist invertible formal series p;
such that v;(z) = p; ' (v)¢;(z) are distinguished semi-invariants of system
(2). Let L;j(x) be the corresponding cofactor associated with v;(z), i.e.
Xr(i)(x) = Li(z)i(x) for i =1,...,7 — 1. Then X4 (L;) =0for 1 <i<
r — 1. Define

di/d, dr_1/dy
gy = pP At g,

and note that the product of the pfi/ 4 is an invertible formal power series.

Therefore 1, is a semi-invariant of F'; let L, be its cofactor. Then the
construction of the v;(z) shows that

di dr __ d1 d
di gl = gt g

and therefore Xp < fl . .1/;,‘??“) = 0, whence
dy-Li+---+d,- L, =0.

Applying X 4, to this relation, one finds X4, (L,) = 0. In order to finish the
proof, we still need to show that X4 (¢,) is a constant multiple of 1,. By
Lemma 1 there exists a series K such that X 4 (1) = K -1,. Therefore one
has

XF(K) ' wr + KLr . wr = XFXAS (1/]7‘) = XASXF(wr) - LT’K : wm

since X 4, and Xp commute by the normal form property, and X4, (L,) =0
Therefore Xp(K) = 0 and, by [11], Prop. 1.8, this implies X4, (K) = 0.
Now Lemma 2 shows that K is constant, which implies K = L, (0).

As a final step, we notice that ) d;L; = 0 implies > d;L;(0) = 0, whence

di . ol
1

9r is a first integral of & = Asx. O

Our results are applicable to general formal vector fields, as follows:

Theorem 1. Let system (2) be given, with F' not necessarily in normal
form, and denote by A1, ..., A\, the eigenvalues of A = DF(0).

(a) If ¢ is a semi-invariant of F', with cofactor K, and 0 is the lowest-order
nonvanishing homogeneous term of ¢, then 0 is a semi-invariant of As, and
there exist nonnegative integers my such that

K(0) = kaAk, ka > 0.
k k

(b) If Q,Z)ill - -p% s a Darbous first integral of ¥ = F(z) and 0; is the lowest-
order nonvanishing homogeneous term of 1;, then Hfl ---0% is a Darboux
first integral of © = Asx.
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Proof. If F is in Poincaré-Dulac normal form then all assertions follow from
Proposition 2 and Lemma 3. Otherwise, by Proposition 1 there exists a near-
identity transformation to normal form, and evaluating the lowest-order
terms shows the assertions. O

The following consequence of Proposition 2 is of independent interest.
In particular, the first statement generalizes Lemma 7 in [6]. The proof is
immediate from the prime factorization of numerator and denominator of a
formally meromorphic function.

Corollary 1. Assume that F' is in normal form, and let p be a formally
meromorphic first integral of (2). Then there exist distinguished semi-
invariants 1, o and a constant B such that

p= ﬂ
Yo
whence Yn /19 is also a formally meromorphic first integral of & = Asx. Thus

the field of formally meromorphic first integrals of & = F(x) is a subfield of
the field of formally meromorphic first integrals of & = Agx.

Xa, (Y1) = i1, Xa,(¥2) = Bibo;

4. APPLICATIONS

4.1. Integrability and normalizability. Our first application is with re-
gard to analytic normalization of an analytic system (2). While there always
exists a formal transformation to Poincaré-Dulac normal form, the existence
of a transformation that converges in some neighborhood of 0 is a highly
nontrivial problem. Building on and extending work of Siegel, Pliss and oth-
ers, Bruno [2, 3] identified two conditions relevant for convergent questions.
(See also the monograph [4] for a streamlined presentation.) One of them,
called ”Condition w”, is a Diophantine condition on the eigenvalues of A.
The other (we refer specifically to the version from [4], p. 203) is as follows:
Condition A: Some formal Poincaré-Dulac normal form of system (2) has
the form

F*(2) = (1 + p(2)) Asa
with a formal series p such that u(0) = 0.

Bruno’s convergence theorem states: If an analytic system (2) satisfies
Conditions w and A, then it is analytically equivalent to a normal form.
The following theorem shows the relation to formal Darboux integrability,
and generalizes results from [14, 15] and [8].

Theorem 2. (a) The vector field (2) on C", with As # 0, admits n — 1
independent formal Darbouz first integrals if and only if it satisfies Bruno’s
Condition A. Therefore, Bruno’s arithmetic Condition w on the eigenvalues
of A in conjunction with the existence of n — 1 independent formal Darboux
first integrals guarantees convergence.

(b) If system (2) is analytic and the equation admits n — 1 independent
formally meromorphic first integrals them a convergent transformation to
Poincaré-Dulac normal form exists.
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Proof. (i) First preliminary observation: If ¢i,..., ¢ are formal series,
di, ..., d, are complex constants and 6 := (111 -+ ¢% then obviously

Db(z) = 6(x) - (1 (), -, pu(a))

with formally meromorphic entries p;.

(i) Second preliminary observation: If formal vector fields G and H admit
the same n — 1 independent formal Darboux first integrals 1, ...,v,—1 then
there is a formally meromorphic function v such that H = v-G. To see this,
let T := (71,...,Yn-1)" (the exponent "tr” denoting the transpose). By (i)
and elementary row operations, the system

DI (@)Q(x) = 0

for a formally meromorphic vector field @), is equivalent to a system
R(z)Q(x) =0

with formally meromorphic entries of R. Since the rank of R(z) is equal to

rank DI'(z) = n — 1, the system has a one-dimensional solution space. Thus

any two solutions are linearly dependent over C((x1,..., x,)).

(iii) Recall that Aj,..., A\, are the eigenvalues of Ag; see (4). To prove

sufficiency in part (a), use Lemma 3 and note that the linear equation

> m;A; = 0 admits n — 1 independent solutions in C™. To prove necessity,

we may assume that F' is in normal form. Let ~1,...,7,—1 be independent

Darboux first integrals of F'. By Proposition 2 these are also first integrals
for Ag, and by (i) we see that

Az + 3 10 (@) = Fa) = pla) - Asa
k

with some formally meromorphic p. From this p =1+ --- follows as in [8],
Theorem 9.
(iv) Similar to the proof of [15], Theorem 1.3 or [8], Theorem 9, one sees that
there exist some nonzero constant o and integers A7 such that A\j = a - A7
holds for every eigenvalue of A. This ensures that Condition w is satisfied,
and (b) follows.

O

4.2. Meromorphic first integrals. The following result was first stated
and proved by Cong, Llibre and Zhang [6], Theorem 1. We will provide a
shorter and less technically involved proof here.

Theorem 3. The number of functionally independent formally meromor-
phic first integrals of system (2) is less than or equal to the rank of the
Z-module

A:={(r1,...,m) EZL": Zri)‘i = 0}.

Alternative proof. (i) We may assume that F' is in normal form, and there-
fore by Corollary 1 it is sufficient to show that the field of formally mero-
morphic first integrals of & = Asx contains at most rank A independent
elements. Assume that pi,...,p; is a maximal independent set of for-
mally meromorphic first integrals of A;. Then we may assume p; = 1;/6;
with distinguished semi-invariants 1/7Z and 0;, and X 4, (1/2) = ﬁizﬁi as well as
X 4,(0;) = Bi0; with some constant 3;, for 1 < i < m; see Proposition 2. By
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taking e.g. the product of the denominators, we may assume that p; = 1;/6
with a common denominator, and

XAS (9) = /897 XA5 (¢z) = /wa 1 S 1 S m,

for some 5 € C.
(ii) Let Ip denote the set of all polynomial first integrals of Ay, and let Ig
denote the set of all polynomials ¢ such that X4 () = p1. Then it is
known from [11], Proposition 1.6 and its proof that I is a finitely generated
algebra and that I3 is a finitely generated module over Ij.
For reasons of convenience we will from now on assume that A is represented
by a diagonal matrix. Then every element of I is a linear combination of
monomials in Iy, and a monomial xlfl e mfi" lies in Iy if and only if ), k;\; =
0. Likewise, every element of I3 is a linear combination of monomials in Ig,
and a monomial lies in I if and only if its exponents satisfy >, kiA; =
8. Let pi1,...,pus be a set of monomial generators for the algebra Iy, and
v1i,..., aset of monomial generators for the module Ig. Moreover, assume
that a maximal independent set among the p; has cardinality ¢q. Then
there exist vq,...,1, such that any maximal set of independent functions
among i1,..., s, V1, -, contains ¢ + r elements. Any maximal set of
independent functions among the Laurent polynomials

vV Vi

Mlyeoes gy =5y —

141 141
then has cardinality ¢ + » — 1, and the vector of exponents of any such
Laurent polynomial lies in the module A. Since algebraic independence of
Laurent polynomials is equivalent to linear independence of their exponent
vectors, we see that ¢ +r — 1 <rank A.
(iii) Returning to formal power series, we may represent every series 1 such
that X 4,(¢)) = ¢ in the form

t
V= di(m s ns)v;
j=1

with formal power series ¢; in s variables. This holds because every homo-
geneous part admits a representation of this kind. Therefore

t
v vj
Y o )
7j=1
With
M1
P1
R = . pi = w-]/yl Hs
. N ) ] 9/]/1 ) I/Q/Vl )
Pm .
Vt/Vl

one obtains an identity

R=Y" Mj(u,..., ns)-2 = 0(9),

Jj=1
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where each M; has entries in C[[y1,. .., ys]] with indeterminates y1, ..., ys.
Note furthermore that © is a formal power series in s + ¢ — 1 variables. We
obtain by the chain rule that

DR(z) = DO(S(z))DS(x),

and by linear algebra DR(z) has rank less than or equal to that of DS(z),
which in turn is less than or equal to the rank of A. This concludes the
proof. O

Remark 2. (a) Actually, one has ¢+r—1 = rank A, but we did not require
this fact in the proof above.

(b) A formally meromorphic first integral of a system in normal form can
be written as an infinite series of Laurent polynomials with increasing total
degree (see [6]), with each summand a first integral of A;. But passing to the
infinite series would amount to interchanging X 4, with a limiting process.
For this reason, we chose the proof variant in part (iii).

4.3. Classical Darboux integrability. We now return to polynomial sys-
tems and investigate local conditions for Darboux integrability.

Proposition 3. Assume that the polynomial system (1) admits a Darbouz
first integral

‘111 g
with pairwise relatively prime irreducible polynomials ¢; and nonzero con-
stants d;. Let z be a stationary point of P, denote the eigenvalues of
B :=DP(z) by pu1,- .., pn, and let B = Bs+ B, be the semisimple-nilpotent
decomposition.
(a) If P admits no nonconstant analytic first integral in z then ¢j(z) = 0
for some j.
(b) Assume that g > 1, ¢1(z) = -+ = ¢g(2) = 0 and ¢i(2) # 0 for all k > q.
Let0j(x1—21,...,Tn—2y) be the lowest order term of ¢j(x1—21,...,2n—2p),
1 < j < q. Then there are nonnegative integers £, such that

XB,(6;) = (Z@kﬂk) 05, 1<j<q,
%

and 0‘111 -~-9f;q is a first integral of * = Bs.

Proof. (a) If all ¢j(z) # 0 then ¢ - pdr is analytic in z.
(b) The function p := (;ijll .- ¢% is analytic in z with p(z) # 0, hence
there is an analytic function ¢ in some neighborhood of z with g% = p.
Now Theorem 1 is applicable to the local Darboux first integral
B gl (pgo)% of P.
O

Since formal Darboux first integrals do not necessarily exist at a station-
ary point, Proposition 3 may impose local obstructions to the existence of
Darboux first integrals built from Darboux polynomials. In particular we
note:
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Corollary 2. If P admits n — 1 independent Darboux first integrals then
Bruno’s Condition A is satisfied at every stationary point of P.

Remark 3. Recall that (e.g. by Lemma 1 for cofactor 0 and Lemma 3)
there is a nonconstant local analytic first integral in the stationary point z
only if there are nonnegative integers ms,...,m, such that

mipy + -+ Mmppy =0, mqp+---+my > 0.

Ezample. The polynomial equation

i = x4+ a12? + aozimo +azrd + -
. 2 2
To = 2x9 —+ ﬁ1x1 + Boxix9 + 63%2 + -

(with the dots symbolizing higher order terms) admits no Darboux first
integral whenever (31 # 0.

To verify this, note that a Poincaré-Dulac normal form of the equation can
be read off directly, and is equal to

r1T = I

To = 2x9+ ﬂle
By Corollary 2 there exists a formal Darboux first integral only if 5; = 0.
By Remark 3 there is no local analytic first integral in 0.

Ezxample. Given polynomials a; and B; in two variables, the vector field

p_ —ay (w2 +23—1) — ag-m2 4+ Proxa(ra+ai—1)
200 - 1179 + PBo-xo(re + 28 —1)

admits the polynomial semi-invariants ¢; = x and ¢ = x5 + 23 — 1, and
this is the most general polynomial vector field to admit these two semi-
invariants; see [5], Theorem 3.8. The vector field admits the two stationary
points (£1, 0) with eigenvalues A\ = —2a1(1,0), Ay = 2a2(1,0) , resp. p1 =
201(—1,0), p2 = —2as(—1,0), as a straightforward computation shows.
Moreover the eigenspaces for the eigenvalues As and o are tangent to ¢1 = 0.
The semi-invariants ¢, and ¢ remain irreducible locally at (£1, 0) because
they have order one. Now assume that not both \; are zero, and that their
ratio is not a positive rational number; and assume the same for the p;.
Then [11], Theorem 3.2 shows that there are just two irreducible local semi-
invariants (viz., ¢1 and ¢2) at both stationary points. Thus, if there exists
a Darboux first integral
6111 g2¢gs . (bgr

with irreducible, pairwise relatively prime polynomials ¢; and complex con-
stants d; (and possibly di = 0 or do = 0, while d; # 0 for all j > 2), then
Proposition 3 and Remark 3 show that ¢;(+1, 0) # 0 for all j > 2, d; # 0
or dy # 0 and di A9 + doA1 = 0 as well as dyuo + dopy = 0. In particular this
implies the nontrivial condition

2a5(1,0)  —2a1(1,0) \
det( 200(~1.0) 2a(-1.0) ) =0

To summarize: Unless one of the stationary points (+1, 0) is degenerate
(with nilpotent linearization) or dicritical (positive rational eigenvalue ra-
tio), one obtains a necessary condition for the existence of ”classical” Dar-
boux first integrals, and this condition imposes restrictions on the exponents
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di and dy. In the dicritical case, as indicated by the previous example, even
the consideration of one stationary point may show the non-existence of a
Darboux first integral.

To illustrate the feasibility of such an approach we discuss a small specific
example involving one complex parameter v, with a; = -2 — vz, ag = 21,
61 =0 and f2 = 1, thus

p_ (24 vry) - (v + 23— 1) — 2179
2229 + (w0 + 23 — 1)

One finds that the eigenvalues of the linearization at (1, 0) are \; = 2(2+4v)
and Ay = 2. Therefore the dicritical case occurs if and only if v > —2 and
rational. Likewise, the eigenvalues at (—1, 0) are p; = 2(—2+v) and po = 2,
with dicriticality if and only if v is rational and > 2. Finally, one has

det<)\2 ”\1>:—167A0
M2 p

for any choice of v. Without any further work we see that P cannot admit
a (classical) Darboux first integral unless v is rational and > —2. In the
remaining cases, an individual study of the dicritical points will provide
additional conditions.
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