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HAMILTONIAN NILPOTENT CENTERS OF LINEAR PLUS
CUBIC HOMOGENEOUS POLYNOMIAL VECTOR FIELDS

ILKER E. COLAK, JAUME LLIBRE, AND CLAUDIA VALLS

ABSTRACT. We provide normal forms and the global phase portraits
in the Poincaré disk for all Hamiltonian nilpotent centers of linear plus
cubic homogeneous planar polynomial vector fields.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Determining limit cycles and distinguishing when a singular point is either
a focus or a center are two of the main problems in the qualitative theory of
real planar polynomial differential systems. Poincaré in [19], defines a center
for a vector field on the real plane as a singular point having a neighborhood
filled with periodic orbits with the exception of the singular point.

If an analytic system has a center, then after an affine change of variables
and a rescaling of the time variable, it can be written in one of the following
three forms:

x':—y—i—P(x,y), yza:—k@(x,y),
called a linear type center;

ﬂ'c:y—l—P(a?,y), yzQ(x,y)7 (1)

called a nilpotent center;

:t:P(x7y)) :Q:Q(x,y),
called a degenerate center, where P(x,y) and Q(x,y) are real analytic func-
tions without constant and linear terms, defined in a neighborhood of the
origin. An algorithm for the characterization of linear type centers is pro-
vided by Poincaré [20] and Lyapunov [15], see also Chazy [5] and Moussu
[17]. There is also an algorithm for the characterization of the nilpotent and

some class of degenerate centers due to Chavarriga et al. [4], Giacomini et
al. [12], and Cima and Llibre [7].

The classification of the centers of polynomial differential systems goes
back to Dulac [9], Kapteyn [13, 14], Bautin [1], Zoladek [24], who studied
quadratic systems. Also see Schlomiuk [21] for an update on the quadratic
centers. For the centers of polynomial differential systems of degree larger
than 2 there are many partial results. For instance the linear type centers for
cubic polynomial differential systems of the form linear with homogeneous
nonlinearities of degree 3 were characterized by Malkin [16], and by Vulpe
and Sibiirski [23]. For polynomial differential systems of the form linear
with homogeneous nonlinearities of degree greater than 3 the linear type
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centers are not classified, but there are partial results for degree 4 and 5,
see for instance Chavarriga and Giné [2, 3]. On the other hand there is still
much to do in order to obtain a complete classification of the centers for
all polynomial differential systems of degree 3. Some interesting results on
some subclasses of cubic systems are those of Rousseau and Schlomiuk [22],
and the ones of Zoladek [25, 26].

In this work we classify the global phase portraits of all Hamiltonian
planar polynomial vector fields having only linear and cubic homogeneous
terms which have a nilpotent center at the origin. To do this we will use
the Poincaré compactification of polynomial vector fields, see Section 3. We
say that two vector fields on the Poincaré disk are topologically equivalent if
there exists a homeomorphism from one onto the other which sends orbits
to orbits preserving or reversing the direction of the flow. Our main result
is the following one.

Theorem 1. If a Hamiltonian planar polynomial vector field with linear
plus cubic homogeneous terms has a nilpotent singular point at the origin,
then, after a linear change of variables and a rescaling of its independent
variable, it can be written as one of the following siz classes:

a2
(1) T = ax + by, U (c b+c>x ay + x°,
2
. .3 S _ a _ 2
(II) & =azx+by—2a°, U (c b+c>m ay + 37y,
2
(II1) &= ax+ by — 322y + 13, y:<c—bic>m—ay+3xy2,
2
(IV) & =ax+ by — 32y — 3, y—<c—b“ >a:—ay+3a;y2,
+c
2
(V)  d=ax+by—3uz’y+y>, 9= (c— bic) x — ay + z° + 3uxy?,
2
(VI) @ =azx+ by — 3uz’y —y?, y:<c—bic>m—ay+x3+3umy2,

where a,b,c,u € R such that either ¢ = 0 or a = b = 0, with b+ ¢ #
0. Moreover, if the origin is a center, then its global phase portraits is
topologically equivalent to one of the 12 phase portraits of Figure 1.

We note that in the above six systems (I) — (V1) a rescaling of both the
dependent and the independent variables allows to assume a = £1 whenever
a # 0. However we do not use this simplification since it does not help us
in our computations.

The global phase portraits of the linear type centers of the Hamiltonian
planar vector fields with linear plus cubic homogeneous terms are classified
in [8], see also [11]. In addition, it is shown in [7] that the degenerate
centers of such vector fields are topologically equivalent to 1.11 of Figure 1.
Therefore, this work completes the classification of all centers of these vector
fields.

The normal forms provided in Theorem 1 (and also in [8]) will allow
to study how many limit cycles can bifurcate from the periodic orbits of
the Hamiltonian centers with only linear and cubic terms when they are
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FIGURE 1. Global phase portraits of the vector fields in Theo-
rem 1 which have a nilpotent center at the origin. The separatrices
are in bold.

perturbed inside the class of all cubic polynomial differential systems. This
last study was made for the quadratic polynomial differential systems, see
[6] and the references quoted there.

2. CLASSIFICATION

Doing a linear change of variables and a rescaling of the independent
variable, cubic homogeneous systems can be classified into the following ten
classes, see [7]:

@) &= x(pwz + powy +p3y22),
v = y(p12® + paxy + p3y?),

(i) i = p12® + pax®y + p3wy?,
§ = az® + pra’y + paay® + psy?,

(iif) i = (p1 — 1)a® + par’y + p3zy?,
¥ = (p1 + 3)z%y + pozy® + p3y?,

i) = p1a® + (p2 — 3a)x®y + paay?,
y = pre®y + (p2 + 3a)zy® + p3y’,

(v) & =prad + (p2 — a)ny + p3xy? — ay,
Y = az® + p1a’y + (p2 + a)wy? + p3y?,
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(i) 7 p1a® + (p2 — 3a)2?y + pszy® + 2,
v = p1z’y + (p2 + 3a)zy® + psy?,

(vid) i =p1a® + (p2 — 3a)2?y + psry? — oy,
¥ = pr12’y + (p2 + 3a)zy? + p3y>,
i = p12® + (p2 — 3p)x?y + psay® + 3,

. € R.
v =2+ prx®y + (p2 + 3p)zy® + p3y®, a

(viid)

(i) = pa® + (p2 — Bap)z?y + pszy® — ay®, > —1/3,
g = ax® + pra*y + (p2 + 3ap)zy® +psy®,  p#1/3,

i = pra® + (p2 — 3p)a’y + pary® — 37,
@)y = o3t pialy + (oo + Bp)ey? +py?, M TP
where @ = +1. So for studying the cubic planar polynomial vector fields
having only linear and cubic terms, it is sufficient to add to the above ten
systems a linear part. The following two propositions define the precise
forms of the vector fields that we will study.

Proposition 2. Let X be a cubic planar polynomial vector field having only
linear and cubic terms, such that its cubic homogeneous part is given by one
of the above ten forms (i) — (x). Then X is Hamiltonian with a Hamiltonian
polynomial of degree four if and only if p1 = p2 = p3 = 0.

Proposition 2 is proved in [8]. We note that when the parameters py, pa
and ps are all zero, system (7) is not cubic. For this reason, we will restrict
our attention to systems (ii) — (z). In addition, in all of these nine Hamil-
tonian vector fields that we are going to study we can assume o = 1 because
the systems with @ = —1 can be obtained from those with o = 1 simply by
the linear transformation z — —zx.

We also note that when p; = po = p3 = 0, the only difference between
systems (iz) and (x) is the restriction of the parameter p to the intervals
(—o00,—1/3) and (—1/3,00) \ {1/3}. Moreover, when p = 1/3 system (x)
becomes system (v), and when p = —1/3 it becomes system (iv) via a
rotation by 7/4. Therefore we will remove the restriction on g in system
(z) so that it includes systems (iv), (v) and (iz).

We say that a singular point is non—elementary if both eigenvalues of
the linear part of the vector field at that point are zero, and elementary
otherwise. A non—elementary singular point is called degenerate if its linear
part is identically zero, otherwise it is called nilpotent.

Proposition 3. The linear part of each of the ten classes of Hamiltonian
cubic planar polynomial vector fields having only linear and cubic homoge-
neous terms which have a nilpotent singular point at the origin can be chosen
to be either

t=azr+by, 7=—(a®/b)x— ay, (2)
or

t=0, y=cz, (3)

where a,b,c € R such that b, c # 0.
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Proof. We will give the proof only for system (z) because the remaining
cases can be proved in the same way.

Assume that system (x) plus a linear part is Hamiltonian, then by Propo-
sition 2, it can be written as

& = ax + by — 3uz’y — >,

§ = cx+dy + 23 + 3ury?,
for some real constants a, b, c,d. Since X is Hamiltonian, we have d = —a.
The eigenvalues of the linear part of this system at the origin are

A2 =EtVa? +be

In order for the origin to be nilpotent, these eigenvalues must be equal to
zero. So, if b # 0 we get ¢ = —(a?/b). If b = 0 we have a = 0 with ¢ # 0
because the linear part of the system at the origin cannot be zero. O

In order to write these vector fields in a more compact way, we will write
their linear part as

. . a?
r=ar+0y, Y= C_b—i—c T —ay,

with b+ ¢ # 0 and the condition that either ¢ =0 or a = b = 0.

In short, Hamiltonian planar polynomial vector fields having only linear
and cubic terms which have a nilpotent singular point at the origin can be
classified into the six vector fields (I) — (VI) given in Theorem 1. Having
determined the forms of the vector fields which we are going to study, using
the following proposition we will find necessary and sufficient conditions so
that their origins are centers.

Proposition 4. If P and QQ are homogeneous polynomials of degree m, then
system (1) has a nilpotent center or a focus at the origin if and only if m is
odd and the coefficient of x™ in Q is negative.

For more details about Proposition 4 and its proof see [4]. We note
that this proposition gives necessary and sufficient conditions in order that
systems (I) — (V1) of Theorem 1 have a nilpotent center at the origin. To
be able to determine these conditions we need to apply a linear change of
variables provided in the following proposition.

Proposition 5. Systems (I) — (VI) can be written in the form (1) after
applying the change of variables

X=x Y =ax+by,
or
X =y, Y =cz,
when b # 0 or b =0, respectively.

Remark 6. Due to the fact that the right hand sides of each of the vector
fields (I) — (V' I) are odd functions, their phase portraits are symmetric with
respect to the origin.
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3. POINCARE COMPACTIFICATION

In this section we summarize the Poincaré compactification that we shall
use for describing the global phase portraits of our Hamiltonian systems.
For more details on the Poincaré compactification see Chapter 5 of [10].

Let S? be the set of points (s1, 52, s3) € R? : 87 + 53+ 53 = 1. We will call
this set the Poincaré sphere. Given a polynomial vector field

X = (:L',y) = (P($,y>,Q(l‘,y))
in R?, it can be extended analytically to the Poincaré sphere by project-
ing each point € R? = (x1,25,1) € R? onto the Poincaré sphere using a
straight line through = and the origin of R?. In this way we obtain two
copies of X: one on the northern hemisphere {(s1,s2,s3) € S? : s3 > 0}
and another on the southern hemisphere {(s1,s2,53) € S? : 53 < 0}. The
equator St = {(s1,s2,s3) € S? : 53 = 0} corresponds to the infinity of R2.
The local charts needed for doing the calculations on the Poincaré sphere
are
U={scS?:5 >0}, Vi={secS*:s <0},
where s = (s1, 2, $3), with the corresponding local maps

@i(s) 1 Ui = R?, (s) : V; — R?,

such that ¢;(s) = —;(s) = (S—m,s—n> for m < n and m,n # i, for i =
s

i Si
1,2,3. The expression for the corresponding vector field on S? in the local
chart U; is given by

o= v? {—uP (l’ﬂ) +@Q (lagﬂ , v=—vp (l,g) ; (4)
v v vv v

the expression for U, is

u:vd{P<E,l>—uQ<E,l>], ﬂz—vd“Q(E?l); (5)
v’ v v v

and the expression for Us is just

= P(u,v), v=Q(u,v), (6)
where d is the degree of the vector field X. The expressions for the charts V;
are those for the charts U; multiplied by (—1)4=!, for i = 1,2,3. Hence, to
study the vector field X, it is enough to study its Poincaré compactification
restricted to the northern hemisphere plus S, which we will call the Poincaré
disk. To draw the phase portraits, we will consider the projection of the
Poincaré disk onto R? by 7(s1, s2, 53) = (51, 53).

Finite singular points of X are the singular points of its compactification
which are in §? \ S!, and they can be studied using Us. Infinite singular
points of X, on the other hand, are the singular points of the corresponding
vector field on the Poincaré disk lying on S'. Since s € S! is an infinite
singular point whenever —s € S! is, and the local behavior of one is that
of the other multiplied by (—1)%~!, to study the infinite singular points it
suffices to look at Uy |,—o and the origin of Us.

The next theorem by Neumann [18] gives a characterization of two topo-
logically equivalent vector fields in the Poincaré sphere.
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Theorem 7 (Neumann’s Theorem). Two continuous flows in S?* with iso-
lated singular points are topologically equivalent if and only if their separatriz
configurations are equivalent.

This theorem implies that once the separatrices of a vector field in the
Poincaré sphere are determined, the global phase portrait of that vector field
is obtained up to topological equivalence.

4. GLOBAL PHASE PORTRAITS OF SYSTEM ([)

We first assume that b = 0. Then system (/) becomes
£=0, y=cx+a’
We see that the origin cannot be a center since the y-axis is invariant.
Next we assume that b # 0. In this case system (I) becomes
i =ax+by, §=—(a*/b)x—ay+ 2> (7)
and it has the Hamiltonian

4 2.2 by2

x a‘x
H=——+ + — + axy.

4 2b 2
Now we will apply Proposition 4 to find the necessary and sufficient condi-
tions for the origin to be a center. After doing the linear change of variables
suggested in Proposition 5 system (7) becomes

=y, v=ba’
Then by Proposition 4, we see that system (7) has a nilpotent center at the
origin if and only if b < 0.

Now we will find the global phase portraits of system (7) under the restric-
tion b < 0. We first investigate the infinite singular points of this system.
Using (4), we see that in the local chart U; system (7) becomes

i = —v® (bu® + 2au + a®/b) + 1,
v=—v®(bu+a).
When v = 0, there are no singular points on Uj.

Next we will check whether the origin of the local chart Us is a singular
point. In Uy we use (5) to get

i = v* ((a®/b)u® + 2au + b) — u’,
b = ((a®/b)u+ a) — uPv,

and we see that the origin is a singular point and that its linear part is zero.
We need to do blow-ups to describe the local behavior at this point. We
perform the directional blow-up (u,v) — (u,w) with w = v/u and have

i =u*w? ((a®/b)u® + 2au + b) — u?,

W = — uw(au + b).

(8)

We eliminate the common factor v between @ and w, and get the vector
field

@ = uw? ((a®/b)u* 4 2au + b) — u?,

W= —w3(au + b).

(9)
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When u = 0, because b < 0 the only singular point of system (9) is the origin,
whose linear part is again zero. Hence we do another blow-up (u, w) — (u, z)
with z = w/u, eliminate the common factor u?, and get the vector field

@ = uz® ((a®/b)u* + 2au +b) — u,

2= —2%((a®/b)u® + 3au + 2b) + . 10)

When u = 0, the unique singular point of system (10) is the origin since
b < 0. The eigenvalues of the linear part of system (10) at the origin are
+1, hence it is a saddle. Going back through the changes of variables until
system (8) as shown in Figure 2, we see that locally the origin of Us consists
of two hyperbolic sectors.

1N NI
R VA VA
System (10) System (10) with System (9)

the common factor u?

~ |
u
]

I
o

System (9) with System (8)
the common factor u

FIGURE 2. Blow-up of the origin of Us of system (I) when b < 0.

We now look at the finite singular points of system (7) and see that only
the origin is singular, which is a center. Therefore the global phase portrait
of system (7) is topologically equivalent to the phase portrait 1.1 of Figure 1.

5. GLOBAL PHASE PORTRAITS OF SYSTEM ([[])

Again we first consider the case b = 0. Then system (I7) is

& =3, Y= cx—|—3m2y,

The y-axis is an invariant straight line, hence the origin cannot be a center
in this case.

Now we consider the case b # 0. So system (1) writes

:t:ax+by—x3, Y= —(aQ/b)a;—ay+3J:2y, (11)
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and it has the Hamiltonian

a’x?  by?

HQ = —$3y+ T‘FT—FCL.Iy
Note that we can assume b > 0 because the linear change y — —y gives
exactly the same system with the opposite sign of the parameter b.
To determine the necessary and sufficient conditions for the origin of
system (11) to be a center, using Proposition 5 we rewrite it as

T=y— 3, Y= —daxd + 3172y.

Then, by Proposition 4 the origin of system (11) is a center if and only if
a > 0. Therefore we assume a > 0 and begin the study of its phase portrait
with finding the infinite singular points.

In the local chart Uy system (11) is
u = —v* (bu® + 2au + a* /b) + 4u,
v =—v%(bu+a)+v.

When v = 0, only the origin of U is singular. The eigenvalues at this point
are 4 and 1, meaning that it is a repelling node.

Next, we should check the origin of Us, in which system (11) becomes
i = v* ((a®/b)u® + 2au + b) — 4u?,
b =" ((a®/b)u + a) — 3u’v.
We see that the origin is singular and its linear part is zero. We need to do
blow-up for analyzing the local behavior at this point. Doing the blow-up

(u,v) = (u,w) with w = v/u and eliminating the common factor u we get
the system

(12)

@ = uw? ((a®/b)u® + 2au + b) — 4u?,

W = —w? (au + b) — uw. (13)

When u = 0, the only singular point of system (13) is the origin, whose
linear part is again zero. So, we do another blow-up (u,w) — (u,z) with
z = w/u, eliminate the common factor u, and obtain

i =u®2? ((a®/b)u® + 2au + b) — 4u,

14
2= —u2® ((a®/b)u® + 3au + 2b) + 5z. (14)

When u = 0, the only singular point of system (14) is the origin, which is a

saddle. We trace the changes of variables back to system (12) as shown in

Figure 3, and we find out that the origin of U, is an attracting node.
Having determined the infinite singular points of system (11), we now

compute its finite singular points, which are + (\/ 4a/3, \/ 4a3/ 27b2> plus

the origin. The eigenvalues of the linear part of system (11) at these two
points are :|:4\/§a/ /3, which means that they are saddles since a > 0.

Now we will determine the global phase portrait according to this local
information. The two saddles must be on the boundary of the period an-
nulus of the center at the origin due to the symmetry of the system. Also
there are no singular points other than the origin on the axes, on which the
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B D
N N —
System (14) System (13) System (12)

FIGURE 3. Blow-up of the origin of Us of system (II) when a,b > 0.

Hamiltonian Hs is quadratic. By the same argument used for system (I),
this means that the separatrices passing through saddles cannot cross the
axes anymore. Hence we obtain the global phase portrait 1.2 of Figure 1.

6. GLOBAL PHASE PORTRAITS OF SYSTEM (II1])
We first study the case b = 0. Then system (I11) becomes
= =322y +y>, §=cx+ 3z (15)

where ¢ # 0, and it has the Hamiltonian

Using Proposition 5 we rewrite system (15) as
i =y+32%y/c, 3=cz®—3xy*/c.

Then by Proposition 4 the origin is a center if and only if ¢ < 0. Hence we
assume that ¢ < 0.

In U; system (15) becomes
i = cv? —u*(u? —6), = —uv(u®-3). (16)

When v = 0, there are three singular points on U;: (0,0), (£v/6,0). The
linear part of system (16) is

( —4u(162 —3) w(ug ) ) ,

Hence the singular points (v/6,0) and (—v/6,0) are attracting and repelling
nodes, respectively.

At the origin, however, the linear part is zero. Therefore to describe its
local behavior we do the blow-up (u,v) — (u,w) with w = v/u. After
eliminating the common factor u between % and w, we obtain the system

o = cuw? —u(u? —6), w=—wlcw? +3). (17)

When u = 0, system (17) has the singular points (0,0), (0, i\/—3/c), all

of which are real since ¢ < 0. The linear part of system (17) at the points

(0,w) is
cw? +6 0
0 —3cw?® -3 |-
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So, in addition to the saddle at the origin, the points (O,:I:\/—3/0> are

repelling nodes. This time we see that the origin of U; has two elliptic
sectors and two parabolic sectors, see Figure 4.

ey N
—

System (17) System (16)

FIGURE 4. Blow-up of the origin of U; of system (15) when ¢ < 0.

We now look at the origin of Us, in which system (15) writes
= —cv? —6u*+1, ©=—ww(cv®+3).

We see that the origin of Us is not a singular point. Hence all the infinite
singular points are in U; and Vj.

Additionally to the origin, system (15) has the four finite singular points
(:I: —c/9,:|:\/—c/3> on Us, which are real since ¢ < 0. The eigenvalues

of the linear part of system (15) are +2¢/3 at each of them, so they are
saddles.

We note that the Hamiltonian H3 has the same value at all of these saddles
since it is an even function. Then we claim that all four of them must be on
the boundary of the period annulus of the center at the origin. We define
energy levels of a vector field as the curves on which its Hamiltonian is
constant. If there were only two saddles on the mentioned boundary, then a
straight line passing through the origin and sufficiently close to the saddles
which are not on this boundary would have at least six intersection points
with the separatrices of these saddles, which are on the same energy level,
see Figure 5. But this is impossible because H?} is only quartic. Hence the
claim is proved.

FIGURE 5. The straight line through the origin intersects the
separatrices six times.

Moreover, the separatrices of these saddles cross the z-axis exactly twice
since Hi is quadratic in  when y = 0. Consequently we conclude that
the global phase portrait of system (15) is topologically equivalent to 1.3 in
Figure 1.
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Now we study system (/1) when b # 0. In this case system (//]) writes

i=azx+by—32%y+9>, §=—(a®/b)x — ay + 3zy>, (18)
and it has the Hamiltonian
4 2,2 2,2 2
9 _y 37y a‘x by~
H3(z,y) = 1 5 % + 5 + axy.

We use Proposition 5 to rewrite system (18) as

a(a® — 3b?)x3 n 3(a® — b?)2?y B 3azy? y_3

T=9y—

b b3 b3 b3’
. a?(a® — 6b?)x®  3a(a® —3b%)z%y  3(a® —bH)azy?  ay?
v=- i M & B i T
Then by Proposition 4 the origin is a center if and only if
a?/b—6b>0 and a#0. (19)

Under these restrictions we first investigate the infinite singular points of
(18). In U; system (18) becomes
i = —v? (bu® + 2au + (a®/b)) — u?(u® — 6),

v == (bu+ a) — uwv(u? — 3). (20)

When v = 0 the singular points are (0,0),(£v/6,0). The linear part of
system (20) is
—4u(u? - 3) 0
( 0 —u(u? — 3) > ’

Hence, just like the case b = 0, the singular points (v/6,0) and (—+/6,0) are
attracting and repelling nodes, respectively.

At the origin, however, the linear part is zero. We do the blow-up (u,v) —
(u, w) with w = v/u, eliminate the common factor u between u and w, and
obtain the system

i = —uw? (bu® + 2au + (a®/b)) — u(u® — 6),

W = w’ (au+ (a*/b)) — 3w. 2D

When u = 0, system (21) has the singular points (0,0), (0, + 3b/a2). The
linear part of system (21) at the points (0, w) is
—(a®/b)w? +6 0
aw® 3(a®/byw? -3 -
When b < 0, we see that <O,i 3b/a2> are not real, hence the only

singular point is the origin, which is a saddle. It is shown in Figure 6 that
the origin of U; consists of two hyperbolic sectors.

When b > 0, all three singular points are real. In addition to the saddle
at the origin, the points (O, :I:\/Bb/a2> are repelling nodes. This time we

see that the origin of Uy has two elliptic sectors and two parabolic sectors,
see Figure 7.
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e
~e

System (21) System (20)

FIGURE 6. Blow-up of the origin of Uy of system (I17) when b < 0.

v

I N
—

System (21) System (20)

FIGURE 7. Blow-up of the origin of Uy of system (I1I) when b > 0.

We now look at the origin of Us, in which system (18) writes
i = v? ((a®/b)u® + 2au + b) — 6u® + 1,
0= ((aQ/b)u + a) — 3uw.
Hence the origin of Us is not a singular point.

The finite singular points of system (18) other than its origin are

- <(36—A)\/B—A \/B—A>,

6v/6a ’ V6
(b +AWVBTA VBT A
p3,4_:|:< 6\/60, ) \/6 ))

where A = /1242 + 9b2 and B = 2a?/b — 3b.
When b < 0, we see that the expression

(2a% /b — 3b)? — (12a® + 9b?) = 4ab(a? /b — 6b) (22)

is negative due to (19). Hence B — A < 0 and B+ A > 0. Therefore
when b < 0 system (18) has only the two finite singular points ps and py in
addition to the origin. The eigenvalues of the linear part of system (18) at
these points are

\/dat + 150202 + 0! + b(5a2 — 362)V/I2a® 1 O
+
3
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We observe that
2
(4a* + 150202 + 9b*)2 — (b(5a2 — 3%)v/12a% + 9b2) -
4a®(4a® 4 3b%)(a® — 6b%)? > 0.

Therefore p3 and py4 are saddles. By the symmetry of (18) they must be on
the boundary of the period annulus of the center at the origin. Since the
Hamiltonian Hg is quadratic on the x-axis, their separatrices can cross the
z-axis only twice. Consequently we obtain the phase portrait 1.4 of Figure 1.

When b > 0, on the other hand, (22) is positive and
2a*/b — 3b > a? /b — 6b > 0.
Therefore all of the four finite singular points exist. We already saw that
p3 and p4 are saddles. Similar computations show that p; and py are also
saddles. We claim that only two of these saddles can be on the boundary of

the period annulus of the center at the origin. This is due to the fact that
the Hamiltonian H2 of system (18) is even and that we have

2a* + 30a%b% — 9b* — b(4a? + 3b%)V/12a2 + 9b?

9 2a* + 30a2b? — 9b* + b(4a? + 3b?)V/12a2 + 9b2
H3 (p?)) = 72b2 )

which are equal if and only if b = 0, which is not the case.

By the same argument used for the case b < 0, we see that the saddles
which are on the boundary of the period annulus of the center at the origin
cannot be connected to any of the other saddles. Therefore the saddles on
this boundary have to be connected with the infinite singular points. Due to
the fact that the separatrices through these saddles cannot cross the z-axis
anymore and that the flow around the origin is clockwise, we get the global
phase portrait 1.5 shown in Figure 1.

7. GLOBAL PHASE PORTRAITS OF SYSTEM (I/V)

As before we first consider the case b = 0. Then system (V') becomes

&= —32%y —y3, ¢ =cx+3xy> (23)
where ¢ # 0, and it has the Hamiltonian
4 2,2 2
Y 3zy cx
ol =< _==J =

Using Proposition 5 we rewrite system (23) as
i =y+32%y/e, §=—cz—3xy?/c.

Then by Proposition 4 the origin is a center if and only if ¢ > 0. Hence we
will investigate the case ¢ > 0.

In Uy system (23) becomes
o= cv? +uP(u? +6), ©=uv(u®+3). (24)

When v = 0, the only singular point is the origin and its linear part is zero.
Therefore to study its local behavior we do the blow-up (u,v) — (u,w) with
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w = v/u. Eliminating the common factor u between @ and w, we obtain the
system

o= cuw?® + u(u® +6), w=—wlcw?+3). (25)
When u = 0, system (25) has the unique singular point (0, 0) since ¢ > 0 and
it is a saddle. Hence we see that the origin of U; consists of two hyperbolic
sectors, see Figure 6.

In Us system (23) is expressed as
0=—cv?—6u? -1, 0= —uv(cv?+3).
The origin of Us is not a singular point. Hence the infinite singular points
are only the origins of U; and V.
The finite singular points of (23) are (0,0) and (i\/T/S), + —0/3) on
Us. But because ¢ > 0, only the origin is real. As a result we conclude that

the global phase portrait of system (23) is topologically equivalent to 1.1 in
Figure 1.

Now we study system (/V') when b # 0. In this case system (IV') writes

i=az+by— 3y —y°, §=—(a/b)x — ay + 3wy’ (26)
and it has the Hamiltonian
4 2,2 2,2 2
Y 3z4y a‘x by
Hj =7 _ et .
3(z,y) 1 9 + % + 9 + axy

We apply Proposition 5 to system (23) and get

a(a® 4+ 3b%)z®  3(a* +b*)2%y  3azy? P
b - b T T

a?(a® +6b%) 23 3a(a® +3v%)2%y  3(a® +bH)ay? ay?
b - b - b3 e

Then by Proposition 4 the origin is a center if and only if b < 0 and a # 0.

Therefore we impose these two conditions on (26) and begin with investi-
gating its infinite singular points.

T=y

In Uy we have
T p— (bu2 + 2au + (a2/b)) + u%(u? +6), (27)
v = —v3 (bu + a) + uwv(u® + 3).

When v = 0 the only singular points of (27) is the origin and its linear part
is zero. We do the blow-up (u,v) — (u,w) with w = v/u, eliminate the
common factor v and obtain the system

i = —uw? (bu® + 2au + (a®/b)) + u(u® + 6), (28)
W = w® (au+ (a*/b)) — 3w.

When w = 0, the only singular point of system (28) is the origin, which
is a saddle. It is shown in Figure 6 that the origin of U; consists of two
hyperbolic sectors.

The origin of Us, in which system (26) writes
i =v* ((a®/b)u® + 2au + b) — 6u* — 1,
o =1 ((a®/b)u+ a) — 3uw,
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is clearly not a singular point.

Next we consider the finite singular points of system (26) which are

pra= <(36+A)\/B—A \/B—A>’

6\/&1 ' \/5
B (3b—A)VB+A VB+A
p374_:|:< 6\/6(1 ) \/6 >7

where A = v/—12a2 + 9b% and B = 2a?/b+ 3b. Due to our assumption that
b < 0, we observe that

B— A< B+ A=24d?/b+ 3b+/—12a2 + 9b2
<2a?/b+ 3b+ V9b?
=2a/b < 0
Therefore the origin is the only finite singular point of system (26) and we
easily see that its global phase portrait is topologically equivalent to 1.1 of
Figure 1.
8. GLOBAL PHASE PORTRAITS OF SYSTEM (V')

When b = 0, system (V') becomes

i =32y +y°, §=co+a’+3ury’ (29)
where ¢ # 0, and it has the Hamiltonian
4_ 4 2,2 2
Yyt —x 3puxcy cx
i - - il

Using Proposition 5 we rewrite system (29) as
i=y+3uz’ylc+y’le, §=ca®—3uxy’/c.
Then by Proposition 4 the origin is a center if and only if ¢ < 0. Therefore
we assume ¢ < 0.

As in the previous systems, we first investigate the infinite singular points
of system (29). In the local chart U; we have

0 =cv® —ut + 6pu® + 1,

v = — vu(u? — 3p). (30

When v = 0, the real singular points are ( +1/3pu+ /9u? + 1, 0), and the

linear part of (30) is
—4u(u? — 3pu) 0
0 —u(u? —3u) )’

Hence the points (\/3/1-&- Vu? + 1,0) and ( — \/3u+ /92 + 1,0) are

respectively attracting and repelling nodes of system (30).
In U, system (29) becomes

u =v? ((a®/b)u* + 2au +b) — u* — 6pu® + 1,
b =v° ((a®/b)u + a) — vu(u® + 3p),
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and we see that the origin is not a singular point. Hence system (V') has
four infinite singular points, all of which are nodes on U; and V;.

The finite singular points of system (29) are the origin, + (y/—¢,0) and

pi = (Ev/=e/(L+ 922), v/ =3ep /(1 + 9122) ).

with ¢+ = 1,2, 3,4. We observe that when p < 0 the points p; do not exist,
and when y = 0 they are equal to + (y/=¢,0). As a result, system (29) has
three finite singular points when p < 0, and seven when p > 0. We note
that the linear part of system (29) is

Ml — —6uxy 3y? — 3ua?
57\ c+32% + 3uy? 6ury '

We first consider the case p < 0. We know that the origin is a center.
The eigenvalues of M3 at + (y/=¢,0) are +c¢y/=6p. This means that these
points are hyperbolic saddles when p < 0, but are degenerate when p = 0.
But M3 is not identically zero at these points since

¢+ 322 4 3uy® = —2¢ > 0.

So they are nilpotent. Due to the fact that nilpotent singular points of
Hamiltonian vector fields are either saddles, centers or cusps, and that the
number of singular points is fixed for p < 0, we conclude that the points
+ (v/—¢,0) are saddles also when p = 0.

Then the global phase portrait in this case is topologically equivalent to
1.2 of Figure 1. This is because the two saddles must be on the boundary of
the period annulus of the center at the origin. Their remaining separatrices
cannot cross the straight lines passing through the origin and the infinite

singular points, namely y = +1/3u + \/9u? + 1z, because the Hamiltonian

H3} = —c2?/2 is quadratic on these lines. Then taking into account the flow
at infinity, we obtain the global phase portrait.

Secondly we look at the case 4 > 0. In this case the points + (v/—c,0)
are centers. In addition, each p; is a saddle because the eigenvalues of Mg at
these points are +2¢v/3u/+/1 + 9u?. Since the Hamiltonian of system (29)
is even, H, 51 (pi) is constant for all 7. Then, by the same same argument that
we used in system (I11) (see Figure 5), we deduce that every p; must be on
the boundary of the period annulus of the center at the origin.

Since the infinite singular points are nodes, the centers can only be created
by connecting two adjacent saddles. The flow around the origin is clockwise
because ¢ < 0. In addition, the remaining separatrices of any of the saddles
must lie on different sides of the straight line passing through that saddle
and the origin, otherwise there would exist another straight line through
the origin intersecting both separatrices in six intersection points in the
same energy level. Then the flow at infinity ensures that the remaining two
centers are formed by connecting adjacent saddles which lie on the same
side of the plane with respect to the y-axis. Recalling from the case p < 0
that the remaining separatrices of these saddles cannot cross the straight
lines passing through the origin and the infinite singular points, we get the
global phase portrait 1.6 in Figure 1.
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Having established the case b = 0, we now investigate the case b # 0 in
which system (V) writes

i = ax + by — 3uzy + o>, (31a)
j = —(a®/b)x — ay + 2® + 3uwy?, (31Db)

and it has the Hamiltonian
4 4 2,2 2,2 2
Y- 3uzcy a‘“x by
H? = — - :
5(7,y) 1 5 T Ty ey
We remark that without loss of generality we can assume b > 0. If we do

the linear transformation (z,y) — (—y, —z), system (V') becomes

—j = —ay — bz + 3uy’z — 2>,

—i = (a®/b)y + ax — y® — Buya?,
which can be rewritten as
i = —ax — (a®/b)y + 3ux’y + 12,

32
y = bz + ay + x> — 3pay’. (82)

After defining @ = —a, fi — p, and b = a?/b, we see that system (32) is
basically system (V') with b — —b. So, we assume b > 0.

Using Proposition 5 we rewrite system (31) as

a(a® — 3b*p)z? n 3(a? — b?p)z?y B 3azy® 3

t=y- 5 i BB
. (a* —b* — 6a?b?pu)2z®  3a(a® — 3v%p)x%y  3(a® —b*p)ay®  ay?
e b - I - b T
Therefore, by Proposition 4, we impose on system (31) the two conditions
a* —b* — 6a®b*u >0 and b > 0. (33)

The infinite singular points of system (31) are the same as those of
(29), an attracting node (\/3u+ Vou? + 1,0) and a repelling node ( —

\/ 3+ /9 + 1, 0) on Uy, and the corresponding points on V;. The origin
of Uj is not a singular point.

The explicit expressions for the finite singular points in terms of the pa-
rameters a, b, 8 are big, and therefore it is hard to study them numerically.
For this reason we follow a different approach. We first find the maximum
number of finite singular points allowed by the system. We equate (31a) to
0, solve for x and get

a =+ \/a? + 12buy? + 12uy*

6py '
Note that when y = 0, (31b) is zero if and only if x = 0 or @ = 0. But if
a = 0, then (31b) is zero only when z = 0. So we conclude that the only
finite singular point on the z-axis is the origin, which we know is a center.
Hence we can assume that y # 0. Then it remains to study the case p =0
separately, which we will consider later on, but we first assume that u # 0.

1‘1,2 = (34)
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If we substitute (34) into (31b) we obtain

. 1
Y12 = — TN (a(aQb +9u(b* — a®p)y? + 9bu(1 — 3p*)y*)

+ /a2 + 12bpy? + 1209 (a2b + 3u(b? — 3a2u)y> + 3bu(l + 9,u2)y4)),

where 91 and 92 denote § with x; and s substituted, respectively. Then the
maximum number of roots of the product 3,72 will give an upper bound for
the number of finite singular points. So we multiply ¢; and g2 and obtain
-1
——— (0% (1 + 9p®)y® + 3b(1 + 9p®) (b* — 2a*p + 367 1) y*
2762M3((+u)y+ (1+9u%)( a’p+3b°p?)y
+3(b* + 3atu? + 60 1? — 18a*b? %) y? — b(a* — bt — 6a?b?p)).
(35)

We see that (35) cannot be identically zero because its constant term is
different from zero due to (33), so it has at most six real roots. This means
that for u # 0, all the finite singular points of system (31) are isolated and
that there are at most six of them without taking into account the origin.

If i = 0, on the other hand, system (31) writes
i=ar+by+y>, y=—(a®/b)x —ay+ 2>

We can easily compute its finite singular points and see that, additionally
to the origin, it has only two. Therefore we conclude that system (31) has
at most six finite singular points.

Next we will count the indices of the known singular points, both finite and
infinite, and then deduce some conditions on the remaining finite singular
points of the system. We will use two important theorems in the process.
One is the well known Poincaré Formula for the index of a singular point of
a planar vector field, and the other is the famous Poincaré-Hopf Theorem for
vector fields in the 2-dimensional sphere. For details about these theorems,
see Chapters 1 and 6 of [10].

Theorem 8 (Poincaré Formula). Let ¢ be an isolated singular point having
the finite sectorial decomposition property. Let e, h and p denote the number
of elliptic, hyperbolic and parabolic sectors of q, respectively. Then the index
of qis (e —h)/2+ 1.

Theorem 9 (Poincaré-Hopf Theorem). For every tangent vector field on S*
with a finite number of singular points, the sum of the indices of the singular
points s 2.

Corollary 10. The index of a saddle, a center and a cusp are —1, 1 and
0, respectively.

Remark 11. Nilpotent singular points of Hamiltonian planar polynomial
vector fields are either saddles, centers, or cusps (for more details see chap-
ters 2 and 3 of [10], specifically sections 2.6 and 3.5)

Observe that when determining the finite singular points by considering
their total index, those with index zero are hard to detect. To overcome this
difficulty we present the following lemma, which is inspired from Lemma 15
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of [8]. A hyperbolic saddle with a loop and a center inside the loop as in
Figure 8 will be called a center—loop.

FIGURE 8. A center—loop.

Lemma 12. Let X. be a real Hamiltonian planar polynomial vector field
having only linear and cubic terms. Then X, can be written as

& = aww + any + azox’ + anx’y + azry® + aosy’,

i = biow — a1y + bsox® — 3agor’y — anwy® — %alzyg +ex.
Suppose that p is an isolated singular point of X. different from the origin.
If a3 + agibio = 0 but agy # 0, then the following statements hold:

(a) If p is non—elementary, then it is nilpotent.

(b) Ifp is a non—elementary singular point of Xo, then it is an elementary
singular point of X with € # 0.

(c) If p is a cusp of Xo, then for € small enough such that cag; < 0, the
origin of X¢ is a linear type center and the local phase portrait of X,
at p is a center—loop.

Proof. Let X, be the vector field defined in the lemma. It is easy to check
that X, is Hamiltonian with the Hamiltonian polynomial

aosy® — bgoa? +asordy + anz?y? n arpzy’ n aory® — broa? + anory.
4 2 3 2
Without loss of generality we can assume that p = (0, ), otherwise doing
a rotation of the coordinates we can get its x-coordinate to be zero.
Assume that a%o + ap1b19 = 0 and that ag; # 0.
We first prove statement (a). At the singular point (0,y9) we have
1
3
whereas M., the linear part of X., at (0,y0) is

( aio + a12y3 apl + 3a03y8 >

H, =

yo(ao1 + aosyd) = —yolaro + sai2yg) =0, (36)

bio — az1yg +e  —ai — a12y3
Since yo # 0, we see that (0,y) is degenerate only if
ao1 + aosyg = ao1 + 3agsyg = 0, (37)

which requires ag3 = 0. However, since ag; # 0, equation (37) cannot be
satisfied. Therefore we conclude that a non—elementary singular point of X,
must be nilpotent. So statement (a) is proved.

Now we prove (b). Assume that (0, yg) is a non—elementary singular point
of Xy. We will prove that the eigenvalues of the linear part of X, with
€ # 0, are different from zero.
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The characteristic polynomial at a singular point of X, is of the form
A2+det(M.). So the eigenvalues ) of the linear part of X. at a singular point
are £4/—det(M,). Since we have already assumed that the eigenvalues of
My at (0,y0) are zero, the only nonzero terms in the determinant of M, at
the same point are those having a factor of €. Hence the eigenvalues of M,

at (0,yp) are
A= :|:\/€(3a03y3 + a01), (38)

where ¢ # 0. Then the eigenvalues are zero only if we have (37), but we
have already shown that it is not possible. Therefore (0,yp) is an elementary
singular point of X..

Finally we prove part (c¢). Assume that (0,yp) is a cusp of Xy and that
eagr < 0. Then the eigenvalues of M. at the origin of X, are £,/eagr, purely
imaginary by assumption. Since X, is Hamiltonian, we conclude that the
origin is a linear type center.

Due to the fact that yo # 0, we have agy = —agzys, see (36). Then, by
(38), the eigenvalues of M at (0,yp) are

+1/e(3ao3yg + ao) = £v/e(—2a0),

both of which are real by assumption. Hence (0, 1) is a saddle. In addition,
since (0, yo), which was a cusp with index zero, is now a saddle having index
-1, new singular points must emerge in a neighborhood W. of (0,yq) to
keep the total index of the vector field fixed. Because of the symmetry of
the system, there can be at most three new singular points in W, so that
the total number of finite singular points does not exceed 9. Since X is
Hamiltonian, these singular points can only be saddles, centers or cusps.
Therefore in W, there are additionally to the saddle at (0,yo) either (i) one
center, (i7) one center and one cusp, (ii7) one center and two cusps, or (iv)
two centers and one saddle. Our claim is that (i) is the only realizable case
and that (0,yg) is the saddle of a center—loop.

Because of the continuity of system X. with respect to e, the new sep-
aratrices of (0,yo) must be arbitrarily close to (0,yg) for small e, therefore
they cannot go to any other singular point outside W.. Note that in all the
possibilities (i) — (iv), there exists a center with (0, ) on the boundary of
its period annulus. Then we see that (0,y0) cannot be on the boundary of
the period annulus of the center at the origin. Otherwise we could find a
straight line [ through the origin intersecting the boundary of the period
annulus of the new center twice, which would, in fact, have at least three
intersection points with the separatrices of (0,y¢), the other being on the
boundary of the period annulus of the center at the origin, see Figure 9.
Then, due to the symmetry of the system with respect to the origin, there
would be six points on [ all of which are on the same energy level. Clearly
this is not possible since the Hamiltonian H. is a quartic polynomial.

If (0,yp) is not on the boundary of the period annulus of the center at
the origin, then there must be other saddles on that boundary. This means
that system X, has at least five finite singular points. This immediately
eliminates the possibilities (7i7) and (iv), otherwise the number of finite
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FIGURE 9. The straight line through the origin intersects the
separatrices six times.

singular points exceeds the maximum of 9. Furthermore, by the same argu-
ments used for (0,yp), the cusp in case (i7) would also lead to the existence
of more singular points. Therefore we dismiss case (i7) also, proving our
claim. 0

With the help of this lemma, we will be able to detect possible cusps of
the vector fields by studying the center—loops of the Hamiltonian linear type
centers obtained by the perturbation in statement (¢) of Lemma 12.

We continue determining the finite singular points of system (31). By
Theorem 8, the four nodes at infinity and the centers at the origins of Us
and V3 have total index 6 on the Poincaré sphere. Then by Theorem 9,
the remaining finite singular points on the Poincaré disk have to have total
index -2.

By statement (a) of Lemma 12, these singular points are either elementary
or nilpotent. Hence they are either centers, saddles or cusps. We claim that
at most two finite singular points of system (31) which are different from
the origin are nilpotent. To prove this claim we compute the Grobner basis
of the system of three equations obtained by equating (31a), (31b) and the
determinant of the linear part of system (31) to zero. Recall that y # 0. We
obtain sixteen equations, two of which are a quadratic polynomial of y only,
and another polynomial linear in 2. This proves our claim.

In short, by Corollary 10, finite singular points of system (31) other than
the origin can be either (i) two saddles, (i) two saddles and two cusps, or
(7i1) four saddles and two centers.

Consider case (7). The two saddles must be on the boundary of the
period annulus of the center at the origin. Their remaining separatrices
cannot cross the straight lines passing through the origin and the infinite

singular points, namely y = +1/3u + /912 + 1z, because the Hamiltonian

H?2 is quadratic on these lines. Then, due to the flow at infinity, we get a
global phase portrait which is topologically equivalent to 1.2 of Figure 1.
We remark that this phase portrait is achieved for the values a =2, b =1
and p=1/4.

In case (i7i), we compute the Grobner basis for the system of three equa-
tions & = ¢ = 0 and H? = c for some ¢ € R. Of the 52 equations that
we obtain, one is a quadratic polynomial of only y and another is linear in
x. Therefore we conclude that the Hamiltonian H2 cannot have the same
value at the finite singular points which are not symmetric with respect to
the origin. As a result, only two of the saddles can be on the boundary of
the center at the origin. Then the remaining separatrices of these saddles
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either go to infinity or come back to the same saddles in one of the ways
shown in Figure 10.

FIGURE 10. Two saddles forming the two centers.

The first figure cannot be realized due to the fact that (31a) does not
change on the positive y-axis since b > 0. We see that the second figure can-
not be achieved either, see Figure 9. Hence we conclude that the remaining
saparatrices of these saddles go to infinite singular points, of course with-
out crossing the straight lines passing through the origin and the infinite
singular points.

Because of the symmetry of system (31) and the flow near infinity, the
remaining finite singular points must be symmetric with respect to the ori-
gin, and also there must be a saddle on the boundary of the period annulus
of each of the centers, creating a center—loop. We observe that a center—
loop may exist only if a straight line /; passing through the origin and the
saddle of the center—loop intersects the separatrices of this saddle at exactly
on point, namely the saddle itself. Otherwise we can find another straight
line /5 passing through the origin and sufficiently close to the saddle of the
center—loop such that it intersects the saddle’s separatrices at least three
times, see Figure 11. Then, because of the symmetry of the vector field
with respect to the origin, there would be six points on ls which are on the
same energy level. But we know that this is not possible since system (31)
is cubic.

n

FIGURE 11. Center—loop configuration.

In short, there is only one way, up to topological equivalence, for the
center—loops of system (31) to be formed, and we obtain the global phase
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portrait 1.7 of Figure 1. For a = 5, b = 1 and p = 1/4 such a phase portrait
is a realized.

Finally we consider case (ii). By statement (¢) of Lemma 12, system
(31) becomes a Hamiltonian linear type center which has a center—loop.
We already know by our previous work that the global phase portrait of
this perturbed system is topologically equivalent to 1.7 in Figure 1 also.
Therefore the only possible global phase portrait in this case is the portrait
1.8 shown in Figure 1. The particular global phase portrait examples that
we provided for the cases (i) and (4i7) ensure that the phase portrait 1.8 is
actually realized when b =1 and p = 1/4 for some a € (2,5).

9. GLOBAL PHASE PORTRAITS OF SYSTEM (V)
When b = 0, system (V1) becomes
&= -3uz’y —y°, §=cx+a’+3uzy’, (39)

and it has the Hamiltonian

yt+ ot 3ux’y?  cx?
4 2 2

Using Proposition 4 we see that system (39) has a center at the origin if
and only if ¢ > 0.

H§(z,y) =

In the local chart U; system (39) writes

= cv® +ut +6ulp+1, (40)
b = wv(u? + 3pu).

When v = 0, the singular points of system (40)are (:I: \/—3,u +/9u? -1, O).
Therefore, in U; there are four singular points if © < —1/3, two if p = —1/3,
and none if p > —1/3.

In Us system (39) becomes

0= —cu®v? —ut —6ulp — 1,

b = —uv(u? + cv? + 3p),
and we see that the origin is not a singular point. Hence all the infinite
singular points are on the local charts U; and Vi. The existence of these

singular points depend on the parameter u, so we will investigate the phase
portraits in the corresponding subcases.

The finite singular points of system (39) are the origin, + (\/—c, 0) and

pi = % (£V/e/907 = 1),v/=3eu/ (907 1)) . (41)

with 7 = 1,2,3,4, for u # +1/3. The points + (\/—c, O) are not real since
¢ > 0. When g > —1/3 none of the p; are real, whereas they are all real and
are saddles when p < —1/3.

In addition, when p = —1/3 system (39) becomes

&=y’ —y?), §=crt+a(®—y?),

hence the only singular point is the origin since ¢ > 0. Similarly when
1 = 1/3 only the origin is a singular point.
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In short, system (39) does not have any finite singular points other than
the origin if © > —1/3, however, it has the points p; for i = 1,2, 3,4 other-
wise.

We first assume that p < —1/3. Then all of the four singular points on

U, are real such that \/ 3+ /92 — 0 and \/ 3 — \/9u? — O)
are repelling nodes, whereas the other two pomts \/—3u — /92 — ,0)

and ( — \/—3,u + /92 -1, O) are attracting ones.

We have H{(p;) = H¢ (P(i+1)) for i = 1,2,3 because the Hamiltonian is
an even function. Then all of them must be on the boundary of the period
annulus of the center at the origin, see Figure 5. The remaining separatrices
of the saddles cannot cross the straight lines passing through the origin and
the infinite singular points because Hé = —cx?/2 on these lines. Therefore
all these separatrices must go to the infinite singular points as it is shown
in the global phase portrait 1.9 of Figure 1.

Next we assume that u = —1/3. The linear part of system (40) at both
singular points (+1,0) is zero. So we need blow-ups to understand the local
behavior at these points. We will do the computations for the point (1,0),
and the other point (—1,0) can be studied in the same way.

First we move (1,0) to the origin by the shift u — w + 1, and get the
System
i =cv® +ut(u+2)% 0 =uvlu+1)(u+2).
Now if we do the blow-up (u,v) — (u,w) with w = v/u and eliminate the
common factor u, we get the system

2

= u(u+2)*+ cuw?, W= —wu+cw?+2). (42)

We see that since ¢ > 0, the only singular point of system (42) when u =0
is the origin, which is a saddle. Therefore the singular point (1,0) of system
(40) has two hyperbolic sectors, see Figure 6.

Performing the same procedure for the point (—1,0) reveals that the local
behavior around this point is the same as that of (1,0). Since there are no
finite singular points in this case, we get the global phase portrait 1.10 of
Figure 1.

Finally, when p > —1/3 system (39) has neither infinite nor finite singular
points. Since ¢ > 0, we get the global phase portrait 1.11 of Figure 1.

We have finished studying system (VI) in the case b = 0, and now we
assume that b # 0. Then system (V1) writes

& = ax + by — 3uz’y — >, (43a)
y = —(a®/b)x — ay + x> + 3uxy?, (43b)
and it has the Hamiltonian
4 2 2
yt + 2t 3u:r y?  a’x by
Hg —_— Y .
o(,9) ' T ey

By Propositions 5 and 6 the origin is a center if and only if
a* + bt + 6a2b%p
b

(44)
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The infinite singular points of system (43) are the same as those of system
(39).

We will study the finite singular points in the same way as we did in the
case b # 0 of system (V). We first find an upper bound for the number of
finite singular points. We equate (43a) to zero and solve for x and obtain

a =+ \/a? + 12buy? — 12uy*
Ty1,2 = )
61y
if 4 # 0 (we will handle the case p = 0 separately). Note that the only
singular point of system (43) on the z-axis is the origin, so we can assume y #
0. If we substitute these into (43b) and multiply the two respective functions,
we obtain a polynomial in y of degree six which cannot be identically zero.
This means that system (43) has at most six other finite singular points on
the Poincaré disk when u # 0.

When p = 0 the center condition (44) requires that b < 0. If we compute
the finite singular points of system (43) in this case we see that only the
origin is singular. Therefore we conclude that, in any case, system (43) has
at most six finite singular points.

We will now determine the global phase portraits of system (43) by con-
sidering the different values of p that lead to different phase portraits at
infinity.

When i < —1/3, the infinite singular points on U are the repelling nodes

\/ 3+ \/9u? — 0 and \/ 3 — /9u? — 0) and the attracting
nodes (\/—3,u V92 — O and \/ 3p+ /9u? — O) Then the in-

finite singular points and the centers at the origins of Us and V3 have total
index 10 in the Poincaré sphere. Hence the remaining finite singular points
in the Poincaré disk must have total index -4. Using Grobner basis and
statement (a) of Lemma 12 we see that there can be at most two finite
nilpotent singular points. Then the possibilities are: (i) four saddles, and
(i) four saddles and two cusps.

By statement (¢) of Lemma 12, case (i) would require the existence of
a Hamiltonian linear type center with eight inifinite singular points and
center—loops in the finite region. We know from [8] that such a vector field
does not exist. Therefore we discard case (7).

In case (i) using Grébner basis we see that HZ cannot have a fixed value at
no more than two finite singular points. Consequently, there are exactly two
saddles on the boundary of the period annulus of the center at the origin.
Their remaining separatrices cannot cross the straight lines passing through
the origin and the infinite singular points as in the case b = 0. Therefore we
conclude that the global phase portrait of (43) is topologically to equivalent
to 1.12 of Figure 1.

We now look at the case = —1/3. We remark that the center condition
(44) becomes equivalent to b < 0 and a® # b>. We saw that the infinite
singular points (+1,0) on U; have two hyperbolic sectors. Therefore the
total index of the infinite singular points and the centers at the origins of Us
and V3 is 2 on the Poincaré sphere. Hence, in the Poincaré disk, the total
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index of the remaining possible six finite singular points must be 0. Then,
other than the origin, there are either (i) no more singular points, (ii) two
cusps, (#ii) two saddles and two centers, (iv) two saddles, two centers and
two cusps.

We claim that only case (i), whose global phase portrait is topologically
equivalent to 1.10 of Figure 1, is realizable. We can immediately eliminate
case (iv) by Lemma 12 because a Hamiltonian linear type center with four
infinite singular points and center—loops does not exist as it is shown in [8].
Case (i7) is also easily eliminated by Lemma 12, see Figure 9. So it only
remains to show that case (ii7) cannot be realized.

Since the infinite singular points have hyperbolic sectors, the finite region
of a phase portrait in case (zii) must be one of the two possibilities shown in
Figure 10. The first figure is not possible due to the fact that (43a) does not
change sign on the positive y-axis since b < 0. The second figure is clearly
not possible either, see Figure 9. Hence the claim is proved and the case
p = —1/3 is finished.

Finally, when > —1/3, system (43) has no infinite singular points. Then
the remaining possible six finite singular points on the Poincaré disk must
have total index 0. Hence we have the following possibilities: (i) no singular
points, (i) 2 cusps, (¢it) two saddles and two centers, (iv) two saddles, two
centers, and two cusps. Observe that these are exactly the same possible
cases that we had when p = —1/3.

We claim that (43) does not have any additional finite singular points in
this case and that its global phase portrait is 1.11 of Figure 1. We prove
our claim in the next paragraph. We note that the center condition (44) is
equivalent to b < 0 when p > —1/3.

We can eliminate cases (i) and (ii7) by the same reasoning that we used
for y1 = —1/3. Considering case (iv) we see that a Hamiltonian linear type
center which has no infinite singular points but has center—loops exists,
whose global phase portrait is topologically equivalent to the first figure
in Figure 12. This suggests that a global phase portrait in case (iv) may
exist only if it is topologically equivalent to the second figure in Figure 12.
But (43a) is strictly negative on the positive y-axis since b < 0. Hnece (43)
cannot have such a phase portrait. This proves our claim, finishing the proof
of Theorem 1.

FIGURE 12. A possible cusp for system (V1) when b # 0.
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